1
|
Cui DY, Zhang Y, Xu J, Zhang CY, Li W, Xiao DG. PGK1 Promoter Library for the Regulation of Acetate Ester Production in Saccharomyces cerevisiae during Chinese Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7417-7427. [PMID: 29939025 DOI: 10.1021/acs.jafc.8b02114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Appropriate concentrations and proportion of acetate esters and higher alcohols improve the quality of Chinese Baijiu. To regulate the concentrations of acetate esters in Chinese Baijiu, we constructed a PGK1 promoter library through error-prone PCR. Then, we used an enhanced green fluorescent protein as a reporter to characterize the activities of PGK1p mutants. The PGK1p library contained 28 PGK1p mutants and spanned an activity that ranged between 0.1% and 141% of wild-type PGK1p. Seven PGK1p mutants were characterized by an additional reporter β-galactosidase and then used for the overexpression of ATF1 with BAT2 deletion in Saccharomyces cerevisiae a45. The production of ethyl acetate in strains A8, A17, A18, A27, A22, A25, A28, and AWT were 1.66-, 3.09-, 10.59-, 13.07-, 15.99-, 22.67-, 24.06-, and 27.22-fold higher than that of the parental strain. The results on alcohol acetyltransferase (AATase) activity showed that the PGK1p library precisely controlled ATF1 expression and regulated the acetate esters production.
Collapse
Affiliation(s)
- Dan-Yao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Yu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Jia Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Wei Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| |
Collapse
|
2
|
Cai Y, Kandula V, Kosuru R, Ye X, Irwin MG, Xia Z. Decoding telomere protein Rap1: Its telomeric and nontelomeric functions and potential implications in diabetic cardiomyopathy. Cell Cycle 2017; 16:1765-1773. [PMID: 28853973 PMCID: PMC5628636 DOI: 10.1080/15384101.2017.1371886] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mammalian Rap1, the most conserved telomere-interacting protein, beyond its role within nucleus for the maintenance of telomeric functions, is also well known for its pleiotropic functions in various physiological and pathological conditions associated with metabolism, inflammation and oxidative stress. For all these, nowadays Rap1 is the subject of critical investigations aimed to unveil its molecular signaling pathways and to scrutinize the applicability of its modulation as a promising therapeutic strategy with clinical relevance. However, the underlying intimate mechanisms of Rap1 are not extensively studied, but any modulation of this protein level has been associated with pathologies like inflammation, oxidative stress and deregulated metabolism. This is considerably important in light of the recent discovery of Rap1 modulation in diseases like cancer and cardiac metabolic disorders. In this review, we focus on both the telomeric and nontelomeric functions of Rap1 and its modulation in various health risks, especially on the heart.
Collapse
Affiliation(s)
- Yin Cai
- a Department of Anaesthesiology , The University of Hong Kong , Hong Kong SAR , China
| | - Vidya Kandula
- a Department of Anaesthesiology , The University of Hong Kong , Hong Kong SAR , China
| | - Ramoji Kosuru
- a Department of Anaesthesiology , The University of Hong Kong , Hong Kong SAR , China
| | - Xiaodong Ye
- a Department of Anaesthesiology , The University of Hong Kong , Hong Kong SAR , China
| | - Michael G Irwin
- a Department of Anaesthesiology , The University of Hong Kong , Hong Kong SAR , China
| | - Zhengyuan Xia
- a Department of Anaesthesiology , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
3
|
Zampar GG, Kümmel A, Ewald J, Jol S, Niebel B, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol 2013; 9:651. [PMID: 23549479 PMCID: PMC3693829 DOI: 10.1038/msb.2013.11] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/21/2013] [Indexed: 01/16/2023] Open
Abstract
The diauxic shift in Saccharomyces cerevisiae is an ideal model to study how eukaryotic cells readjust their metabolism from glycolytic to gluconeogenic operation. In this work, we generated time-resolved physiological data, quantitative metabolome (69 intracellular metabolites) and proteome (72 enzymes) profiles. We found that the diauxic shift is accomplished by three key events that are temporally organized: (i) a reduction in the glycolytic flux and the production of storage compounds before glucose depletion, mediated by downregulation of phosphofructokinase and pyruvate kinase reactions; (ii) upon glucose exhaustion, the reversion of carbon flow through glycolysis and onset of the glyoxylate cycle operation triggered by an increased expression of the enzymes that catalyze the malate synthase and cytosolic citrate synthase reactions; and (iii) in the later stages of the adaptation, the shutting down of the pentose phosphate pathway with a change in NADPH regeneration. Moreover, we identified the transcription factors associated with the observed changes in protein abundances. Taken together, our results represent an important contribution toward a systems-level understanding of how this adaptation is realized.
Collapse
Affiliation(s)
- Guillermo G Zampar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cimini D, Patil KR, Schiraldi C, Nielsen J. Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3. BMC SYSTEMS BIOLOGY 2009; 3:17. [PMID: 19200357 PMCID: PMC2661886 DOI: 10.1186/1752-0509-3-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
Background Mitochondrial respiration is an important and widely conserved cellular function in eukaryotic cells. The succinate dehydrogenase complex (Sdhp) plays an important role in respiration as it connects the mitochondrial respiratory chain to the tricarboxylic acid (TCA) cycle where it catalyzes the oxidation of succinate to fumarate. Cellular response to the Sdhp dysfunction (i.e. impaired respiration) thus has important implications not only for biotechnological applications but also for understanding cellular physiology underlying metabolic diseases such as diabetes. We therefore explored the physiological and transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3, that codes for an essential subunit of the Sdhp. Results Although the Sdhp has no direct role in transcriptional regulation and the flux through the corresponding reaction under the studied conditions is very low, deletion of SDH3 resulted in significant changes in the expression of several genes involved in various cellular processes ranging from metabolism to the cell-cycle. By using various bioinformatics tools we explored the organization of these transcriptional changes in the metabolic and other cellular functional interaction networks. Conclusion Our results show that the transcriptional regulatory response resulting from the impaired respiratory function is linked to several different parts of the metabolism, including fatty acid and sterol metabolism.
Collapse
Affiliation(s)
- Donatella Cimini
- Second University of Naples, Department of Experimental Medicine, Naples, Italy.
| | | | | | | |
Collapse
|
5
|
Sasaki H, Kishimoto T, Mizuno T, Shinzato T, Uemura H. Expression ofGCR1, the transcriptional activator of glycolytic enzyme genes in the yeastSaccharomyces cerevisiae, is positively autoregulated by Gcr1p. Yeast 2005; 22:305-19. [PMID: 15789351 DOI: 10.1002/yea.1212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When regulation of GCR1 expression was analysed using a GCR1-lacZ fusion, lacZ expression levels were decreased in the Deltagcr1 or Deltagcr2 mutant. RT-PCR analysis of genomic GCR1 transcript confirmed the dependency of GCR1 expression on the Gcr1p-Gcr2p complex. Examination of the 5' non-coding region of GCR1 identified three putative Gcr1p binding sites (CT-boxes) in the -100 to -200 region of GCR1, and the putative binding sites for Rap1p (RPG-box) and Abf1p were also identified nearby. The region containing putative cis-elements was analysed by cloning it upstream of the CYC1TATA-lacZ fusion. The GCR1(UAS)-CYC1TATA-lacZ fusion showed a moderate activity and, as expected, the activity was drastically reduced in the Deltagcr1 or Deltagcr2 mutant. Systematic deletion and mutation analyses of cis-elements in this region demonstrated that the putative binding sites for Rap1p and Abf1p were not involved in the promoter activity of GCR1(UAS) and only one of the three CT-boxes showed GCR1- and GCR2-dependent promoter activity. In contrast to the expression of glycolytic genes, where a RPG-box adjacent to the CT-box is required for strong promoter activities, CT-box-dependent expression of GCR1 did not require the RPG-box. Also, a contribution of Sgc1p, an E-box binding transcription factor, to the expression of GCR1 was suggested, based on its disruption analysis.
Collapse
Affiliation(s)
- Hiromi Sasaki
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | | | | | | | | |
Collapse
|
6
|
Polidori E, Saltarelli R, Ceccaroli P, Buffalini M, Pierleoni R, Palma F, Bonfante P, Stocchi V. Enolase from the ectomycorrhizal fungus Tuber borchii Vittad.: biochemical characterization, molecular cloning, and localization. Fungal Genet Biol 2004; 41:157-67. [PMID: 14732262 DOI: 10.1016/j.fgb.2003.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enolase from Tuber borchii mycelium was purified to electrophoretical homogeneity using an anion-exchange and a gel permeation chromatography. Furthermore, the corresponding gene (eno-1) was cloned and characterized. The purified enzyme showed a higher affinity for 2-PGA (0.26 mM) with respect to PEP; the stability and activity of enolase were dependent of the divalent cation Mg2+. T. borchii eno-1 has an ORF of 1323 bp coding for a putative protein of 440 amino acids and Southern blotting analysis revealed that the gene is present as a single copy in T. borchii. The enzymatic activity and the mRNA expression level evaluated in mycelia grown either in different carbon sources, in pyruvate or during starvation were the same in all the conditions tested, while biochemical and Northern blotting analyses performed with mycelia at different days of growth showed T. borchii eno-1 regulation in response to the growth phase. Finally, Western blotting analysis demonstrated that enolase is localized only in the cytosolic fraction confirming its important role in glycolysis.
Collapse
MESH Headings
- Amino Acid Sequence
- Ascomycota/enzymology
- Ascomycota/genetics
- Ascomycota/growth & development
- Ascomycota/metabolism
- Base Sequence
- Chromatography, Gel
- Chromatography, Ion Exchange
- Cloning, Molecular
- Coenzymes/analysis
- DNA, Fungal/chemistry
- DNA, Fungal/isolation & purification
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Glyceric Acids/metabolism
- Introns/genetics
- Magnesium/metabolism
- Molecular Sequence Data
- Molecular Weight
- Phosphoenolpyruvate/metabolism
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/isolation & purification
- Phosphopyruvate Hydratase/physiology
- Promoter Regions, Genetic
- RNA 3' Polyadenylation Signals/genetics
- Sequence Analysis, DNA
- Substrate Specificity/physiology
- Transcription Initiation Site
Collapse
Affiliation(s)
- Emanuela Polidori
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino (PU), Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
López MC, Baker HV. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 2000; 182:4970-8. [PMID: 10940042 PMCID: PMC111378 DOI: 10.1128/jb.182.17.4970-4978.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The phenotype of an organism is the manifestation of its expressed genome. The gcr1 mutant of yeast grows at near wild-type rates on nonfermentable carbon sources but exhibits a severe growth defect when grown in the presence of glucose, even when nonfermentable carbon sources are available. Using DNA microarrays, the genomic expression patterns of wild-type and gcr1 mutant yeast growing on various media, with and without glucose, were compared. A total of 53 open reading frames (ORFs) were identified as GCR1 dependent based on the criterion that their expression was reduced twofold or greater in mutant versus wild-type cultures grown in permissive medium consisting of YP supplemented with glycerol and lactate. The GCR1-dependent genes, so defined, fell into three classes: (i) glycolytic enzyme genes, (ii) ORFs carried by Ty elements, and (iii) genes not previously known to be GCR1 dependent. In wild-type cultures, GCR1-dependent genes accounted for 27% of the total hybridization signal, whereas in mutant cultures, they accounted for 6% of the total. Glucose addition to the growth medium resulted in a reprogramming of gene expression in both wild-type and mutant yeasts. In both strains, glycolytic enzyme gene expression was induced by the addition of glucose, although the expression of these genes was still impaired in the mutant compared to the wild type. By contrast, glucose resulted in a strong induction of Ty-borne genes in the mutant background but did not greatly affect their already high expression in the wild-type background. Both strains responded to glucose by repressing the expression of genes involved in respiration and the metabolism of alternative carbon sources. Thus, the severe growth inhibition observed in gcr1 mutants in the presence of glucose is the result of normal signal transduction pathways and glucose repression mechanisms operating without sufficient glycolytic enzyme gene expression to support growth via glycolysis alone.
Collapse
Affiliation(s)
- M C López
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA
| | | |
Collapse
|
8
|
Current progress in the analysis of transcriptional regulation in the industrially valuable microorganismAspergillus oryzae. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Graham IR, Haw RA, Spink KG, Halden KA, Chambers A. In vivo analysis of functional regions within yeast Rap1p. Mol Cell Biol 1999; 19:7481-90. [PMID: 10523636 PMCID: PMC84746 DOI: 10.1128/mcb.19.11.7481] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the in vivo importance of different regions of Rap1p, a yeast transcriptional regulator and telomere binding protein. A yeast strain (SCR101) containing a regulatable RAP1 gene was used to test functional complementation by a range of Rap1p derivatives. These experiments demonstrated that the C terminus of the protein, containing the putative transcriptional activation domain and the regions involved in silencing and telomere function, is not absolutely essential for cell growth, a result confirmed by sporulation of a diploid strain containing a C terminal deletion derivative of RAP1. Northern analysis with cells that expressed Rap1p lacking the transcriptional activation domain revealed that this region is important for the expression of only a subset of Rap1p-activated genes. The one essential region within Rap1p is the DNA binding domain. We have investigated the possibility that this region has additional functions. It contains two Myb-like subdomains separated by a linker region. Individual point mutations in the linker region had no effect on Rap1p function, although deletion of the region abolished cell growth. The second Myb-like subdomain contains a large unstructured loop of unknown function. Domain swap experiments with combinations of elements from DNA binding domains of Rap1p homologues from different yeasts revealed that major changes can be made to the amino acid composition of this region without affecting Rap1p function.
Collapse
Affiliation(s)
- I R Graham
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Park HD, Scott S, Rai R, Dorrington R, Cooper TG. Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae. J Bacteriol 1999; 181:7052-64. [PMID: 10559172 PMCID: PMC94181 DOI: 10.1128/jb.181.22.7052-7064.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dal82p binds to the UIS(ALL) sites of allophanate-induced genes of the allantoin-degradative pathway and functions synergistically with the GATA family Gln3p and Gat1p transcriptional activators that are responsible for nitrogen catabolite repression-sensitive gene expression. CAR2, which encodes the arginine-degradative enzyme ornithine transaminase, is not nitrogen catabolite repression sensitive, but its expression can be modestly induced by the allantoin pathway inducer. The dominant activators of CAR2 transcription have been thought to be the ArgR and Mcm1 factors, which mediate arginine-dependent induction. These observations prompted us to investigate the structure of the CAR2 promoter with the objectives of determining whether other transcription factors were required for CAR2 expression and, if so, of ascertaining their relative contributions to CAR2's expression and control. We show that Rap1p binds upstream of CAR2 and plays a central role in its induced expression irrespective of whether the inducer is arginine or the allantoin pathway inducer analogue oxalurate (OXLU). Our data also explain the early report that ornithine transaminase production is induced when cells are grown with urea. OXLU induction derives from the Dal82p binding site, which is immediately downstream of the Rap1p site, and Dal82p functions synergistically with Rap1p. This synergism is unlike all other known instances of Dal82p synergism, namely, that with the GATA family transcription activators Gln3p and Gat1p, which occurs only in the presence of an inducer. The observations reported suggest that CAR2 gene expression results from strong constitutive transcriptional activation mediated by Rap1p and Dal82p being balanced by the down regulation of an equally strong transcriptional repressor, Ume6p. This balance is then tipped in the direction of expression by the presence of the inducer. The formal structure of the CAR2 promoter and its operation closely follow the model proposed for CAR1.
Collapse
Affiliation(s)
- H D Park
- Department of Food Science and Technology, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | | | |
Collapse
|
11
|
Fujiwara D, Kobayashi O, Yoshimoto H, Harashima S, Tamai Y. Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase. Yeast 1999; 15:1183-97. [PMID: 10487921 DOI: 10.1002/(sici)1097-0061(19990915)15:12<1183::aid-yea444>3.0.co;2-j] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The ATF1 gene encodes an alcohol acetyl transferase (AATase), that catalyses the synthesis of acetate esters from acetyl CoA and several kinds of alcohols. ATF1 transcription is negatively regulated by unsaturated fatty acids and oxygen. A series of analyses of the ATF1 promoter identified an 18 bp element essential for transcriptional activation. Ligation of the 18 bp element into a plasmid carrying the CYC1 promoter deleted UAS-activated transcription and conferred transcriptional repression by unsaturated fatty acids. The 18 bp element contains a binding sequence for Rap1p, which is a transcriptional repressor and activator. In vitro binding studies showed that Rap1p binds to the 18 bp element essential for transcriptional activation. The results of internal deletion studies of the promoter region suggested that there was also a region responsible for ATF1 oxygen regulation. This region contained the consensus binding sequence for the hypoxic repressor Rox1p. In vitro binding studies showed that Rox1p binds to the region responsible for oxygen regulation. To investigate the effect of the hypoxic repressor complex on transcription, ATF1 expression was measured in rox1, tup1 and ssn6 disruptant strains. It was found that rox1, tup1 and ssn6 disruption caused elevated expression of ATF1 under aerobic conditions. Thus, the activation of ATF1 transcription is dependent on Rap1p, and the Rox1p-Tup1p-Ssn6p hypoxic repressor complex is responsible for repression by oxygen. Furthermore, a study of ATF1 expression in a sch9 null mutant suggested that the Sch9p protein kinase is involved in ATF1 trancriptional activation.
Collapse
Affiliation(s)
- D Fujiwara
- Central Laboratories for Key Technology, Kirin Brewery Co Ltd., 1-13-5, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| | | | | | | | | |
Collapse
|
12
|
López MC, Smerage JB, Baker HV. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1. Proc Natl Acad Sci U S A 1998; 95:14112-7. [PMID: 9826662 PMCID: PMC24335 DOI: 10.1073/pnas.95.24.14112] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p.DNA. Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p.DNA.Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.
Collapse
Affiliation(s)
- M C López
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, JHMHC, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
13
|
Uemura H, Koshio M, Inoue Y, Lopez MC, Baker HV. The role of Gcr1p in the transcriptional activation of glycolytic genes in yeast Saccharomyces cerevisiae. Genetics 1997; 147:521-32. [PMID: 9335590 PMCID: PMC1208175 DOI: 10.1093/genetics/147.2.521] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study the interdependence of Gcr1p and Rap1p, we prepared a series of synthetic regulatory sequences that contained various numbers and combinations of CT-boxes (Gcr1p-binding sites) and RPG-boxes (Rap1p-binding sites). The ability of the synthetic oligonucleotides to function as regulatory sequences was tested using an ENO1-lacZ reporter gene. As observed previously, synthetic oligonucleotides containing both CT- and RPG-boxes conferred strong UAS activity. Likewise, a lone CT-box did not show any UAS activity. By contrast, oligonucleotides containing tandem Ct-boxes but no RPG-box conferred strong promoter activity. This UAS activity was not dependent on position or orientation of the oligonucleotides in the 5' noncoding region. However, it was dependent on both GCR1 and GCR2. These results suggest that the ability of Gcr1p to bind Gcr1p-binding sites in vivo is not absolutely dependent on Rap1p. Eleven independent mutants of GCR1 were isolated that conferred weak UAS activity to a single CT-box. Five mutants has single mutations in Gcr1p's DNA-binding domain and displayed slightly higher affinity for the CT-box. These results support the hypothesis that Gcr1p and Gcr2p play the central role in glycolytic gene expression and that the function of Rap1p is to facilitate the binding of Gcr1p to its target.
Collapse
Affiliation(s)
- H Uemura
- Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Tsukuba Research Center, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
14
|
Hiesinger M, Wagner C, Schüller HJ. The acetyl-CoA synthetase gene ACS2 of the yeast Saccharomyces cerevisiae is coregulated with structural genes of fatty acid biosynthesis by the transcriptional activators Ino2p and Ino4p. FEBS Lett 1997; 415:16-20. [PMID: 9326360 DOI: 10.1016/s0014-5793(97)01085-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast Saccharomyces cerevisiae contains two acetyl-CoA synthetase genes, ACS1 and ACS2. While ACS1 transcription is glucose repressible, ACS2 shows coregulation with structural genes of fatty acid biosynthesis. The ACS2 upstream region contains an ICRE (inositol/choline-responsive element) as an activating sequence and requires the regulatory genes INO2 and INO4 for maximal expression. We demonstrate in vitro binding of the heterodimeric activator protein Ino2p/Ino4p to the ACS2 promoter. In addition, the pleiotropic transcription factor Abf1p also binds to the ACS2 control region. The identification of ACS2 activating elements also found upstream of ACC1, FAS1 and FAS2 suggests a role of this acetyl-CoA synthetase isoenzyme for the generation of the acetyl-CoA pool required for fatty acid biosynthesis.
Collapse
Affiliation(s)
- M Hiesinger
- Institut für Mikrobiologie, Biochemie und Genetik, Lehrstuhl Biochemie, Universität Erlangen/Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
15
|
Meinander NQ, Hahn-Hägerdal B. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol 1997; 63:1959-64. [PMID: 9143128 PMCID: PMC168488 DOI: 10.1128/aem.63.5.1959-1964.1997] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess.
Collapse
Affiliation(s)
- N Q Meinander
- Department of Applied Microbiology, Lund Institute of Technology/University of Lund, Sweden
| | | |
Collapse
|
16
|
Alloush HM, López-Ribot JL, Masten BJ, Chaffin WL. 3-phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):321-330. [PMID: 9043109 DOI: 10.1099/00221287-143-2-321] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used a polyclonal antiserum to cell wall proteins of Candida albicans to isolate several clones from a cDNA lambda gt11 expression library. Affinity-purified antibody prepared to the fusion protein of one clone identified a 40 kDa moiety present in cell wall extracts from both morphologies of the organism. Indirect immunofluorescence demonstrated expression of this moiety at the C. albicans cell surface. Sequencing of a pBluescript II genomic clone identified with the cDNA clone revealed an open reading frame for a 417 amino acid protein. The nucleotide sequence showed significant homology with 3-phosphoglycerate kinase (PGK) genes, with 88%, 77% and 76% nucleotide homology with the PGK genes from Candida maltosa, Saccharomyces cerevisiae and Kluyveromyces lactis, respectively. The deduced amino acid sequence was consistent with this identification of the sequence as PGK1 of C. albicans. This finding was confirmed by a positive immunological response of a commercially available purified PGK from S. cerevisiae with the affinity-purified antibody against the fusion protein of the cDNA clone. The presence of PGK in the cell wall was confirmed by two additional methods. Cell wall protein were biotinylated with a derivative that does not permeate the cell membrane to distinguish extracellular from cytosolic proteins. Biotinylated PGK was detected among the biotinylated proteins obtained following streptavidin affinity chromatography. Immunoelectron microscopy revealed that the protein was present at the outer surface of the cell membrane and cell wall as well as expected in the cytoplasm. Northern blot analysis revealed that the gene transcript was present in C. albicans cells growing under different conditions, including different media, temperatures and morphologies. Most of the enzyme activity was found in the cytosol. Low enzymic activity was detected in intact cells but not in culture filtrates. These observations confirmed that PGK is a bona fide cell wall protein of C. albicans.
Collapse
Affiliation(s)
- Habib M Alloush
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - José L López-Ribot
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Barbara J Masten
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - W LaJean Chaffin
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
17
|
Jansma DB, Archambault J, Mostachfi O, Friesen JD. Similar upstream regulatory elements of genes that encode the two largest subunits of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:4543-51. [PMID: 8948647 PMCID: PMC146278 DOI: 10.1093/nar/24.22.4543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have determined the location of cis-acting elements that are important for the expression of RPO21 and RPO22, genes that encode the two largest subunits of RNA polymerase II (RNAPII) in Saccharomyces cerevisiae. A series of 5'-end deletions and nucleotide substitutions in the upstream regions of RPO21 and RPO22 were tested for their effect on the expression of lacZ fusions of these genes. Deletion of sequences from -723 to -693 in RPO21, which disrupted two Reb1p-binding sites and an Abf1p-binding site, resulted in a 10-fold decrease in expression. A T-rich region downstream of these sites was also important for expression. Deletion of sequences from -437 to -392 in the RPO22-upstream, which resulted in a 30-fold decrease in expression, indicated that the Reb1p- and Abf1p-binding sites in this region were important for RPO22 expression, as was a T-rich sequence immediately downstream of these sites. The RPO21 and RPO22 upstream regions were capable of interacting in vitro (gel-mobility-shift assays) with Reb1p and Abf1p. The similarities in the type and organization of elements in the upstream regions of RPO21 and RPO22 suggest that expression of these genes may be regulated coordinately.
Collapse
Affiliation(s)
- D B Jansma
- Department of Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Smart WC, Coffman JA, Cooper TG. Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (arginase) promoter in response to multiple environmental signals. Mol Cell Biol 1996; 16:5876-87. [PMID: 8816501 PMCID: PMC231589 DOI: 10.1128/mcb.16.10.5876] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CAR1 (arginase) gene expression responds to multiple environmental signals; expression is induced in response to the intracellular accumulation of arginine and repressed when readily transported and catabolized nitrogen sources are available in the environment. Up to 14 cis-acting sites and 9 trans-acting factors have been implicated in regulated CAR1 transcription. In all but one case, the sites are redundant. To test whether these sites actually participate in CAR1 expression, each class of sites was inactivated by substitution mutations that retained the native spacing of the CAR1 cis-acting elements. Three types of sites function independently of the nitrogen source: two clusters of Abflp- and Rap1p-binding sites, and a GC-rich sequence. Two different sets of nitrogen source-dependent sites are also required: the first consists of two GATAA-containing UASNTR sites that mediate nitrogen catabolite repression-sensitive transcription, and the second is arginine dependent and consists of three UAS1 elements that activate transcription only when arginine is present. A single URS1 site mediates repression of CAR1 arginine-independent upstream activator site (UAS) activity in the absence of arginine and the presence of a poor nitrogen source (a condition under which the inducer-independent Gln3p can function in association with the UASNTR sites). When arginine is present, the combined activity of the UAS elements overcomes the negative effects mediated by URS1. Mutation of the classes of sites either singly or in combination markedly alters CAR1 promoter operation and control, supporting the idea that they function synergistically to regulate expression of the gene.
Collapse
Affiliation(s)
- W C Smart
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
19
|
Oechsner U, Bandlow W. Interactions of the yeast centromere and promoter factor, Cpf1p, with the cytochrome c1 upstream region and functional implications on regulated gene expression. Nucleic Acids Res 1996; 24:2395-403. [PMID: 8710512 PMCID: PMC145936 DOI: 10.1093/nar/24.12.2395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The upstream activation site (UAS) of the cytochrome c1 gene, CYT1, contains sequences for DNA-binding of several transcription factors. Among them are the heme-dependent protein, Hap1p, and the multiprotein complex, Hap2/3/4/5, which mediate transcriptional induction under aerobic conditions and after exhaustion of glucose, respectively. The multiple interactions of nuclear proteins with the UAS region of CYT1 observed in electrophoretic mobility shift experiments are influenced by carbon source and oxygen tension, but are independent of both regulators, Hap1p and Hap2/3/4/5. All protein-DNA complexes obtained are solely due to the association of the centromere and promoter factor 1 (Cpf1p) with the centromere determining element (CDE I)-like motif at the 5' boundary of the UAS(CYT1). This motif overlaps with a consensus sequence for the binding of the general factor Abf1p. Functional analyses after the separate introduction of point mutations into both elements reveal no role for the latter protein and only a minor role for Cpf1p in the regulated expression of CYT1/lacZ chimaeric proteins. However, in cpf1-mutants, induction of CYT1 reaches higher steady state levels and adaptation to aerobic conditions occurs faster than in wild-type. Thus, Cpf1p seems to reduce CYT1 promoter activity under partly inducing conditions, e.g. when only one of the activators, Hap1p or the Hap2 complex, exerts its function.
Collapse
Affiliation(s)
- U Oechsner
- Institute for Genetics and Microbiology, Universität Munchen, Germany
| | | |
Collapse
|
20
|
Drazinic CM, Smerage JB, López MC, Baker HV. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol Cell Biol 1996; 16:3187-96. [PMID: 8649429 PMCID: PMC231312 DOI: 10.1128/mcb.16.6.3187] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcriptional activation in eukaryotic organisms normally requires combinatorial interactions of multiple transcription factors. In most cases, the precise role played by each transcription factor is not known. The upstream activating sequence (UAS) elements of glycolytic enzyme genes in Saccharomyces cerevisiae are excellent model systems for the study of combinatorial interactions. The yeast protein known as Rap1p acts as both a transcriptional repressor and an activator, depending on sequence context. Rap1p-binding sites are found adjacent to Gcr1p-binding sites in the UAS elements of glycolytic enzyme genes. These UAS elements constitute some of the strongest activating sequences known in S. cerevisiae. In this study, we have investigated the relationship between Rap1p- and Gcr1p-binding sites and the proteins that bind them. In vivo DNA-binding studies with rap1ts mutant strains demonstrated that the inability of Rap1p to bind at its site resulted in the inability of Gcr1p to bind at adjacent binding sites. Synthetic oligonucleotides, modeled on the UAS element of PYK1, in which the relative positions of the Rap1p- and Gcr1p-binding sites were varied prepared and tested for their ability to function as UAS elements. The ability of the oligonucleotides to function as UAS elements was dependent not only on the presence of both binding sites but also on the relative distance between the binding sites. In vivo DNA-binding studies showed that the ability of Rap1p bind its site was independent of Gcr1p but that the ability of Gcr1p to bind its site was dependent on the presence of an appropriately spaced and bound Rap1p-binding site. In vitro binding studies showed Rap1p-enhanced binding of Gcr1p on oligonucleotides modeled after the native PYK1 UAS element but not when the Rap1p- and Gcr1p-binding sites were displaced by 5 nucleotides. This work demonstrates that the role of the Rap1p in the activation of glycolytic enzyme genes is to bind in their UAS elements and to facilitate the binding of Gcr1p at adjacent binding sites.
Collapse
Affiliation(s)
- C M Drazinic
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | | | | | |
Collapse
|
21
|
Boscheron C, Maillet L, Marcand S, Tsai-Pflugfelder M, Gasser SM, Gilson E. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. EMBO J 1996; 15:2184-95. [PMID: 8641284 PMCID: PMC450142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcriptional repression at the silent yeast mating type loci is achieved through the formation of a particular nucleoprotein complex at specific cis-acting elements called silencers. This complex in turn appears to initiate the spreading of a histone binding protein complex into the surrounding chromatin, which restricts accessibility of the region to the transcription machinery. We have investigated long-range, cooperative effects between silencers by studying the repression of a reporter gene integrated at the HML locus flanked by various combinations of wild-type and mutated silencer sequences. Two silencers can cooperate over >4000 bp to repress transcription efficiently. More importantly, a single binding site for either the repressor activator protein 1 (Rap1), the autonomous replicating sequence (ARS) binding factor 1 (Abf1) or the origin recognition complex (ORC) can enhance the action of a distant silencer without acting as a silencer on its own. Functional cooperativity is demonstrated using a quantitative assay for repression, and varies with the affinity of the binding sites used. Since the repression mechanism is Sir dependent, the Rap1, ORC and/or Abf1 proteins bound to distant DNA elements may interact to create an interface of sufficiently high affinity such that Sir-containing complexes bind, nucleating the silent chromatin state.
Collapse
|
22
|
Le Dall M, Nicaud J, Tréton BY, Gaillardin CM. The 3-phosphoglycerate kinase gene of the yeast Yarrowia lipolytica de-represses on gluconeogenic substrates. Curr Genet 1996; 29:446-56. [PMID: 8625424 DOI: 10.1007/bf02221513] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have isolated the 3-phosphoglycerate kinase (PGK) gene of the yeast Yarrowia lipolytica by probing a genomic library with a PCR fragment amplified with primers deduced from two highly conserved regions of various PGKs. It is a unique sequence encoding a polypeptide of 417 residues with extensive homology to other PGKs, especially to that of Aspergillus nidulans (76% identity). The expression of the Y. lipolytica PGK1 gene proved to be higher on gluconeogenic substrates than on glycolytic ones. Haploid strains harboring a disrupted allele were able to grow on mixtures of a gluconeogenic carbon source and of a glycolytic one, but required proline supplementation in the presence of glucose, and were inhibited by glycerol.
Collapse
Affiliation(s)
- M Le Dall
- Laboratoire de Génétique Moléculaire et Cellulaire, INRA-CNRS, CBAI, Institut National Agronomique, F-78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
23
|
Abstract
In Saccharomyces cerevisiae the GCRI gene product is required for high-level expression of genes encoding glycolytic enzymes. In this communication, we extend our analysis of the DNA binding properties of Gcr1p. The DNA-binding domain of Gcr1p binds DNA with high affinity. The apparent dissociation constant of the Gcr1p DNA-binding domain for one of its specific binding sites (TTTCAGCTTCCTCTAT) is 2.9 x 10(-10) M. However, competition experiments showed that Gcr1p binds this site in vitro with a low degree of specificity. We measured a 33-fold difference between the ability of specific competitor and DNA of random sequence to inhibit the formation of nucleoprotein complexes between Gcr1p and a radiolabeled DNA probe containing its binding site. DNA band-shift experiments, utilizing probes of constant length in which the positions of Gcr1p-binding sites are varied relative to the ends, indicated that Gcr1p-DNA nucleoprotein complexes contain bent DNA. The implications of these findings in terms of the combinatorial interactions that occur at the upstream activating sequence elements of genes encoding glycolytic enzymes are discussed.
Collapse
Affiliation(s)
- M A Huie
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville 32610-0266, USA
| | | |
Collapse
|
24
|
Packham EA, Graham IR, Chambers A. The multifunctional transcription factors Abf1p, Rap1p and Reb1p are required for full transcriptional activation of the chromosomal PGK gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:348-56. [PMID: 8602150 DOI: 10.1007/bf02174393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have identified two new transcription factor binding sites upstream of the previously defined UAS within the phosphoglycerate kinase (PGK) gene promoter in Saccharomyces cerevisiae. These sites are bound in vitro by the multifunctional factors Cpf1p and Reb1p. We have generated targeted deletions of Rap1p, Abf1p and Reb1p binding sites in the promoter of the chromosomal copy of the PGK gene. Northern blot analysis confirmed that most PGK promoter activity is mediated through the Rap1p binding site. However, significant effects are also mediated through both the Reb1p and Abf1p sites. In contrast, when the promoter is present on a high-copy-number plasmid, both the Abf1p and Reb1p sites play no role in transcriptional activation. The role of Cpf1p was examined using a cpf1 null strain. Cpf1p was found to have little if any, effect on activation of either the chromosomal or plasmid-borne PGK gene.
Collapse
Affiliation(s)
- E A Packham
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
25
|
Meisels E, Gileadi O, Corden JL. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes. J Biol Chem 1995; 270:31255-61. [PMID: 8537392 DOI: 10.1074/jbc.270.52.31255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The largest subunit of RNA polymerase II contains an essential carboxyl-terminal domain (CTD) that consists of highly conserved heptapeptide repeats with the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Yeast cells with a partially truncated CTD grow slowly, are temperature- and cold-sensitive, and are unable to fully activate transcription of some genes. Screening a yeast wild-type cDNA library by means of comparative hybridization we find that CTD truncation preferentially reduces transcription of genes encoding glycolytic enzymes. Using a newly developed dual reporter assay we demonstrate that sensitivity to CTD truncation is conferred by the glycolytic gene promoters. Expression driven by glycolytic gene promoters is reduced, on average, about 3-fold in strains with the shortest CTD growing on either fermentable or nonfermentable carbon sources. Sensitivity to CTD truncation is particularly acute for the constitutively expressed ENO1 gene, which is reduced 10-fold in a strain with only eight CTD repeats. The sensitivity of constitutive ENO1 expression argues that CTD truncation can cause defects in uninduced as well as induced transcription.
Collapse
Affiliation(s)
- E Meisels
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
26
|
Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23:4878-84. [PMID: 8532532 PMCID: PMC307478 DOI: 10.1093/nar/23.23.4878] [Citation(s) in RCA: 2113] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The identification of potential regulatory motifs in new sequence data is increasingly important for experimental design. Those motifs are commonly located by matches to IUPAC strings derived from consensus sequences. Although this method is simple and widely used, a major drawback of IUPAC strings is that they necessarily remove much of the information originally present in the set of sequences. Nucleotide distribution matrices retain most of the information and are thus better suited to evaluate new potential sites. However, sufficiently large libraries of pre-compiled matrices are a prerequisite for practical application of any matrix-based approach and are just beginning to emerge. Here we present a set of tools for molecular biologists that allows generation of new matrices and detection of potential sequence matches by automatic searches with a library of pre-compiled matrices. We also supply a large library (> 200) of transcription factor binding site matrices that has been compiled on the basis of published matrices as well as entries from the TRANSFAC database, with emphasis on sequences with experimentally verified binding capacity. Our search method includes position weighting of the matrices based on the information content of individual positions and calculates a relative matrix similarity. We show several examples suggesting that this matrix similarity is useful in estimating the functional potential of matrix matches and thus provides a valuable basis for designing appropriate experiments.
Collapse
Affiliation(s)
- K Quandt
- Institut für Säugetiergenetik, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Chambers A, Packham EA, Graham IR. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr Genet 1995; 29:1-9. [PMID: 8595651 DOI: 10.1007/bf00313187] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Chambers
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
28
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
29
|
Loo S, Laurenson P, Foss M, Dillin A, Rine J. Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae. Genetics 1995; 141:889-902. [PMID: 8582634 PMCID: PMC1206852 DOI: 10.1093/genetics/141.3.889] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A sensitized genetic screen was carried out to identify essential genes involved in silencing in Saccharomyces cerevisiae. This screen identified temperature-sensitive alleles of ORC2 and ORC5, as described elsewhere, and ABF1, NPL3, and YCL54, as described here. Alleles of ABF1 that caused silencing defects provided the genetic proof of Abflp's role in silencing. The roles of Npl3p and Ycl54p are less clear. These proteins did not act exclusively through any one of the three protein binding sites of the HMR-E silencer. Unlike the orc2, orc5, and abf1 mutations that were isolated in the same (or a similar) screen for silencing mutants, neither temperature-sensitive mutation in NPL3 or YCL54 caused overt replication defects.
Collapse
Affiliation(s)
- S Loo
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
30
|
Planta RJ, Gonçalves PM, Mager WH. Global regulators of ribosome biosynthesis in yeast. Biochem Cell Biol 1995; 73:825-34. [PMID: 8721998 DOI: 10.1139/o95-090] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Three abundant ubiquitous DNA-binding protein factors appear to play a major role in the control of ribosome biosynthesis in yeast. Two of these factors mediate the regulation of transcription of ribosomal protein genes (rp-genes) in yeasts. Most yeast rp-genes are under transcriptional control of Rap1p (repressor-activator protein), while a small subset of rp-genes is activated through Abf1p (ARS binding factor). The third protein, designated Reb1p (rRNA enhancer binding protein), which binds strongly to two sites located upstream of the enhancer and the promoter of the rRNA operon, respectively, appears to play a crucial role in the efficient transcription of the chromosomal rDNA. All three proteins, however, have many target sites on the yeast genome, in particular, in the upstream regions of several Pol II transcribed genes, suggesting that they play a much more general role than solely in the regulation of ribosome biosynthesis. Furthermore, some evidence has been obtained suggesting that these factors influence the chromatin structure and creat a nucleosome-free region surrounding their binding sites. Recent studies indicate that the proteins can functionally replace each other in various cases and that they act synergistically with adjacent additional DNA sequences. These data suggest that Abf1p, Rap1p, and Reb1p are primary DNA-binding proteins that serve to render adjacent cis-acting elements accessible to specific trans-acting factors.
Collapse
Affiliation(s)
- R J Planta
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam Vrije Universiteit, The Netherlands
| | | | | |
Collapse
|
31
|
Einerhand AW, Kos W, Smart WC, Kal AJ, Tabak HF, Cooper TG. The upstream region of the FOX3 gene encoding peroxisomal 3-oxoacyl-coenzyme A thiolase in Saccharomyces cerevisiae contains ABF1- and replication protein A-binding sites that participate in its regulation by glucose repression. Mol Cell Biol 1995; 15:3405-14. [PMID: 7760837 PMCID: PMC230575 DOI: 10.1128/mcb.15.6.3405] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the FOX3 gene, which encodes yeast peroxisomal 3-oxoacyl-coenzyme A thiolase, can be induced by oleate and repressed by glucose. Previously, we have shown that induction was mediated by an oleate response element. Just upstream of this element a negatively acting control region that mediated glucose repression was found. In order to study this negative control region, we carried out DNA-binding assays and analyzed phenotypes of mutations in this region and in the trans-acting factor CAR80, which is identical to UME6. DNA-binding assays showed that two multifunctional yeast proteins, ABF1 and RP-A, interacted with the negative control element independently of the transcriptional activity of the FOX3 gene. ABF1 and RP-A, the latter being identical to BUF, were able to bind to DNA independently of one another but also simultaneously. The phenotypes of mutations in either DNA-binding sites of ABF1, RP-A, or both, which affected the DNA binding of these factors in vitro, indicated that these sites and the proteins that interact with them participate in glucose repression. The involvement of the RP-A site in glucose repression was further supported by our observation that the CAR80 gene product, which is required for repression mediated by the RP-A site, was essential for maintenance of glucose repression. In addition to the RP-A site in the FOX3 promoter, similar sequences were observed in other genes involved in peroxisomal function. RP-A proved to bind to all of these sequences, albeit with various affinities. From these results it is concluded that the ABF1 and RP-A sites are being required in concert to mediate glucose repression of the FOX3 gene. In addition, coordinated regulation of expression of genes involved in peroxisomal function in response to glucose is mediated by proteins associated with the RP-A site, probably RP-A and CAR80.
Collapse
Affiliation(s)
- A W Einerhand
- Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Nishi K, Park CS, Pepper AE, Eichinger G, Innis MA, Holland MJ. The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein. Mol Cell Biol 1995; 15:2646-53. [PMID: 7739544 PMCID: PMC230494 DOI: 10.1128/mcb.15.5.2646] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The GCR1 gene product is required for maximal transcription of yeast glycolytic genes and for growth of yeast strains in media containing glucose as a carbon source. Dominant mutations in two genes, SGC1 and SGC2, as well as recessive mutations in the SGC5 gene were identified as suppressors of the growth and transcriptional defects caused by a gcr1 null mutation. The wild-type and mutant alleles of SGC1 were cloned and sequenced. The predicted amino acid sequence of the SGC1 gene product includes a region with substantial similarity to the basic-helix-loop-helix domain of the Myc family of DNA-binding proteins. The SGC1-1 dominant mutant allele contained a substitution of glutamine for a highly conserved glutamic acid residue within the putative basic DNA binding domain. A second dominant mutant, SGC1-2, contained a valine-for-isoleucine substitution within the putative loop region. The SGC1-1 dominant mutant suppressed the GCR1 requirement for enolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase gene expression. Expression of the yeast enolase genes was reduced three- to fivefold in strains carrying an sgc1 null mutation, demonstrating that SGC1 is required for maximal enolase gene expression. Expression of the enolase genes in strains carrying gcr1 and sgc1 double null mutations was substantially less than observed for strains carrying either null mutation alone, suggesting that GCR1 and SGC1 function on parallel pathways to activate yeast glycolytic gene expression.
Collapse
Affiliation(s)
- K Nishi
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616-8635, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jung SY, Yoo HY, Kim YH, Kim J, Rho HM. The glucose-dependent transactivation activity of ABF1 on the expression of the TDH3 gene in yeast. Curr Genet 1995; 27:312-7. [PMID: 7614553 DOI: 10.1007/bf00352099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Autonomously replicating sequence binding factor 1 (ABF1) has been implicated in the control of a variety of gene expressions in Saccharomyces cerevisiae. In this paper evidence is presented that ABF1 is involved in the glucose-dependent expression of the TDH3 gene which encodes glyceraldehyde-3-phosphate dehydrogenase. ABF1 binds to consensus sites located between -420 and -250, and between +77 and +200, and acts as a transactivator in an orientation-independent manner on both upstream and downstream sites. TDH3-lacZ fusions having an ABF1 consensus motif showed glucose-dependent expression of TDH3, whereas in the abf1 mutant strain JCA35 glucose-dependent expression disappeared. These findings suggest that ABF1 functions as a glucose-dependent transactivator for the expression of the TDH3 gene.
Collapse
Affiliation(s)
- S Y Jung
- Department of Molecular Biology, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
34
|
Künzler M, Springer C, Braus GH. Activation and repression of the yeast ARO3 gene by global transcription factors. Mol Microbiol 1995; 15:167-78. [PMID: 7752892 DOI: 10.1111/j.1365-2958.1995.tb02231.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ARO3 gene of Saccharomyces cerevisiae codes for the phenylalanine-inhibited 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (EC 4.1.2.15) and is regulated by the general control system of amino acid biosynthesis through a single GCN4-binding site in its promoter. A combined deletion and mutation analysis of the ARO3 promoter region in a delta gcn4-background revealed two additional regulatory systems involved in ARO3 transcription. The ARO3 gene is (i) activated through a sequence element which binds the multifunctional DNA-binding protein ABF1 in vitro and (ii) repressed through an URS1 element, which binds the same protein in vitro as the URS1 element in the CAR1 promoter. Since both the ABF1-binding site and the URS1 element represent cis-acting elements of global transcription regulatory systems in yeast, the ARO3 gene is the first example of a GCN4-regulated gene which is both activated and repressed by global transcription factors. Activation of the ARO3 gene through the ABF1-binding site and repression through the URS1 element seem to be independent of each other and independent of activation by the GCN4 protein.
Collapse
Affiliation(s)
- M Künzler
- Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander-Universität, Erlangen, Germany
| | | | | |
Collapse
|
35
|
|
36
|
Larson GP, Castanotto D, Rossi JJ, Malafa MP. Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene 1994; 150:35-41. [PMID: 7959060 DOI: 10.1016/0378-1119(94)90854-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Saccharomyces cerevisiae RAP1 (Sc RAP1) is an essential protein which interacts with diverse genetic loci within the cell. RAP1 binds site-specifically to the consensus sequence, 5'-AYCYRTRCAYYW (UASRPG, where R = A or G, W = A or T, Y = C or T). In Kluyveromyces lactis (Kl) ribosomal protein-encoding genes (rp) retain functional RAP1-binding elements, suggesting the presence of a RAP1-like factor. Kl extracts display an activity capable of specifically binding to rp fragments bearing UASRPG. We subsequently isolated the Kl RAP1-encoding gene by homology to a subfragment which encodes the N terminus of the DNA-binding domain of Sc RAP1. The predicted amino acid (aa) sequence of Kl RAP1 indicates it is smaller than Sc RAP1 (666 vs. 827 aa) with the N terminus being truncated. The DNA-binding domain is virtually identical between the two RAP1 proteins, while the RIF1 domain is moderately conserved. The region between these two domains and the N-termini are highly divergent. Two potential UASRPG were identified in the 5' flanking region, suggesting an autoregulatory role for RAP1. Despite the similarities between the two proteins, KI RAP1 is unable to complement Sc rap1ts mutants, suggesting that domains essential for function in Sc are absent from the Kl protein.
Collapse
Affiliation(s)
- G P Larson
- Department of Molecular Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | | | | | | |
Collapse
|
37
|
Henry YA, López MC, Gibbs JM, Chambers A, Kingsman SM, Baker HV, Stanway CA. The yeast protein Gcr1p binds to the PGK UAS and contributes to the activation of transcription of the PGK gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:506-11. [PMID: 7808400 DOI: 10.1007/bf00302263] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Analysis of the upstream activation sequence (UAS) of the yeast phosphoglycerate kinase gene (PGK) has demonstrated that a number of sequence elements are involved in its activity and two of these sequences are bound by the multifunctional factors Rap1p and Abf1p. In this report we show by in vivo footprinting that the regulatory factor encoded by GCR1 binds to two elements in the 3' half of the PGK UAS. These elements contain the sequence CTTCC, which was previously suggested to be important for the activity of the PGK UAS and has been shown to be able to bind Gcr1p in vitro. Furthermore, we find that Gcr1p positively influences PGK transcription, although it is not responsible for the carbon source dependent regulation of PGK mRNA synthesis. In order to mediate its transcriptional influence we find that Gcr1p requires the Rap1p binding site, in addition to its own, but not the Abf1p site. As neither a Rap1p nor a Gcr1p binding site alone is able to activate transcription, we propose that Gcr1p and Rap1p interact in an interdependent fashion to activate PGK transcription.
Collapse
Affiliation(s)
- Y A Henry
- Department of Biochemistry, Oxford University, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Schüller HJ, Schütz A, Knab S, Hoffmann B, Schweizer E. Importance of general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty acid synthase genes FAS1 and FAS2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:213-22. [PMID: 7925441 DOI: 10.1111/j.1432-1033.1994.00213.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fatty acid synthase genes FAS1 and FAS2 of the yeast Saccharomyces cerevisiae are under transcriptional control of pathway-specific regulators of phospholipid biosynthesis. However, site-directed mutagenesis of the respective cis-acting elements upstream of FAS1 and FAS2 revealed that additional sequences activating both genes must exist. A deletion analysis of the FAS1 promoter lacking the previously characterized inositol/choline-responsive-element motif defined a region (nucleotides -760 to -850) responsible for most of the remaining activation potency. Gel-retardation experiments and in-vitro DNase footprint studies proved the binding of the general regulatory factors Rap1p, Abf1p and Reb1p to this FAS1 upstream region. Mutation of the respective binding sites led to a drop of gene activation to 8% of the wild-type level. Similarly, we also demonstrated the presence of a Reb1p-binding site upstream of FAS2 and its importance for gene activation. Thus, in addition to the previously characterized FAS-binding factor 1 interacting with the inositol/choline-responsive-element motif, a second motif common to the promoter regions of both FAS genes could be identified. Transcription of yeast fatty acid synthase genes is therefore subjected to both the pathway-specific control affecting genes of phospholipid biosynthesis and to the activation by general transcription factors allowing a sufficiently high level of constitutive gene expression.
Collapse
Affiliation(s)
- H J Schüller
- Institut für Mikrobiologie, Biochemie und Genetik, Universität Erlangen/Nürnberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Martens J, Brandl C. GCN4p activation of the yeast TRP3 gene is enhanced by ABF1p and uses a suboptimal TATA element. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40732-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Dumitru I, McNeil JB. A simple in vivo footprinting method to examine DNA-protein interactions over the yeast PYK UAS element. Nucleic Acids Res 1994; 22:1450-5. [PMID: 8190636 PMCID: PMC308004 DOI: 10.1093/nar/22.8.1450] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this report a modification to the in vivo footprinting assay is described. The method includes dimethyl sulfate treatment of whole yeast cells, followed by reiterative primer extension of the methylated genomic DNA using Taq DNA polymerase. Under appropriate reaction conditions chain extension terminates opposite a methylated purine when Taq DNA polymerase encounters a modified adenine or guanine. The procedure was used to examine, in vivo DNA-protein contacts over the upstream activation site (UAS) of the Saccharomyces cerevisiae PYK gene. In vivo analysis, using isogenic strains of yeast and Escherichia coli transformed with plasmid DNAs, confirmed the binding of both the trans-acting factor RAP1 and the transcriptional activator GCR1 to cis-acting recognition sites located within the PYK UAS element.
Collapse
Affiliation(s)
- I Dumitru
- Department of Microbiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Stanway CA, Gibbs JM, Kearsey SE, López MC, Baker HV. The yeast co-activator GAL11 positively influences transcription of the phosphoglycerate kinase gene, but only when RAP1 is bound to its upstream activation sequence. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:207-14. [PMID: 8177217 DOI: 10.1007/bf00280318] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of the yeast phosphoglycerate kinase gene (PGK) is activated by an array of nuclear factors including the multifunctional protein RAP1. We have demonstrated that the transcriptional co-activator GAL11, which was identified as an auxiliary factor to GAL4 and which is believed to interact with the zinc finger of the trans-activator, positively influences the level of PGK transcription on both fermentable and non-fermentable carbon sources. This positive effect is only observed when the RAP1 site in the upstream activation sequence (UAS) is present, implying that GAL11 acts through RAP1. Expression of the RAP1 gene is not reduced in the gal11 background, and in vivo footprinting shows that GAL11 does not influence RAP1 DNA-binding activity. Therefore the effect of GAL11 on PGK transcription must be mediated at the PGK UAS, presumably as part of the activation complex. It has been proposed that RAP1 may act as a facilitator of GCR1 binding at the PGK UAS and therefore it is conceivable that the target for GAL11 may in fact be GCR1. A further implication of this study is that GAL11 can interact with proteins such as RAP1 or GCR1 that are apparently structurally dissimilar from GAL4 and other zinc finger DNA-binding proteins.
Collapse
Affiliation(s)
- C A Stanway
- Department of Plant Sciences, University of Oxford, UK
| | | | | | | | | |
Collapse
|
42
|
Enomoto S, Longtine MS, Berman J. Enhancement of telomere-plasmid segregation by the X-telomere associated sequence in Saccharomyces cerevisiae involves SIR2, SIR3, SIR4 and ABF1. Genetics 1994; 136:757-67. [PMID: 8005431 PMCID: PMC1205882 DOI: 10.1093/genetics/136.3.757] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that circular replicating plasmids that carry yeast telomere repeat sequence (TG1-3) tracts segregate efficiently relative to analogous plasmids lacking the TG1-3 tract and this efficient segregation is dependent upon RAP1. While a long TG1-3 tract is sufficient to improve plasmid segregation, the segregation efficiency of telomere plasmids (TEL-plasmids) is enhanced when the X-Telomere Associated Sequence (X-TAS) is also included on the plasmids. We now demonstrate that the enhancement of TEL-plasmid segregation by the X-TAS depends on SIR2, SIR3, SIR4 and ABF1 in trans and requires the Abf1p-binding site within the X-TAS. Mutation of the Abf1p-binding site within the X-TAS results in TEL-plasmids that are no longer affected by mutations in SIR2, SIR3 or SIR4, despite the fact that other Abf1p-binding sites are present on the plasmid. Mutation of the ARS consensus sequence within the X-TAS converts the X-TAS from an enhancer element to a negative element that interferes with TEL-plasmid segregation in a SIR-dependent manner. Thus, telomere associated sequences interact with TG1-3 tracts on the plasmid, suggesting that the TASs have an active role in modulating telomere function.
Collapse
Affiliation(s)
- S Enomoto
- Department of Plant Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
43
|
Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 1994. [PMID: 8264600 DOI: 10.1128/mcb.14.1.327] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have initiated a study of the promoter region of the alkaline extracellular protease gene (XPR2) from Yarrowia lipolytica to identify upstream sequences possibly involved in carbon, nitrogen, and peptone control of XPR2 expression. Deletion analysis showed that the TATA box and two major upstream activation sequences (UASs) were essential for promoter activity under conditions of repression or full induction. Within the distal UAS (UAS1), in vivo footprinting studies with dimethyl sulfate (DMS) identified two sequences similar to Saccharomyces cerevisiae GCN4 (-800 to -792)- and TUF/RAP1 (-790 to -778)-binding sites and two sequences which partially overlap a repeated sequence (-778 to -771 and -720 to -713) similar to the CAR1 upstream repression sequence of S. cerevisiae. Oligonucleotides carrying the TUF/RAP1-like-binding site and adjacent downstream nucleotides restored full transcriptional activity of a UAS1-deleted promoter. Within the proximal UAS (UAS2), a directly repeated decameric sequence (-146 to -137 and -136 to -127) was protected against DMS in vivo. Sequences identical to the ABF1-binding site of S. cerevisiae (-121 to -109) or similar to the GCN4-binding site (-113 to -105) were not clearly protected from DMS in vivo. An oligomer (-150 to -106) carrying these three sequences, inserted into a UAS2-deleted promoter, increased the transcriptional activity. The results from footprints under different physiological conditions suggested that protein binding to both UASs was constitutive. Deletion of both UASs greatly reduced XPR2 expression without abolishing its regulation. Our results strongly suggest that these UASs are targets for transcriptional factors required for assisting specific regulatory proteins.
Collapse
|
44
|
Blanchin-Roland S, Cordero Otero RR, Gaillardin C. Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 1994; 14:327-38. [PMID: 8264600 PMCID: PMC358382 DOI: 10.1128/mcb.14.1.327-338.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have initiated a study of the promoter region of the alkaline extracellular protease gene (XPR2) from Yarrowia lipolytica to identify upstream sequences possibly involved in carbon, nitrogen, and peptone control of XPR2 expression. Deletion analysis showed that the TATA box and two major upstream activation sequences (UASs) were essential for promoter activity under conditions of repression or full induction. Within the distal UAS (UAS1), in vivo footprinting studies with dimethyl sulfate (DMS) identified two sequences similar to Saccharomyces cerevisiae GCN4 (-800 to -792)- and TUF/RAP1 (-790 to -778)-binding sites and two sequences which partially overlap a repeated sequence (-778 to -771 and -720 to -713) similar to the CAR1 upstream repression sequence of S. cerevisiae. Oligonucleotides carrying the TUF/RAP1-like-binding site and adjacent downstream nucleotides restored full transcriptional activity of a UAS1-deleted promoter. Within the proximal UAS (UAS2), a directly repeated decameric sequence (-146 to -137 and -136 to -127) was protected against DMS in vivo. Sequences identical to the ABF1-binding site of S. cerevisiae (-121 to -109) or similar to the GCN4-binding site (-113 to -105) were not clearly protected from DMS in vivo. An oligomer (-150 to -106) carrying these three sequences, inserted into a UAS2-deleted promoter, increased the transcriptional activity. The results from footprints under different physiological conditions suggested that protein binding to both UASs was constitutive. Deletion of both UASs greatly reduced XPR2 expression without abolishing its regulation. Our results strongly suggest that these UASs are targets for transcriptional factors required for assisting specific regulatory proteins.
Collapse
Affiliation(s)
- S Blanchin-Roland
- Laboratoire de Génétique Moléculaire et Cellulaire INRA-CNRS, Institut National Agronomique, Thiverval-Grignon, France
| | | | | |
Collapse
|
45
|
Hohmann S. Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:657-66. [PMID: 8264540 DOI: 10.1007/bf00279908] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulatory gene PDC2 was identified in a screen for mutations affecting pyruvate decarboxylase activity in yeast. I have cloned and sequenced this gene. The predicted protein of 925 amino acids has no homology to any sequence in the databases. However, the protein sequence is rich in asparagine and serine residues, as is often found for transcriptional regulators. The PDC2 deletion mutant exhibits a phenotype very similar to, but more severe than that of the point mutant: a strongly reduced pyruvate decarboxylase specific activity, slow, respiration-dependent growth on glucose, and accumulation of pyruvate. The activity of other glycolytic enzymes seems to be unaffected by the pdc2 delta mutation. Synthesis of pyruvate decarboxylase is regulated by PDC2 at the transcriptional level. Expression of the major structural gene for pyruvate decarboxylase, PDC1, is strongly reduced in pdc2 delta mutants. Transcription of the generally more weakly expressed PDC5 gene appears to be entirely abolished. However, glucose induction of pyruvate decarboxylase synthesis is unaffected. Thus, PDC2 is either important for a high basal level of PDC gene expression or it plays a positive role in the autoregulation that controls expression of PDC1 and PDC5.
Collapse
Affiliation(s)
- S Hohmann
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Flanders, Belgium
| |
Collapse
|
46
|
Schindler M, Mach RL, Vollenhofer SK, Hodits R, Gruber F, Visser J, De Graaff L, Kubicek CP. Characterization of the pyruvate kinase-encoding gene (pki1) of Trichoderma reesei. Gene 1993; 130:271-5. [PMID: 8359694 DOI: 10.1016/0378-1119(93)90430-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pyruvate kinase-encoding gene (pki1) from Trichoderma reesei was isolated by hybridization to the corresponding Aspergillus nidulans pkiA gene. The 1614-bp nucleotide (nt) sequence of the cloned gene codes for a 538-amino-acid protein. The coding sequence contains a single intron of 246 nt at a position identical to that of intron E in the A. nidulans gene. The PKI protein shows extensive homology to the PKIs of A. nidulans and A. niger (67%) and Saccharomyces cerevisiae (59%). The 5' non-coding sequence contains a number of motifs typical for yeast glycolytic genes, but so far only rarely found in filamentous fungi.
Collapse
Affiliation(s)
- M Schindler
- Abteilung für Mikrobielle Biochemie, Institut für Biochemische Technologie und Mikrobiologie, TU Wien, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pollice A, Ciaramella M, Pulitzer JF. Saccharomyces cerevisiae multifunctional protein RAP1 binds to a conserved sequence in the Polyoma virus enhancer and is responsible for its transcriptional activity in yeast cells. FEBS Lett 1993; 323:77-82. [PMID: 8388336 DOI: 10.1016/0014-5793(93)81452-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Polyoma virus enhancer (A + B domain) activates transcription in Saccharomyces cerevisiae when joined to appropriate yeast promoter elements. We demonstrate by DNase I footprints and inhibition of binding by specific antibody, that the yeast protein RAP1 binds to the B-domain of the Polyoma enhancer and, at least in some promoter contexts, is responsible for transcriptional activity of the enhancer B-domain in yeast. Close matches to a consensus RAP1-binding site are also present in other viral enhancers.
Collapse
Affiliation(s)
- A Pollice
- Dipartimento di Genetica e Biologia Generale e Molecolare, Facoltà di Scienze Università di Napoli Federico II, Italy
| | | | | |
Collapse
|
48
|
Kraakman LS, Griffioen G, Zerp S, Groeneveld P, Thevelein JM, Mager WH, Planta RJ. Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:196-204. [PMID: 8389977 DOI: 10.1007/bf00281618] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rate of ribosomal protein gene (rp-gene) transcription in yeast is accurately adjusted to the cellular requirement for ribosomes under various growth conditions. However, the molecular mechanisms underlying this co-ordinated transcriptional control have not yet been elucidated. Transcriptional activation of rp-genes is mediated through two different multifunctional transacting factors, ABF1 and RAP1. In this report, we demonstrate that changes in cellular rp-mRNA levels during varying growth conditions are not parallelled by changes in the in vitro binding capacity of ABF1 or RAP1 for their cognate sequences. In addition, the nutritional upshift response of rp-genes observed after addition of glucose to a culture growing on a non-fermentative carbon source turns out not to be the result of increased expression of the ABF1 and RAP1 genes or of elevated DNA-binding activity of these factors. Therefore, growth rate-dependent transcription regulation of rp-genes is most probably not mediated by changes in the efficiency of binding of ABF1 and RAP1 to the upstream activation sites of these genes, but rather through other alterations in the efficiency of transcription activation. Furthermore, we tested the possibility that cAMP may play a role in elevating rp-gene expression during a nutritional shift-up. We found that the nutritional upshift response occurs normally in several mutants defective in cAMP metabolism.
Collapse
Affiliation(s)
- L S Kraakman
- Department of Biochemistry and Molecular Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation. Mol Cell Biol 1993. [PMID: 8455635 DOI: 10.1128/mcb.13.4.2623] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GCR1 gene product is required for maximal transcription of many yeast genes including genes encoding glycolytic enzymes. Transcription of the yeast enolase gene ENO2 is reduced 50-fold in strains carrying a gcr1 null mutation. cis-acting sequences that are sufficient for GCR1-dependent regulation of ENO2 expression were identified by using an enhancerless CYC1 promoter which is not normally dependent on GCR1 for expression. A 60-bp ENO2 sequence that was sufficient to provide high-level, GCR1-dependent transcriptional activation of the CYC1 promoter was identified. This 60-bp element could be subdivided into a 30-bp sequence containing a novel RAP1-binding site and a GCR1-binding site which did not activate CYC1 transcription and a 30-bp sequence containing a novel enhancer element that conferred moderate levels of GCR1-independent transcriptional activation. The 60-bp CGCR1-dependent upstream activator sequence is located immediately downstream from previously mapped overlapping binding sites for the regulatory proteins ABFI and RAP1. Evidence is presented that the overlapping ABFI- and RAP1-binding sites function together with sequences that bind GCR1 and RAP1 to stage transcriptional activation of ENO2 expression.
Collapse
|
50
|
Willett CE, Gelfman CM, Holland MJ. A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation. Mol Cell Biol 1993; 13:2623-33. [PMID: 8455635 PMCID: PMC359601 DOI: 10.1128/mcb.13.4.2623-2633.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The GCR1 gene product is required for maximal transcription of many yeast genes including genes encoding glycolytic enzymes. Transcription of the yeast enolase gene ENO2 is reduced 50-fold in strains carrying a gcr1 null mutation. cis-acting sequences that are sufficient for GCR1-dependent regulation of ENO2 expression were identified by using an enhancerless CYC1 promoter which is not normally dependent on GCR1 for expression. A 60-bp ENO2 sequence that was sufficient to provide high-level, GCR1-dependent transcriptional activation of the CYC1 promoter was identified. This 60-bp element could be subdivided into a 30-bp sequence containing a novel RAP1-binding site and a GCR1-binding site which did not activate CYC1 transcription and a 30-bp sequence containing a novel enhancer element that conferred moderate levels of GCR1-independent transcriptional activation. The 60-bp CGCR1-dependent upstream activator sequence is located immediately downstream from previously mapped overlapping binding sites for the regulatory proteins ABFI and RAP1. Evidence is presented that the overlapping ABFI- and RAP1-binding sites function together with sequences that bind GCR1 and RAP1 to stage transcriptional activation of ENO2 expression.
Collapse
Affiliation(s)
- C E Willett
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|