1
|
Garrett N, Viruel J, Klimpert N, Soto Gomez M, Lam VKY, Merckx VSFT, Graham SW. Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales). AMERICAN JOURNAL OF BOTANY 2023; 110:e16141. [PMID: 36779918 DOI: 10.1002/ajb2.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome. METHODS We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω). RESULTS Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK. CONCLUSIONS We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
Collapse
Affiliation(s)
- Natalie Garrett
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nathaniel Klimpert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH, Amsterdam, The Netherlands
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Unprecedented frequency of mitochondrial introns in colonial bilaterians. Sci Rep 2022; 12:10889. [PMID: 35764672 PMCID: PMC9240083 DOI: 10.1038/s41598-022-14477-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Animal mitogenomes are typically devoid of introns. Here, we report the largest number of mitochondrial introns ever recorded from bilaterian animals. Mitochondrial introns were identified for the first time from the phylum Bryozoa. They were found in four species from three families (Order Cheilostomatida). A total of eight introns were found in the complete mitogenome of Exechonella vieirai, and five, 17 and 18 introns were found in the partial mitogenomes of Parantropora penelope, Discoporella cookae and Cupuladria biporosa, respectively. Intron-encoded protein domains reverse transcriptase and intron maturase (RVT-IM) were identified in all species. Introns in E. vieirai and P. penelope had conserved Group II intron ribozyme domains V and VI. Conserved domains were lacking from introns in D. cookae and C. biporosa, preventing their further categorization. Putative origins of metazoan introns were explored in a phylogenetic context, using an up-to-date alignment of mitochondrial RVT-IM domains. Results confirmed previous findings of multiple origins of annelid, placozoan and sponge RVT-IM domains and provided evidence for common intron donor sources across metazoan phyla. Our results corroborate growing evidence that some metazoans with regenerative abilities (i.e. placozoans, sponges, annelids and bryozoans) are susceptible to intron integration, most likely via horizontal gene transfer.
Collapse
|
3
|
Tocchini-Valentini GD, Tocchini-Valentini GP. Archaeal tRNA-Splicing Endonuclease as an Effector for RNA Recombination and Novel Trans-Splicing Pathways in Eukaryotes. J Fungi (Basel) 2021; 7:jof7121069. [PMID: 34947051 PMCID: PMC8707768 DOI: 10.3390/jof7121069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
We have characterized a homodimeric tRNA endonuclease from the euryarchaeota Ferroplasma acidarmanus (FERAC), a facultative anaerobe which can grow at temperatures ranging from 35 to 42 °C. This enzyme, contrary to the eukaryal tRNA endonucleases and the homotetrameric Methanocaldococcus jannaschii (METJA) homologs, is able to cleave minimal BHB (bulge–helix–bulge) substrates at 30 °C. The expression of this enzyme in Schizosaccharomyces pombe (SCHPO) enables the use of its properties as effectors by inserting BHB motif introns into hairpin loops normally seen in mRNA transcripts. In addition, the FERAC endonuclease can create proteins with new functionalities through the recombination of protein domains.
Collapse
Affiliation(s)
- Giuseppe D. Tocchini-Valentini
- Istituto di Biochimica e Biologia Cellulare, Campus Internazionale “A. Buzzati-Traverso”, Dipartimento Scienze Biomediche, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy;
- Dipartimento Scienze Biomediche, European Mouse Mutant Archive (EMMA), INFRAFRONTIER-IMPC, Monterotondo Mouse Clinic, Campus Internazionale “A. Buzzati-Traverso”, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy
- Correspondence:
| | - Glauco P. Tocchini-Valentini
- Istituto di Biochimica e Biologia Cellulare, Campus Internazionale “A. Buzzati-Traverso”, Dipartimento Scienze Biomediche, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy;
- Dipartimento Scienze Biomediche, European Mouse Mutant Archive (EMMA), INFRAFRONTIER-IMPC, Monterotondo Mouse Clinic, Campus Internazionale “A. Buzzati-Traverso”, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
4
|
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021; 26:molecules26082263. [PMID: 33919699 PMCID: PMC8070285 DOI: 10.3390/molecules26082263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers.
Collapse
|
5
|
Dabbagh N, Bennett MS, Triemer RE, Preisfeld A. Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid Eutreptiella pomquetensis. PeerJ 2017; 5:e3725. [PMID: 28852596 PMCID: PMC5572947 DOI: 10.7717/peerj.3725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Over the last few years multiple studies have been published showing a great diversity in size of chloroplast genomes (cpGenomes), and in the arrangement of gene clusters, in the Euglenales. However, while these genomes provided important insights into the evolution of cpGenomes across the Euglenales and within their genera, only two genomes were analyzed in regard to genomic variability between and within Euglenales and Eutreptiales. To better understand the dynamics of chloroplast genome evolution in early evolving Eutreptiales, this study focused on the cpGenome of Eutreptiella pomquetensis, and the spread and peculiarities of introns. METHODS The Etl. pomquetensis cpGenome was sequenced, annotated and afterwards examined in structure, size, gene order and intron content. These features were compared with other euglenoid cpGenomes as well as those of prasinophyte green algae, including Pyramimonas parkeae. RESULTS AND DISCUSSION With about 130,561 bp the chloroplast genome of Etl. pomquetensis, a basal taxon in the phototrophic euglenoids, was considerably larger than the two other Eutreptiales cpGenomes sequenced so far. Although the detected quadripartite structure resembled most green algae and plant chloroplast genomes, the gene content of the single copy regions in Etl. pomquetensis was completely different from those observed in green algae and plants. The gene composition of Etl. pomquetensis was extensively changed and turned out to be almost identical to other Eutreptiales and Euglenales, and not to P. parkeae. Furthermore, the cpGenome of Etl. pomquetensis was unexpectedly permeated by a high number of introns, which led to a substantially larger genome. The 51 identified introns of Etl. pomquetensis showed two major unique features: (i) more than half of the introns displayed a high level of pairwise identities; (ii) no group III introns could be identified in the protein coding genes. These findings support the hypothesis that group III introns are degenerated group II introns and evolved later.
Collapse
Affiliation(s)
- Nadja Dabbagh
- Faculty of Mathematics and Natural Sciences, Zoology and Didactics of Biology, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Matthew S Bennett
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Richard E Triemer
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Angelika Preisfeld
- Faculty of Mathematics and Natural Sciences, Zoology and Didactics of Biology, Bergische Universität Wuppertal, Wuppertal, Germany
| |
Collapse
|
6
|
Osman I, Tay MLI, Pek JW. Stable intronic sequence RNAs (sisRNAs): a new layer of gene regulation. Cell Mol Life Sci 2016; 73:3507-19. [PMID: 27147469 PMCID: PMC11108444 DOI: 10.1007/s00018-016-2256-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023]
Abstract
Upon splicing, introns are rapidly degraded. Hence, RNAs derived from introns are commonly deemed as junk sequences. However, the discoveries of intronic-derived small nucleolar RNAs (snoRNAs), small Cajal body associated RNAs (scaRNAs) and microRNAs (miRNAs) suggested otherwise. These non-coding RNAs are shown to play various roles in gene regulation. In this review, we highlight another class of intron-derived RNAs known as stable intronic sequence RNAs (sisRNAs). sisRNAs have been observed since the 1980 s; however, we are only beginning to understand their biological significance. Recent studies have shown or suggested that sisRNAs regulate their own host's gene expression, function as molecular sinks or sponges, and regulate protein translation. We propose that sisRNAs function as an additional layer of gene regulation in the cells.
Collapse
Affiliation(s)
- Ismail Osman
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mandy Li-Ian Tay
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
7
|
Dabbagh N, Preisfeld A. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends. J Eukaryot Microbiol 2016; 64:31-44. [PMID: 27254767 DOI: 10.1111/jeu.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/06/2016] [Accepted: 05/25/2016] [Indexed: 11/28/2022]
Abstract
A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1.
Collapse
Affiliation(s)
- Nadja Dabbagh
- Bergische University Wuppertal, Faculty of Mathematics and Natural Sciences, Zoology and Didactics of Biology, Wuppertal, Germany
| | - Angelika Preisfeld
- Bergische University Wuppertal, Faculty of Mathematics and Natural Sciences, Zoology and Didactics of Biology, Wuppertal, Germany
| |
Collapse
|
8
|
Abstract
This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.
Collapse
|
9
|
Wiegert KE, Bennett MS, Triemer RE. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist 2012; 163:832-43. [PMID: 22364772 DOI: 10.1016/j.protis.2012.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 11/27/2022]
Abstract
The chloroplast genome of Eutreptia viridis Perty, a basal taxon in the photosynthetic euglenoid lineage, was sequenced and compared with that of Euglena gracilis Ehrenberg, a crown species. Several common gene clusters were identified and gene order, conservation, and sequence similarity was assessed through comparisons with Euglena gracilis. Significant gene rearrangements were present between Eutreptia viridis and Euglena gracilis chloroplast genomes. In addition, major expansion has occurred in the Euglena gracilis chloroplast accounting for its larger size. However, the key chloroplast genes are present and differ only in the absence of psaM and roaA in Eutreptia viridis, and psaI in Euglena gracilis, suggesting a high level of gene conservation within the euglenoid lineage. Further comparisons with the plastid genomes of closely related green algal taxa have provided additional support for the hypothesis that a Pyramimonas-like alga was the euglenoid chloroplast donor via secondary endosymbiosis.
Collapse
Affiliation(s)
- Krystle E Wiegert
- Michigan State University, Department of Plant Biology, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
10
|
Moreira S, Breton S, Burger G. Unscrambling genetic information at the RNA level. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:213-28. [PMID: 22275292 DOI: 10.1002/wrna.1106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genomics aims at unraveling the blueprint of life; however, DNA sequence alone does not always reveal the proteins and structural RNAs encoded by the genome. The reason is that genetic information is often encrypted. Recognizing the logic of encryption, and understanding how living cells decode hidden information--at the level of DNA, RNA or protein--is challenging. RNA-level decryption includes topical RNA editing and more 'macroscopic' transcript rearrangements. The latter events involve the four types of introns recognized to date, notably spliceosomal, group I, group II, and archaeal/tRNA splicing. Intricate variants, such as alternative splicing and trans-splicing, have been reported for each intron type, but the biological significance has not always been confirmed. Novel RNA-level unscrambling processes were recently discovered in mitochondria of dinoflagellates and diplonemids, and potentially euglenids. These processes seem not to rely on known introns, and the corresponding molecular mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Sandrine Moreira
- Robert-Cedergren Centre for Bioinformatics and Genomics, Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
11
|
Abstract
The self-splicing group I introns are removed by an autocatalytic mechanism that involves a series of transesterification reactions. They require RNA binding proteins to act as chaperones to correctly fold the RNA into an active intermediate structure in vivo. Pre-tRNA introns in Bacteria and in higher eukaryote plastids are typical examples of self-splicing group I introns. By contrast, two striking features characterize RNA splicing in the archaeal world. First, self-splicing group I introns cannot be found, to this date, in that kingdom. Second, the RNA splicing scenario in Archaea is uniform: All introns, whether in pre-tRNA or elsewhere, are removed by tRNA splicing endonucleases. We suggest that in Archaea, the protein recruited for splicing is the preexisting tRNA splicing endonuclease and that this enzyme, together with the ligase, takes over the task of intron removal in a more efficient fashion than the ribozyme. The extinction of group I introns in Archaea would then be a consequence of recruitment of the tRNA splicing endonuclease. We deal here with comparative genome analysis, focusing specifically on the integration of introns into genes coding for 23S rRNA molecules, and how this newly acquired intron has to be removed to regenerate a functional RNA molecule. We show that all known oligomeric structures of the endonuclease can recognize and cleave a ribosomal intron, even when the endonuclease derives from a strain lacking rRNA introns. The persistence of group I introns in mitochondria and chloroplasts would be explained by the inaccessibility of these introns to the endonuclease.
Collapse
|
12
|
Transcriptome analysis of the Euglena gracilis plastid chromosome. Curr Genet 2009; 55:425-38. [DOI: 10.1007/s00294-009-0256-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 11/26/2022]
|
13
|
Chai D. RNA structure and modeling: progress and techniques. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:71-100. [PMID: 18929139 DOI: 10.1016/s0079-6603(08)00003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dinggeng Chai
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
|
15
|
Kuo TC, Herrin DL. Quantitative studies of Mn(2+)-promoted specific and non-specific cleavages of a large RNA: Mn(2+)-GAAA ribozymes and the evolution of small ribozymes. Nucleic Acids Res 2000; 28:4197-206. [PMID: 11058117 PMCID: PMC113148 DOI: 10.1093/nar/28.21.4197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Revised: 09/14/2000] [Accepted: 09/14/2000] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn(2+)) promotes specific cleavage at two major (I and III) and four minor (II, IV, V and VI) sites, in addition to slow non-specific cleavage, in a 659-nucleotide RNA containing the Cr.LSU group I intron. The specific cleavages occurred between G and AAA sequences and thus can be considered Mn(2+)-GAAA ribozymes. We have estimated rates of specific and non-specific cleavages under different conditions. Comparisons of the rates of major-specific and background cleavages gave a maximal specificity of approximately 900 for GAAA cleavage. Both specific and non-specific cleavages showed hyperbolic kinetics and there was no evidence of cooperativity with Mn(2+) concentration. Interestingly, at site III, Mg(2+) alone promoted weak, but the same specific cleavage as Mn(2+). When added with Mn(2+), Mg(2+) had a synergistic effect on cleavage at site III, but inhibited cleavage at the other sites. Mn(2+) cleavage at site III also exhibited lower values of K (Mn(2+) requirement), pH-dependency and activation energy than did cleavage at the other sites. In contrast, the pH-dependency and activation energy for cleavage at site I was similar to non-specific cleavage. These results increase our understanding of the Mn(2+)-GAAA ribozyme. The implications for evolution of small ribozymes are also discussed.
Collapse
MESH Headings
- Base Sequence
- Catalysis/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Evolution, Molecular
- Hydrogen-Ion Concentration
- Kinetics
- Magnesium/pharmacology
- Manganese/pharmacology
- Mutation/genetics
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Substrate Specificity/drug effects
- Temperature
Collapse
Affiliation(s)
- T C Kuo
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, BIO 311 24th Street and Whitis Avenue, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
16
|
Abstract
The expression of the plastid genome is dependent on a large number of nucleus-encoded factors. Some of these factors have been identified through biochemical assays, and many others by genetic screens in Arabidopsis, Chlamydomonas and maize. Nucleus-encoded factors function in each step in plastid gene expression, including transcription, RNA editing, RNA splicing, RNA processing, RNA degradation, and translation. Many of the factors discovered via biochemical approaches play general roles as components of the basic gene expression machinery, whereas the majority of those identified by genetic approaches are specifically required for the expression of small subsets of chloroplast genes and are involved in post-transcriptional steps. Some of the nucleus-encoded factors may play regulatory roles and modulate chloroplast gene expression in response to developmental or environmental cues. They may also serve to couple chloroplast gene expression with the assembly of the protein products into the large complexes of the photosynthetic apparatus. The convergence of biochemical approaches with those of classical and reverse genetics, and the contributions from large scale genomic sequencing should result in rapid advances in our understanding of the regulatory interactions that govern plastid gene expression.
Collapse
Affiliation(s)
- A Barkan
- Institute of Molecular Biology, University of Oregon, OR 97403, Eugene, USA
| | | |
Collapse
|
17
|
Intron-exon structures. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-5701(98)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Klaff P, Riesner D, Steger G. RNA structure and the regulation of gene expression. PLANT MOLECULAR BIOLOGY 1996; 32:89-106. [PMID: 8980476 DOI: 10.1007/bf00039379] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA secondary and tertiary structure is involved in post-transcriptional regulation of gene expression either by exposing specific sequences or through the formation of specific structural motifs. An overview of RNA secondary and tertiary structures known from biophysical studies is followed by a review of examples of the elements of RNA processing, mRNA stability and translation of the messenger. These structural elements comprise sense-antisense double-stranded RNA, hairpin and stem-loop structures, and more complex structures such as bifurcations, pseudoknots and triple-helical elements. Metastable structures formed during RNA folding pathway are also discussed. The examples presented are mostly chosen from plant systems, plant viruses, and viroids. Examples from bacteria or fungi are discussed only when unique regulatory properties of RNA structures have been elucidated in these systems.
Collapse
Affiliation(s)
- P Klaff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
19
|
Grube M, Gargas A, DePriest PT. A small insertion in the SSU rDNA of the lichen fungus Arthonia lapidicola is a degenerate group-I intron. Curr Genet 1996; 29:582-6. [PMID: 8662198 DOI: 10.1007/bf02426963] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Insertions of less than 100 nt occurring in highly conserved regions of the small subunit ribosomal DNA (SSU rDNA) may represent degenerate forms of the group-I introns observed at the same positions in other organisms. A 63-nt insertion at SSU rDNA position 1512 (relative to the Escherichia coli SSU rDNA) of the lichen-forming fungus Arthonia lapidicola can be folded into a secondary structure with two stem loops and a pairing of the insertion and flanking sequences. The two stem loops may correspond to the P1 and P2, and the insertion-flanking pairing to the P10, of a group-I intron. Considering these small insertions as degenerate introns provides important clues to the evolution and catalytic function of group-I introns. Keywords Ribosomal DNA middle dot Small subunit middle dot 18s middle dot Degenerate introns middle dot Ascomycetes
Collapse
Affiliation(s)
- M Grube
- Institut für Botanik, Karl Franzens Universität, Holteigasse 6, A-8010 Graz, Austria
| | | | | |
Collapse
|
20
|
Abstract
The chloroplast genome consists of homogeneous circular DNA molecules. To date, the entire nucleotide sequences (120-190 kbp) of chloroplast genomes have been determined from eight plant species. The chloroplast genomes of land plants and green algae contain about 110 different genes, which can be classified into two main groups: genes involved in gene expression and those related to photosynthesis. The red alga Porphyra chloroplast genome has 70 additional genes, one-third of which are related to biosynthesis of amino acids and other low molecular mass compounds. Chloroplast genes contain at least three structurally distinct promoters and transcribe two or more classes of RNA polymerase. Two chloroplast genes, rps12 of land plants and psaA of Chlamydomonas, are divided into two to three pieces and scattered over the genome. Each portion is transcribed separately, and two to three separate transcripts are joined together to yield a functional mRNA by trans-splicing. RNA editing (C to U base changes) occurs in some of the chloroplast transcripts. Most edited codons are functionally significant, creating start and stop codons and changing codons to retain conserved amino acids.
Collapse
Affiliation(s)
- M Sugiura
- Center for Gene Research, Nagoya University, Japan
| |
Collapse
|
21
|
Muchhal US, Schwartzbach SD. Characterization of the unique intron-exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucleic Acids Res 1994; 22:5737-44. [PMID: 7838730 PMCID: PMC310141 DOI: 10.1093/nar/22.25.5737] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II (LHCPII) is a polyprotein containing multiple copies of LHCPII covalently joined by a decapeptide linker. cDNA and genomic clones encoding the 5' and 3' end of a 6.6 kb LHCPII mRNA were sequenced. A 3.1 kb genomic region encoding 1.05 kb of the 5' end of LHCPII mRNA contains 4 introns. A 7.6 kb genomic region encoding 3.3 kb of the 3' end of LHCPII mRNA contains 10 introns. The 5' and 3' ends of the 14 identified Euglena introns lacked the conserved dinucleotides (5'-GT and AG-3') found at the termini of virtually every characterized nuclear pre-mRNA intron. A common consensus splice site selection sequence could not be identified. The Euglena introns do not have the structural characteristics of group I and group II introns. The only structural feature common to all Euglena introns was the ability of short stretches of nucleotides at the 5' and 3' ends of the introns to base pair, forming a stable stem-loop with the 5' and 3' splice site juxtaposed for splicing but displaced by 2 nucleotides. The 26 nucleotide sequence at the 5' end of LHCPII mRNA is absent from the genomic sequence and identical to the 5' end of one of the small Euglena SL-RNAs indicating that it is post-transcriptionally added by trans-splicing.
Collapse
Affiliation(s)
- U S Muchhal
- School of Biological Sciences, University of Nebraska-Lincoln 68588-0343
| | | |
Collapse
|
22
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
23
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
24
|
Sanangelantoni AM, Bocchetta M, Cammarano P, Tiboni O. Phylogenetic depth of S10 and spc operons: cloning and sequencing of a ribosomal protein gene cluster from the extremely thermophilic bacterium Thermotoga maritima. J Bacteriol 1994; 176:7703-10. [PMID: 8002596 PMCID: PMC197229 DOI: 10.1128/jb.176.24.7703-7710.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A segment of Thermotoga maritima DNA spanning 6,613 bp downstream from the gene tuf for elongation factor Tu was sequenced by use of a chromosome walking strategy. The sequenced region comprised a string of 14 tightly linked open reading frames (ORFs) starting 50 bp downstream from tuf. The first 11 ORFs were identified as homologs of ribosomal protein genes rps10, rpl3, rpl4, rpl23, rpl2, rps19, rpl22, rps3, rpl16, rpl29, and rps17 (which in Escherichia coli constitute the S10 operon, in that order); the last three ORFs were homologous to genes rpl14, rpl24, and rpl5 (which in E. coli constitute the three promoter-proximal genes of the spectinomycin operon). The 14-gene string was preceded by putative -35 and -10 promoter sequences situated 5' to gene rps10, within the 50-bp spacing between genes tuf and rps10; the same region exhibited a potential transcription termination signal for the upstream gene cluster (having tuf as the last gene) but displayed also the potential for formation of a hairpin loop hindering the terminator; this suggests that transcription of rps10 and downstream genes may start farther upstream. The similar organization of the sequenced rp genes in the deepest-branching bacterial phyla (T. maritima) and among Archaea has been interpreted as indicating that the S10-spc gene arrangement existed in the (last) common ancestor. The phylogenetic depth of the Thermotoga lineage was probed by use of r proteins as marker molecules: in all except one case (S3), Proteobacteria or the gram-positive bacteria, and not the genus Thermotoga, were the deepest-branching lineage; in only two cases, however, was the inferred branching order substantiated by bootstrap analysis.
Collapse
Affiliation(s)
- A M Sanangelantoni
- Dipartimento di Genetica e Microbiologia A. Buzzati Traverso, Università di Pavia, Italy
| | | | | | | |
Collapse
|
25
|
Asemota O, Breda C, Sallaud C, el Turk J, de Kozak I, Buffard D, Esnault R, Kondorosi A. Cloning and expression of a cDNA encoding a cytoplasmic L5 ribosomal protein from alfalfa (Medicago sativa L.). PLANT MOLECULAR BIOLOGY 1994; 26:1201-1205. [PMID: 7811977 DOI: 10.1007/bf00040700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA encoding a putative cytoplasmic ribosomal protein L5 from alfalfa (MsRL5), the first sequence from higher plants, has been characterized. The derived amino acid sequence of 181 residues contains the L5 signature, is 72.2% identical to yeast ribosomal L5 and shares high identity with other RL5 peptides from eukaryotic origin. The sequence does not contain any signal or transit peptide and therefore might be cytoplasmic. In all alfalfa organs examined MsRL5 transcripts were detected at approximately equal levels.
Collapse
Affiliation(s)
- O Asemota
- Institut des Sciences Végétales, CNRS, Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gockel G, Hachtel W, Baier S, Fliss C, Henke M. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr Genet 1994; 26:256-62. [PMID: 7859309 DOI: 10.1007/bf00309557] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The colourless, nonphotosynthetic protist Astasia longa is phylogenetically related to Euglena gracilis. The 73-kb plastid DNA (ptDNA) of A. longa is about half the size of most chloroplast DNAs (cpDNAs). More than 38 kb of the Astasia ptDNA sequence has been determined. No genes for photosynthetic function have been found except for rbcL. Identified genes include rpoB, tufA, and genes coding for three rRNAs, 17 tRNAs, and 13 ribosomal proteins. Not only is the nucleotide sequence of these genes highly conserved between A. longa and E. gracilis, but a number of these genes are clustered in a similar fashion and have introns in the same positions in both species. The results further support the idea that photosynthetic genes normally encoded in cpDNA have been preferentially lost in Astasia, but that the chloroplast genes coding for components of the plastid translational apparatus have been maintained. This apparatus might be needed for the expression of rbcL and also for that of still unidentified nonphotosynthetic genes of Astasia ptDNA.
Collapse
Affiliation(s)
- G Gockel
- Botanisches Institut, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
27
|
Clegg MT, Gaut BS, Learn GH, Morton BR. Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A 1994; 91:6795-801. [PMID: 8041699 PMCID: PMC44285 DOI: 10.1073/pnas.91.15.6795] [Citation(s) in RCA: 242] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The chloroplast genome (cpDNA) of plants has been a focus of research in plant molecular evolution and systematics. Several features of this genome have facilitated molecular evolutionary analyses. First, the genome is small and constitutes an abundant component of cellular DNA. Second, the chloroplast genome has been extensively characterized at the molecular level providing the basic information to support comparative evolutionary research. And third, rates of nucleotide substitution are relatively slow and therefore provide the appropriate window of resolution to study plant phylogeny at deep levels of evolution. Despite a conservative rate of evolution and a relatively stable gene content, comparative molecular analyses reveal complex patterns of mutational changes. Non-coding regions of cpDNA diverge through insertion/deletion changes that are sometimes site dependent. Coding genes exhibit different patterns of codon bias that appear to violate the equilibrium assumptions of some evolutionary models. Rates of molecular change often vary among plant families and orders in a manner that violates the assumption of a simple molecular clock. Finally, protein-coding genes exhibit patterns of amino acid change that appear to depend on protein structure, and these patterns may reveal subtle aspects of structure/function relationships. Only comparative studies of molecular sequences have the resolution to reveal this underlying complexity. A complete description of the complexity of molecular change is essential to a full understanding of the mechanisms of evolutionary change and in the formulation of realistic models of mutational processes.
Collapse
Affiliation(s)
- M T Clegg
- Department of Botany and Plant Science, University of California, Riverside 92501
| | | | | | | |
Collapse
|
28
|
Hong L, Hallick RB. A group III intron is formed from domains of two individual group II introns. Genes Dev 1994; 8:1589-99. [PMID: 7958842 DOI: 10.1101/gad.8.13.1589] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 1352-nucleotide intron within the Euglena gracilis chloroplast ycf8 gene has been characterized as a complex twintron with overlapping internal introns and alternative splicing pathways. Partially spliced pre-mRNAs were characterized by a combination of cDNA cloning and sequencing, Northern hybridization, and S1 nuclease protection analyses. In the predominant pathway, two internal group II introns (601 and 392 nucleotides) are spliced from subdomain ID of an external group II intron (359 nucleotides). In an alternative pathway, following excision of the 601-nucleotide intron, splicing of a group III intron occurs. This group III intron is recruited from sequences of the external intron and the 392-nucleotide intron. This is the first evidence that a group III intron can be derived from portions of existing group II introns. The mechanism of group III intron formation may also be relevant to the evolution of nuclear introns from putative group II intron ancestors.
Collapse
Affiliation(s)
- L Hong
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
29
|
Collins RA, Olive JE. Revision of the nucleotide sequence and RNA splicing pathway of the Neurospora mitochondrial gene encoding ATPase subunit 6. Curr Genet 1994; 25:514-8. [PMID: 8082202 DOI: 10.1007/bf00351671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous sequence analysis of the Neurospora oli2 (ATP6) mitochondrial gene suggested that, in addition to a typical Group-I intron, it contained an unusual, mostly-palindromic, 93-nucleotide intron. We report here revisions of the nucleotide sequence and analysis of the size and sequence of reverse-transcriptase PCR products that show: (1) the Group-I intron splice sites are located as predicted by previous DNA sequence analysis; (2) the putative 93-nt intron is not excised from the mature mRNA, and most of this sequence is actually in the 5' untranslated region. We conclude that the Neurospora ATP6 gene contains only one intron. Analysis of the cDNA sequence also confirms the non-universal nature of the Neurospora mitochondrial genetic code: a TGA codon inferred from the DNA sequence is present as UGA in the mRNA. This provides direct evidence that this codon is not altered, for example by RNA editing, to conform to the universal code.
Collapse
Affiliation(s)
- R A Collins
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Copertino DW, Hall ET, Van Hook FW, Jenkins KP, Hallick RB. A group III twintron encoding a maturase-like gene excises through lariat intermediates. Nucleic Acids Res 1994; 22:1029-36. [PMID: 7512259 PMCID: PMC307926 DOI: 10.1093/nar/22.6.1029] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 1605 bp intron 4 of the Euglena gracilis chloroplast psbC gene was characterized as a group III twintron composed of an internal 1503 nt group III intron with an open reading frame of 1374 nt (ycf13, 458 amino acids), and an external group III intron of 102 nt. Twintron excision proceeds by a sequential splicing pathway. The splicing of the internal and external group III introns occurs via lariat intermediates. Branch sites were mapped by primer extension RNA sequencing. The unpaired adenosines in domains VI of the internal and external introns are covalently linked to the 5' nucleotide of the intron via 2'-5' phosphodiester bonds. This bond is susceptible to hydrolysis by the debranching activity of the HeLa nuclear S100 fraction. The internal intron and presumptive ycf13 mRNA accumulates primarily as a linear RNA, although a lariat precursor can also be detected. The ycf13 gene encodes a maturase-like protein that may be involved in group III intron metabolism.
Collapse
Affiliation(s)
- D W Copertino
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | | | | | |
Collapse
|
31
|
Koo J, Spremulli L. Analysis of the translational initiation region on the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase (rbcL) messenger RNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37313-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Hong L, Hallick RB. Gene structure and expression of a novel Euglena gracilis chloroplast operon encoding cytochrome b6 and the beta and epsilon subunits of the H(+)-ATP synthase complex. Curr Genet 1994; 25:270-81. [PMID: 7923415 DOI: 10.1007/bf00357173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genes encoding cytochrome b6 of the chloroplast cytochrome b6/f complex (petB) and the ATP synthase CF1-beta subunit (atpB) and epsilon-subunit (atpE) were identified on the EcoD fragment of the Euglena gracilis chloroplast genome. The complete nucleotide sequence of these three genes was determined. The petB-atpB-atpE genes are cotranscribed as a tricistronic operon. This gene organization differs from that of land plants in which atpB-atpE form a discistronic operon, and petB is within the psbB-ycf8-psbH-petB-petD operon. Euglena cytochrome b6 and the beta-subunit of the chloroplast ATP synthase are very similar in derived amino acid sequence to the corresponding gene products from other organisms. The epsilon-subunit of the chloroplast ATP synthase complex is more divergent. In Euglena, the petB-atpB-atpE genes contain introns, including two twintrons, at eight different positions. All of the intron positions were confirmed by analysis of cDNAs. Two independent intercistronic RNA processing events and 11 splicing reactions lead to the accumulation of the mature petB, atpB and atpE monocistronic mRNAs.
Collapse
Affiliation(s)
- L Hong
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
33
|
Boudreau E, Otis C, Turmel M. Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1994; 24:585-602. [PMID: 8155879 DOI: 10.1007/bf00023556] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.
Collapse
Affiliation(s)
- E Boudreau
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
34
|
Wittop Koning TH, Schümperli D. RNAs and ribonucleoproteins in recognition and catalysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:25-42. [PMID: 7508384 DOI: 10.1007/978-3-642-79502-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- T H Wittop Koning
- Max-Planck-Institut für Molekulare Genetik, Otto-Warburg-Laboratorium, Berlin (Dahlem), Germany
| | | |
Collapse
|
35
|
|
36
|
Copertino DW, Hallick RB. Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci 1993; 18:467-71. [PMID: 8108859 DOI: 10.1016/0968-0004(93)90008-b] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two new and important features of introns have emerged from analysis of the Euglena gracilis chloroplast genome. One is a new class of introns, designated group III, that may be the closest contemporaries to nuclear pre-mRNA introns. The second is introns that are interrupted by other introns termed twintrons.
Collapse
Affiliation(s)
- D W Copertino
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
37
|
Engelberg-Kulka H, Benhar I, Schoulaker-Schwarz R. Translational introns: an additional regulatory element in gene expression. Trends Biochem Sci 1993; 18:294-6. [PMID: 8236443 DOI: 10.1016/0968-0004(93)90039-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The linear expression of a gene can be interrupted by the well-known RNA introns and the recently discovered protein introns. In both cases, splicing mechanisms physically excise the unexpressed segments. In this article we describe a third category of introns that we call 'translational introns'. These functional introns are not excised through a splicing mechanism; instead, the translational machinery bypasses a segment of the coding sequence of an mRNA. We suggest that 'translational introns' are part of a regulatory mechanism that may sense changes in the rate of translation and thereby control the ratio of alternative gene products.
Collapse
Affiliation(s)
- H Engelberg-Kulka
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
38
|
Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 1993; 21:3537-44. [PMID: 8346031 PMCID: PMC331456 DOI: 10.1093/nar/21.15.3537] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns.
Collapse
Affiliation(s)
- R B Hallick
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Twintrons are introns-within-introns excised by sequential splicing reactions. A new type of complex twintron comprised of four individual group III introns has been characterized. The external intron is interrupted by an internal intron containing two additional introns. This 434 nt complex twintron within a Euglena gracilis chloroplast ribosomal protein gene is excised by four sequential splicing reactions. Two of the splicing reactions utilize multiple 5'- and/or 3'-splice sites. These findings are evidence that introns with multiple active splice sites can be formed by the repeated insertion of introns into existing introns.
Collapse
Affiliation(s)
- R G Drager
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | |
Collapse
|
40
|
Reith M, Munholland J. A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea. THE PLANT CELL 1993; 5:465-475. [PMID: 12271072 PMCID: PMC160285 DOI: 10.1105/tpc.5.4.465] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Extensive DNA sequencing of the chloroplast genome of the red alga Porphyra purpurea has resulted in the detection of more than 125 genes. Fifty-eight (approximately 46%) of these genes are not found on the chloroplast genomes of land plants. These include genes encoding 17 photosynthetic proteins, three tRNAs, and nine ribosomal proteins. In addition, nine genes encoding proteins related to biosynthetic functions, six genes encoding proteins involved in gene expression, and at least five genes encoding miscellaneous proteins are among those not known to be located on land plant chloroplast genomes. The increased coding capacity of the P. purpurea chloroplast genome, along with other characteristics such as the absence of introns and the conservation of ancestral operons, demonstrate the primitive nature of the P. purpurea chloroplast genome. In addition, evidence for a monophyletic origin of chloroplasts is suggested by the identification of two groups of genes that are clustered in chloroplast genomes but not in cyanobacteria.
Collapse
Affiliation(s)
- M. Reith
- National Research Council of Canada, Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1 Canada
| | | |
Collapse
|
41
|
Drager RG, Hallick RB. A novel Euglena gracilis chloroplast operon encoding four ATP synthase subunits and two ribosomal proteins contains 17 introns. Curr Genet 1993; 23:271-80. [PMID: 8435857 DOI: 10.1007/bf00351506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The structure of a Euglena gracilis chloroplast operon encoding four subunits of the chloroplast ATP synthase complex and two ribosomal proteins has been determined. These six genes contain 17 introns. This operon is transcribed as a hexacistronic primary transcript which is subsequently processed to monocistronic mRNAs. The linear order of these genes, 5'-rps2-atpI-atpH-atpF-atpA-rps18-3' , encoding ribosomal protein S2, chloroplast ATP synthase subunits CF0IV, CF0III, CF0I, CF1 alpha and ribosomal protein S18, respectively, is similar to the equivalent operons of prokaryotes, cyanelles and land-plant chloroplasts. This operon differs from those of these other organisms in the co-transcription of rps18 and in intron content.
Collapse
Affiliation(s)
- R G Drager
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | |
Collapse
|
42
|
Kim JK, Hollingsworth MJ. Splicing of group II introns in spinach chloroplasts (in vivo): analysis of lariat formation. Curr Genet 1993; 23:175-80. [PMID: 7679329 DOI: 10.1007/bf00352018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To investigate the mechanism of chloroplast mRNA splicing in vivo, RNAs from four spinach chloroplast group II intron-containing genes were analyzed. For each of these genes, atpF, rpoC1, petD, and petB, Northern analysis of chloroplast RNAs detected putative lariat-intron/3' exon-splicing intermediates. Treatment of these RNAs with HeLa cell-debranching extract caused the putative splicing intermediates to disappear, thereby confirming their identities. The lariat-splicing intermediates were further examined by reverse transcriptase extension to determine the branch point location. The in vivo branch points of the atpF and petD introns were found to be eight bases upstream of their respective 3' intron/exon boundaries. In contrast, no splicing intermediates could be detected by primer-extension analysis of petB and rpoC1. This unexpected result served to demonstrate that the quantity of lariat-intron/3' exon-splicing intermediates present in the chloroplast RNA population is considerably less in the cases of rpoC1 and petB compared to atpF and petD. The steady-state level of any splicing intermediate is the result of a balance between the splicing kinetics of a particular RNA and the susceptibility of the splicing intermediate to degradation. We conclude that the balance between these two factors varies significantly for chloroplast introns, even for those, such as petB and petD, that are transcribed from the same promoter.
Collapse
Affiliation(s)
- J K Kim
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine
| | | |
Collapse
|
43
|
Abstract
Recently, cis-acting elements and trans-acting RNA and protein factors necessary for splicing nuclear pre-mRNAs, group II introns or group III introns, have been discovered, and new roles for the splicing factors have been elucidated. Parallels among the pathways for splicing these different classes of introns have been identified.
Collapse
Affiliation(s)
- J L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
44
|
Christopher DA, Kim M, Mullet JE. A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. THE PLANT CELL 1992; 4:785-798. [PMID: 1392595 PMCID: PMC160174 DOI: 10.1105/tpc.4.7.785] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The chloroplast psbD-psbC genes encode D2 and cp43, a reaction center protein and chlorophyll-binding antenna protein of photosystem II, respectively. We have previously shown that differential accumulation of light-induced psbD-psbC mRNAs in barley chloroplasts is due to transcription from a blue light-responsive promoter (LRP). It is hypothesized that the light-induced mRNAs help to maintain levels of the D2 polypeptide, which is photodamaged and degraded in illuminated plants. To determine if light-induced accumulation of psbD-psbC mRNAs was a conserved phenomenon in chloroplasts, the expression of psbD-psbC operons from five cereals (barley, wheat, rice, maize, and sorghum) and three dicot (tobacco, spinach, and pea) species was examined. Cereal and dicot psbD-psbC operons differ due to several DNA rearrangements that moved psbK-psbI proximal to psbD-psbC, allowing cotranscription of these genes and production of several unique transcripts in cereals. Despite differences in the structure and expression of the cereal and dicot psbD-psbC operons, the accumulation of light-induced psbD-psbC mRNAs was conserved in all species studied. An unusual feature of the light-induced mRNAs was the occurrence of 5' end microheterogeneity. The multiple 5' termini were mapped to several consecutive nucleotides (8 to 25 bp) within a highly conserved (61%) DNA region that represents the transcription initiation site for the mRNAs in barley and tobacco. The novel LRP differs in sequence from typical plastid promoters that have prokaryotic "-10" and "-35" elements and is centered 570 bp (cereals), 900 bp (tobacco, spinach), or 1100 bp (pea) upstream from the psbD translational start codon. We propose that physiological and gene regulatory demands of the chloroplast act as constraints that preserved the linkage of the LRP with psbD despite DNA inversions involving the psbD upstream region.
Collapse
Affiliation(s)
- D A Christopher
- Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843-2128
| | | | | |
Collapse
|
45
|
Fedorov A, Suboch G, Bujakov M, Fedorova L. Analysis of nonuniformity in intron phase distribution. Nucleic Acids Res 1992; 20:2553-7. [PMID: 1598214 PMCID: PMC312392 DOI: 10.1093/nar/20.10.2553] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The distribution of different intron groups with respect to phases has been analyzed. It has been established that group II introns and nuclear introns have a minimum frequency of phase 2 introns. Since the phase of introns is an extremely conservative measure the observed minimum reflects evolutionary processes. A sample of all known, group I introns was too small to provide a valid characteristic of their phase distribution. The findings observed for the unequal distribution of phases cannot be explained solely on the basis of the mobile properties of introns. One of the most likely explanations for this nonuniformity in the intron phase distribution is the process of exon shuffling. It is proposed that group II introns originated at the early stages of evolution and were involved in the process of exon shuffling.
Collapse
Affiliation(s)
- A Fedorov
- Department of Molecular Basis of Human Genetics, Academy of Sciences of Russia, Moscow
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- M Sugiura
- Center for Gene Research, Nagoya University, Japan
| |
Collapse
|
47
|
Wolfe KH, Morden CW, Palmer JD. Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol 1992; 223:95-104. [PMID: 1731088 DOI: 10.1016/0022-2836(92)90718-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the nucleotide sequence of a 7 kb (1 kb = 10(3) base-pairs) region that includes the entire small single-copy region (SSC) of the plastid genome of Epifagus virginiana, a non-photosynthetic, parasitic flowering plant. The SSC (4.8 kb) is considerably smaller than those of photosynthetic plants due to the complete deletion of all photosynthetic, chlororespiratory and ribosomal protein genes. This leaves only two genes: a protein gene of 1738 codons whose product is unlikely to be involved in bioenergetic processes and a leucine tRNA gene (trn(LUAG)). Both genes span junctions between the inverted repeat and the SSC, with the consequence that the terminal 20 base-pairs of the repeat is transcribed in both directions and functions both as the 3' end of the tRNA gene and as an internal segment of orf1738. We find that the region of tobacco plastid DNA homologous to Epifagus orf1738 contains a single open reading frame (ORF) of 1901 codons rather than the three ORFs of 1244, 273 and 228 codons originally reported. However, we confirm that the equivalent region of the bryophyte Marchantia contains two genes (1068 and 464 codons) corresponding to the N and C-terminal portions of the dicot protein. In contrast, rice plastid DNA contains a severely truncated pseudogene at this locus.
Collapse
Affiliation(s)
- K H Wolfe
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
48
|
Copertino DW, Christopher DA, Hallick RB. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution. Nucleic Acids Res 1991; 19:6491-7. [PMID: 1721702 PMCID: PMC329205 DOI: 10.1093/nar/19.23.6491] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization. Based on the characterization of a partially spliced pre-mRNA, the intron was characterized as a 'mixed' twintron, composed of a 311 nucleotide group II intron internal to a 98 nucleotide group III intron. Twintron excision is via a 2-step sequential splicing pathway, with removal of the internal group II intron preceding excision of the external group III intron. Based on secondary structural analysis of the twintron, we propose that group III introns may represent highly degenerate versions of group II introns. The existence of twintrons is interpreted as evidence that group II introns were inserted during the evolution of Euglena chloroplast genes from a common ancestor with eubacteria, archaebacteria, cyanobacteria, and other chloroplasts.
Collapse
Affiliation(s)
- D W Copertino
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
49
|
Ye LH, Li YQ, Fukami-Kobayashi K, Go M, Konishi T, Watanabe A, Sugiura M. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains. Nucleic Acids Res 1991; 19:6485-90. [PMID: 1721701 PMCID: PMC329204 DOI: 10.1093/nar/19.23.6485] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two new ribonucleoproteins (RNPs) have been identified from a tobacco chloroplast lysate. These two proteins (cp29A and cp29B) are nuclear-encoded and have a less affinity to single-stranded DNA as compared with three other chloroplast RNPs (cp28, cp31 and cp33) previously isolated. DNA sequencing revealed that both contain two consensus sequence-type homologous RNA-binding domains (CS-RBDs) and a very acidic amino-terminal domain but shorter than that of cp28, cp31 and cp33. Comparison of cp29A and cp29B showed a 19 amino acid insertion in the region separating the two CS-RBDs in cp29B. This insertion results in three tandem repeats of a glycine-rich sequence of 10 amino acids, which is a novel feature in RNPs. The two proteins are encoded by different single nuclear genes and no alternatively spliced transcripts could be identified. We constructed a phylogenetic tree for the ten chloroplast CS-RBDs. These results suggest that there is a sizable RNP family in chloroplasts and the diversity was mainly generated through a series of gene duplications rather than through alternative pre-mRNA splicing. The gene for cp29B contains three introns. The first and second introns interrupt the first CS-RBD and the third intron does the second CS-RBD. The position of the first intron site is the same as that in the human hnRNP A1 protein gene.
Collapse
Affiliation(s)
- L H Ye
- Center for Gene Research, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Accumulating evidence that introns are highly restricted in their phylogenetic distribution strongly supports the view that introns were inserted late in eukaryotic evolution into preformed genes and, hence, that exon-shuffling played no role in the assembly of primordial genes. Potential mechanisms of intron insertion and the possible evolution of nuclear introns and their splicing machinery from self-splicing group II introns are also discussed.
Collapse
Affiliation(s)
- J D Palmer
- Department of Biology, Indiana University, Bloomington 47405
| | | |
Collapse
|