1
|
Henry C, Mbele N, Cox MM. RecF protein targeting to postreplication (daughter strand) gaps I: DNA binding by RecF and RecFR. Nucleic Acids Res 2023; 51:5699-5713. [PMID: 37125642 PMCID: PMC10287957 DOI: 10.1093/nar/gkad311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
In bacteria, the repair of post-replication gaps by homologous recombination requires the action of the recombination mediator proteins RecF, RecO and RecR. Whereas the role of the RecOR proteins to displace the single strand binding protein (SSB) and facilitate RecA loading is clear, how RecF mediates targeting of the system to appropriate sites remains enigmatic. The most prominent hypothesis relies on specific RecF binding to gap ends. To test this idea, we present a detailed examination of RecF and RecFR binding to more than 40 DNA substrates of varying length and structure. Neither RecF nor the RecFR complex exhibited specific DNA binding that can explain the targeting of RecF(R) to post-replication gaps. RecF(R) bound to dsDNA and ssDNA of sufficient length with similar facility. DNA binding was highly ATP-dependent. Most measured Kd values fell into a range of 60-180 nM. The addition of ssDNA extensions on duplex substrates to mimic gap ends or CPD lesions produces only subtle increases or decreases in RecF(R) affinity. Significant RecFR binding cooperativity was evident with many DNA substrates. The results indicate that RecF or RecFR targeting to post-replication gaps must rely on factors not yet identified, perhaps involving interactions with additional proteins.
Collapse
Affiliation(s)
- Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| |
Collapse
|
2
|
Henrikus SS, Henry C, Ghodke H, Wood EA, Mbele N, Saxena R, Basu U, van Oijen AM, Cox MM, Robinson A. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli. Nucleic Acids Res 2019; 47:2946-2965. [PMID: 30657965 PMCID: PMC6451095 DOI: 10.1093/nar/gkz003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
In bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood. Here, we used genetics and single-molecule fluorescence microscopy to investigate whether RecF and RecO function together, or separately, in live Escherichia coli cells. We identified conditions in which RecF and RecO functions are genetically separable. Single-molecule imaging revealed key differences in the spatiotemporal behaviours of RecF and RecO. RecF foci frequently colocalize with replisome markers. In response to DNA damage, colocalization increases and RecF dimerizes. The majority of RecF foci are dependent on RecR. Conversely, RecO foci occur infrequently, rarely colocalize with replisomes or RecF and are largely independent of RecR. In response to DNA damage, RecO foci appeared to spatially redistribute, occupying a region close to the cell membrane. These observations indicate that RecF and RecO have distinct functions in the DNA damage response. The observed localization of RecF to the replisome supports the notion that RecF helps to maintain active DNA replication in cells carrying DNA damage.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Roopashi Saxena
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Upasana Basu
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| |
Collapse
|
3
|
Abstract
Bacillus megaterium podophage Pony was isolated from a soil sample collected in College Station, TX. Here, we report the sequencing and annotation of the 39,844-bp genome of phage Pony and describe the major features identified.
Collapse
|
4
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
5
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
6
|
Abstract
The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.
| |
Collapse
|
7
|
The bacterial RecA protein: structure, function, and regulation. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM. The RecF protein antagonizes RecX function via direct interaction. Mol Cell 2006; 21:41-50. [PMID: 16387652 PMCID: PMC3894658 DOI: 10.1016/j.molcel.2005.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/10/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
The RecX protein inhibits RecA filament extension, leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto single-stranded DNA binding protein (SSB)-coated circular single-stranded DNA (ssDNA) in the presence of RecX occurs only when all of the RecFOR proteins are present. The RecOR proteins contribute only to RecA filament nucleation onto SSB-coated single-stranded DNA and are unable to counter the inhibitory effects of RecX on RecA filaments. RecF protein uniquely supports substantial RecA filament extension in the presence of RecX. In vivo, RecF protein counters a RecX-mediated inhibition of plasmid recombination. Thus, a significant positive contribution of RecF to RecA filament assembly is to antagonize the effects of the negative modulator RecX, specifically during the extension phase.
Collapse
Affiliation(s)
- Shelley L. Lusetti
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
| | - Michael D. Hobbs
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
| | - Elizabeth A. Stohl
- Department of Microbiology–Immunology Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
- Institute of Molecular Virology University of Wisconsin-Madison Madison, WI 53706
| | - Ross B. Inman
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
- Institute of Molecular Virology University of Wisconsin-Madison Madison, WI 53706
| | - H. Steven Seifert
- Department of Microbiology–Immunology Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Michael M. Cox
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
| |
Collapse
|
9
|
Hayes S, Asai K, Chu AM, Hayes C. NinR- and red-mediated phage-prophage marker rescue recombination in Escherichia coli: recovery of a nonhomologous immlambda DNA segment by infecting lambdaimm434 phages. Genetics 2005; 170:1485-99. [PMID: 15956667 PMCID: PMC1449759 DOI: 10.1534/genetics.105.042341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We examined the requirement of lambda recombination functions for marker rescue of cryptic prophage genes within the Escherichia coli chromosome. We infected lysogenic host cells with lambdaimm434 phages and selected for recombinant immlambda phages that had exchanged the imm434 region of the infecting phage for the heterologous 2.6-kb immlambda region from the prophage. Phage-encoded activity, provided by either Red or NinR functions, was required for the substitution. Red(-) phages with DeltaNinR, internal NinR deletions of rap-ninH, or orf-ninC were 117-, 12-, and 5-fold reduced for immlambda rescue in a Rec(+) host, suggesting the participation of several NinR activities. RecA was essential for NinR-dependent immlambda rescue, but had slight influence on Red-dependent rescue. The host recombination activities RecBCD, RecJ, and RecQ participated in NinR-dependent recombination while they served to inhibit Red-mediated immlambda rescue. The opposite effects of several host functions toward NinR- and Red-dependent immlambda rescue explains why the independent pathways were not additive in a Rec(+) host and why the NinR-dependent pathway appeared dominant. We measured the influence of the host recombination functions and DnaB on the appearance of orilambda-dependent replication initiation and whether orilambda replication initiation was required for immlambda marker rescue.
Collapse
Affiliation(s)
- Sidney Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | | | | | | |
Collapse
|
10
|
Abstract
The recent finding of a role for the recA gene in DNA replication restart does not negate previous data showing the existence of recA-dependent recombinational DNA repair, which occurs when there are two DNA duplexes present, as in the case for recA-dependent excision repair, for postreplication repair (i.e., the repair of DNA daughter-strand gaps), and for the repair of DNA double-strand breaks. Recombinational DNA repair is critical for the survival of damaged cells.
Collapse
Affiliation(s)
- Kendric C Smith
- Emeritus Professor of Radiation Oncology (Radiation Biology), Stanford University School of Medicine, 927 Mears Ct., Stanford, CA 94305-1041, USA.
| |
Collapse
|
11
|
Abstract
The order of discovery can have a profound effect upon the way in which we think about the function of a gene. In E. coli, recA is nearly essential for cell survival in the presence of DNA damage. However, recA was originally identified, as a gene required to obtain recombinant DNA molecules in conjugating bacteria. As a result, it has been frequently assumed that recA promotes the survival of bacteria containing DNA damage by recombination in which DNA strand exchanges occur. We now know that several of the processes that interact with or are controlled by recA, such as excision repair and translesion synthesis, operate to ensure that DNA replication occurs processively without strand exchanges. Yet the view persists in the literature that recA functions primarily to promote recombination during DNA repair. With the benefit of hindsight and more than three decades of additional research, we reexamine some of the classical experiments that established the concept of DNA repair by recombination, and we consider the possibilities that recombination is not an efficient mechanism for rescuing damaged cells, and that recA may be important for maintaining processive replication in a manner that does not generally promote recombination.
Collapse
Affiliation(s)
- J Courcelle
- Department of Biological Sciences; Mississippi State University, 39762, USA.
| | | | | |
Collapse
|
12
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 729] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
13
|
Webb BL, Cox MM, Inman RB. ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J Biol Chem 1999; 274:15367-74. [PMID: 10336423 DOI: 10.1074/jbc.274.22.15367] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli RecF protein possesses a weak ATP hydrolytic activity. ATP hydrolysis leads to RecF dissociation from double-stranded (ds)DNA. The RecF protein is subject to precipitation and an accompanying inactivation in vitro when not bound to DNA. A mutant RecF protein that can bind but cannot hydrolyze ATP (RecF K36R) does not readily dissociate from dsDNA in the presence of ATP. This is in contrast to the limited dsDNA binding observed for wild-type RecF protein in the presence of ATP but is similar to dsDNA binding by wild-type RecF binding in the presence of the nonhydrolyzable ATP analog, adenosine 5'-O-(3-thio)triphosphate (ATPgammaS). In addition, wild-type RecF protein binds tightly to dsDNA in the presence of ATP at low pH where its ATPase activity is blocked. A transfer of RecF protein from labeled to unlabeled dsDNA is observed in the presence of ATP but not ATPgammaS. The transfer is slowed considerably when the RecR protein is also present. In competition experiments, RecF protein appears to bind at random locations on dsDNA and exhibits no special affinity for single strand/double strand junctions when bound to gapped DNA. Possible roles for the ATPase activity of RecF in the regulation of recombinational DNA repair are discussed.
Collapse
Affiliation(s)
- B L Webb
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
14
|
Liu YH, Cheng AJ, Wang TC. Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli. J Bacteriol 1998; 180:1766-70. [PMID: 9537373 PMCID: PMC107088 DOI: 10.1128/jb.180.7.1766-1770.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recF, recO, and recR genes were originally identified as those affecting the RecF pathway of recombination in Escherichia coli cells. Several lines of evidence suggest that the recF, recO, and recR genes function at the same step of recombination and postreplication repair. In this work, we report that null mutations in recF, recO, or recR greatly reduce UV-radiation mutagenesis (UVM) in an assay for reversion from a Trp- (trpE65) to a Trp+ phenotypes. Introduction of the defective lexA51 mutation [lexA51(Def)] and/or UmuD' into recF, recO, and recR mutants failed to restore normal UVM in the mutants. On the other hand, the presence of recA2020, a suppressor mutation for recF, recO, and recR mutations, restored normal UVM in recF, recO, and recR mutants. These results indicate an involvement of the recF, recO, and recR genes and their products in UVM, possibly by affecting the third role of RecA in UVM.
Collapse
Affiliation(s)
- Y H Liu
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
15
|
Webb BL, Cox MM, Inman RB. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 1997; 91:347-56. [PMID: 9363943 DOI: 10.1016/s0092-8674(00)80418-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the presence of both the RecF and RecR proteins, RecA filament extension from a single strand gap into adjoining duplex DNA is attenuated. RecR protein alone has no effect, and RecF protein alone has a reduced activity. The RecFR complexes bind randomly, primarily to the duplex regions of the DNA, and the extension of the RecA filament is halted at the first complex encountered. A very slow lengthening of RecA filaments observed in the presence of RecFR is virtually eliminated when RecF is replaced with an RecF mutant protein that does not hydrolyze ATP. These observations are incorporated into an expanded model for the functions of RecF, RecO, and RecR proteins in the early stages of postreplication DNA repair.
Collapse
Affiliation(s)
- B L Webb
- Department of Biochemistry, University of Wisconsin at Madison, 53706, USA
| | | | | |
Collapse
|
16
|
Ayora S, Alonso JC. Purification and characterization of the RecF protein from Bacillus subtilis 168. Nucleic Acids Res 1997; 25:2766-72. [PMID: 9207023 PMCID: PMC146836 DOI: 10.1093/nar/25.14.2766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetic evidence suggests that the Bacillus subtilis recF gene product is involved in DNA repair and recombination. The RecF protein was overproduced and purified. NH2-terminal protein sequence analysis of RecF was consistent with the deduced amino acid sequence of the recF gene. The RecF protein (predicted molecular mass 42.3 kDa) bound single- and double-stranded DNA in a filter binding and in a gel retarding assay. The RecF-ssDNA or -dsDNA complex formation proceeds in the absence of nucleotide cofactors. RecF-ssDNA interaction is markedly stimulated by divalent cations. The apparent equilibrium constants of the RecF-DNA complexes are approximately 110-130 nM for both ssDNA and dsDNA. The binding reaction shows no cooperativity. The RecF protein does not physically interact with the RecR protein. Under our experimental conditions an ATPase activity was not associated with the purified RecF protein or with the RecF and RecR proteins.
Collapse
Affiliation(s)
- S Ayora
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
17
|
Galitski T, Roth JR. Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. Genetics 1997; 146:751-67. [PMID: 9215885 PMCID: PMC1208049 DOI: 10.1093/genetics/146.3.751] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination pathways probably evolved primarily to accomplish chromosomal repair and the formation of and resolution of duplications by sister-chromosome exchanges. Various DNA lesions initiate these events. Classical recombination assays, involving bacterial sex, focus attention on double-strand ends of DNA. Sexual exchanges, initiated at these ends, depend on the RecBCD pathway. In the absence of RecBCD function, mutation of the sbcB and sbcC genes activates the apparently cryptic RecF pathway. To provide a more general view of recombination, we describe an assay in which endogenous DNA damage initiates recombination between chromosomal direct repeats. The repeats flank markers conferring lactose utilization (Lac+) and ampicillin resistance (ApR); recombination generates Lac-ApS segregants. In this assay, the RecF pathway is not cryptic; it plays a major role without sbcBC mutations. Others have proposed that single-strand gaps are the natural substrate for RecF-dependent recombination. Supporting this view, recombination stimulated by a double-strand break (DSB) in a chromosomal repeat depended on RecB function, not RecF function. Without RecBCD function, sbcBC mutations modified the RecF pathway and allowed it to catalyze DSB-stimulated recombination. Sexual recombination assays overestimate the importance of RecBCD and DSBs, and underestimate the importance of the RecF pathway.
Collapse
Affiliation(s)
- T Galitski
- Department of Biology, University of Utah, Salt Lake City 84112, USA.
| | | |
Collapse
|
18
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
19
|
Hegde SP, Qin MH, Li XH, Atkinson MA, Clark AJ, Rajagopalan M, Madiraju MV. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A 1996; 93:14468-73. [PMID: 8962075 PMCID: PMC26156 DOI: 10.1073/pnas.93.25.14468] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF-RecO-RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF-RecO-Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF-RecO-RecR complex functions as an anti-Ssb factor.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
McFarlane RJ, Saunders JR. Molecular mechanisms of intramolecular recombination-dependent recircularization of linearized plasmid DNA in Escherichia coli: requirements for the ruvA, ruvB, recG, recF and recR gene products. Gene X 1996; 177:209-16. [PMID: 8921869 DOI: 10.1016/0378-1119(96)00303-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intramolecular recombinogenic recircularization (IRR) of linearized plasmid DNA was used to study mechanistic relationships between recombination functions in Escherichia coli in vivo. Homology requirement for IRR ranges from 1 to 11 bp, and does not exhibit any notable strain to strain variability, with recombination occurring at a large number of possible sites within the plasmid molecule. We show that recF- and recR-deficient strains exhibit greatly reduced IRR efficiency, although neither gene product is totally essential. Mutation of recF and recR does not alter the distribution of recombination sites nor the range of molecules produced during IRR. A recO-deficient strain did not exhibit dramatic reduction in efficiency of IRR, implying that RecF and RecR proteins maintain function during this mechanism in the absence of functional RecO. The main IRR mechanism is ruvA-, ruvB- and recG-dependent and there is a lower efficiency second IRR mechanism operating in ruvA, ruvB and recG mutants. Some evidence suggests that this second mechanism involves functions associated with the replisome.
Collapse
Affiliation(s)
- R J McFarlane
- Department of Genetics and Microbiology, University of Liverpool, UK
| | | |
Collapse
|
21
|
Hegde SP, Rajagopalan M, Madiraju MV. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J Bacteriol 1996; 178:184-90. [PMID: 8550414 PMCID: PMC177637 DOI: 10.1128/jb.178.1.184-190.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli RecF protein binds, but does not hydrolyze, ATP. To determine the role that ATP binding to RecF plays in RecF protein-mediated DNA binding, we have determined the interaction between RecF protein and single-stranded (ss)DNA, double-stranded (ds)DNA, and dsDNA containing ssDNA regions (gapped [g]DNA) either alone or in various combinations both in the presence and in the absence of adenosine (gamma-thio) triphosphate, gamma-S-ATP, a nonhydrolyzable ATP analog. Protein-DNA complexes were analyzed by electrophoresis on agarose gels and visualized by autoradiography. The type of protein-DNA complexes formed in the presence of gamma-S-ATP was different with each of the DNA substrates and from those formed in the absence of gamma-S-ATP. Competition experiments with various combinations of DNA substrates indicated that RecF protein preferentially bound gDNA in the presence of gamma-S-ATP, and the order of preference of binding was gDNA > dsDNA > ssDNA. Since gDNA has both ds- and ssDNA components, we suggest that the role for ATP in RecF protein-DNA interactions in vivo is to confer specificity of binding to dsDNA-ssDNA junctions, which is necessary for catalyzing DNA repair and recombination.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | |
Collapse
|
22
|
Webb BL, Cox MM, Inman RB. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J Biol Chem 1995; 270:31397-404. [PMID: 8537414 DOI: 10.1074/jbc.270.52.31397] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The DNA binding and ATPase activities of RecF protein are modulated by RecR protein. Stoichiometric amounts of RecF protein bind to double-stranded (ds) DNA (about 1 RecF monomer/4-6 base pairs) in the presence of adenosine 5'-O-(3-thio)triphosphate (ATP gamma S), forming a homogeneous protein coating on the DNA. Little or no cooperativity is evident in the binding process. In the presence of ATP, RecF binding to dsDNA is much weaker, and no RecF protein coating forms. Instead, small numbers of RecF protomers are interspersed randomly along the DNA. RecR protein does not bind appreciably to the dsDNA under these same conditions. However, a protein coating, similar to that which was observed with RecF protein alone in the presence of ATP gamma S, was produced when both RecF and RecR proteins were incubated with dsDNA in the presence of ATP. An interaction between RecF and RecR enables both proteins to bind tightly to the dsDNA in an approximately 1:1 molar ratio. We also report a weak ATP hydrolytic activity of RecF which is stimulated by RecR.
Collapse
Affiliation(s)
- B L Webb
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
23
|
West SC. Formation, translocation and resolution of Holliday junctions during homologous genetic recombination. Philos Trans R Soc Lond B Biol Sci 1995; 347:21-5. [PMID: 7746849 DOI: 10.1098/rstb.1995.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.
Collapse
Affiliation(s)
- S C West
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, U.K
| |
Collapse
|
24
|
Whitby MC, Lloyd RG. Altered SOS induction associated with mutations in recF, recO and recR. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:174-9. [PMID: 7862088 DOI: 10.1007/bf00294680] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The SOS system of Escherichia coli aids survival following damage to DNA by promoting DNA repair while cell division is delayed. Induction of the SOS response is dependent on RecA and also on the product of recF. We show that normal induction also requires the products of recO and recR. SOS induction was monitored using a sfiA-lacZ fusion strain. Induction was delayed to a similar degree by mutation in recF, recO or recR. A similar effect was observed following overexpression of RecR from a recombinant recR+ plasmid. We show that the overexpression of RecR also reduces the UV resistance of a recBC sbcBC strain and of a sfiA strain, but not of a rec+sfiA+ strain. The implications of these data for the kinetics of DNA repair are discussed.
Collapse
Affiliation(s)
- M C Whitby
- Department of Genetics, University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
25
|
Hegde S, Sandler SJ, Clark AJ, Madiraju MV. recO and recR mutations delay induction of the SOS response in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:254-8. [PMID: 7862097 DOI: 10.1007/bf00294689] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage: therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of beta-galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.
Collapse
Affiliation(s)
- S Hegde
- Department of Microbiology, University of Texas Health Center, Tyler 75710
| | | | | | | |
Collapse
|
26
|
Abstract
The gene organization has been determined for an 8-kb portion of the Streptomyces coelicolor chromosome close to the origin of DNA replication (oriC). Hybridization and DNA sequence analyses revealed the presence of five open reading frames (ORFs) oriented in the same direction as the proximal dnaA and dnaN genes. The deduced products of three of the ORFs have been identified as the S. coelicolor homologs of RecF, GyrB and GyrA. These genes are usually clustered in the dnaA region of bacterial chromosomes. In S. coelicolor however, the usual gene arrangement is altered. The recF gene is flanked by two ORFs, one of which encodes a protein with significant similarity to 6-phosphogluconate dehydrogenases (6PGDH), an enzyme that is not immediately linked to DNA metabolism.
Collapse
Affiliation(s)
- M J Calcutt
- Department of Biochemistry, University of Missouri-Columbia 65212
| |
Collapse
|
27
|
Sandler SJ. Studies on the mechanism of reduction of UV-inducible sulAp expression by recF overexpression in Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:741-9. [PMID: 7830722 DOI: 10.1007/bf00297281] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UV-inducible sulAp expression, an indicator of the SOS response, is reduced by recF+ overexpression in vivo. Different DNA-damaging agents and amounts of RecO and RecR were tested for their effects on this phenotype. It was found that recF+ overexpression reduced sulAp expression after DNA damage by mitomycin C or nalidixic acid, recO+ and recR+ overexpression partially suppressed the reduction of UV-induced sulAp expression caused by recF+ overexpression. The requirement for ATP binding to RecF to produce the phenotype was tested by genetically altering the putative phosphate binding cleft of recF in a way that should prevent the mutant recF protein from binding ATP. It was found that a change of lysine to glutamine at codon 36 results in a mutant recF protein (RecF4115) that is unable to reduce UV-inducible sulAp expression when overproduced. It is inferred from these results that recF overexpression may reduce UV-inducible sulAp expression by a mechanism that is sensitive to the ability of RecF to bind ATP and to the levels of RecO and RecR (RecOR) in the cell, but not to the type of DNA damage per se. Models are explored that can explain how recF+ overexpression reduces UV induction of sulAp and how RecOR overproduction might suppress this phenotype.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720
| |
Collapse
|
28
|
Sawitzke JA, Stahl FW. The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli. J Bacteriol 1994; 176:6730-7. [PMID: 7961426 PMCID: PMC197030 DOI: 10.1128/jb.176.21.6730-6737.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacteriophage lambda can recombine in recBC sbcB sbcC mutant cells by using its own gene orf, the Escherichia coli recO, recR, and recF genes, or both. Expression of an orf-containing plasmid complements the recombination defects of orf mutant phage. However, this clone does not complement a recO mutation for conjugational recombination or recO, recR, or recF mutations for repair of UV-induced DNA damage. A plasmid clone of orf produces a protein with an apparent molecular mass of 15 kDa.
Collapse
Affiliation(s)
- J A Sawitzke
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229
| | | |
Collapse
|
29
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 787] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
30
|
Zaman MM, Boles TC. Chi-dependent formation of linear plasmid DNA in exonuclease-deficient recBCD+ strains of Escherichia coli. J Bacteriol 1994; 176:5093-100. [PMID: 8051022 PMCID: PMC196349 DOI: 10.1128/jb.176.16.5093-5100.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Escherichia coli strains carrying mutations in sbcB (exonuclease I) or xthA (exonuclease III) accumulate high-molecular-weight linear plasmid concatemers when transformed with plasmids containing the chi sequence, 5'-GCTGGTGG-3'. Chi-dependent formation of high-molecular-weight plasmid DNA is dependent on recA and recF functions. In addition, chi stimulation occurs only in cis. Our data are consistent with models in which RecA and RecF proteins bind to and protect the DNA ends produced by RecBCD-chi interaction.
Collapse
Affiliation(s)
- M M Zaman
- Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
31
|
Abstract
The recF, recO, and recR genes form the recFOR epistasis group for DNA repair. recF mutants are sensitive to UV irradiation and fail to properly induce the SOS response. Using plasmid derivatives that overexpress combinations of the recO+ and recR+ genes, we tested the hypothesis that high-level expression of recO+ and recR+ (recOR) in vivo will indirectly suppress the recF mutant phenotypes mentioned above. We found that overexpression of just recR+ from the plasmid will partially suppress both phenotypes. Expression of the chromosomal recO+ gene is essential for the recR+ suppression. Hence we call this RecOR suppression of recF mutant phenotypes. RecOR suppression of SOS induction is more efficient with recO+ expression from a plasmid than with recO+ expression from the chromosome. This is not true for RecOR suppression of UV sensitivity (the two are equal). Comparison of RecOR suppression with the suppression caused by recA801 and recA803 shows that RecOR suppression of UV sensitivity is more effective than recA803 suppression and that RecOR suppression of UV sensitivity, like recA801 suppression, requires recJ+. We present a model that explains the data and proposes a function for the recFOR epistasis group in the induction of the SOS response and recombinational DNA repair.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
32
|
Abstract
The recombination of DNA takes place by a multistep process involving numerous gene products. In the past year, studies using bacterial proteins have led to a number of significant advances in our understanding of the enzymes of recombination and of the reactions that they catalyze. Moreover, the identification of eukaryotic proteins that are structurally analogous to the principal bacterial recombination enzyme, RecA protein, suggests that the basic mechanisms of homologous pairing and strand exchange have been conserved through evolution from bacteria to man.
Collapse
Affiliation(s)
- H J Dunderdale
- Department of Genetic Recombination, Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, UK
| | | |
Collapse
|
33
|
Ryder L, Whitby MC, Lloyd RG. Mutation of recF, recJ, recO, recQ, or recR improves Hfr recombination in resolvase-deficient ruv recG strains of Escherichia coli. J Bacteriol 1994; 176:1570-7. [PMID: 8132450 PMCID: PMC205241 DOI: 10.1128/jb.176.6.1570-1577.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.
Collapse
Affiliation(s)
- L Ryder
- Department of Genetics, University of Nottingham, United Kingdom
| | | | | |
Collapse
|
34
|
Abstract
One of the authors (AJC) acknowledges with gratitude the important role Fernando Bastarrachea played in the author's discovery that E. coli could carry out homologous genetic recombination by multiple pathways. This in turn led to the discovery of several genes, including recF, recO, and recR, whose role in recombination would not otherwise have been detected. Subsequent genetic and biochemical studies have led to a general formulation in which there are multiple nucleolytic ways to achieve a presynaptic intermediate bound to RecA protein. Postsynaptic events in the general formulation occur by means of multiple branch migration enzymes to form Holliday DNA structures and a specific nuclease to cleave them. The general formulation is built on synapsis catalyzed by RecA protein. A second RecA-independent synapsis catalyzed by RecT (and RecE?) protein is now under study and a third type independent of both RecA and RecT has apparently been discovered. How these will affect the general formulation remains to be seen. Some proteins, most prominently RecF, RecO, and RecR, have no role in the general formulation. The hypothesis is presented that these proteins act as a switch between replication and recombination by helping to convert replication to recombination intermediates. Universality of the general formulation is supported by the widespread occurrence of recA, recB, recC, and recD genes among bacteria. Recent discovery of recA-like genes in several eukaryotes further supports its universality. We have contributed additional support by sequencing a recA-like gene from an archaeal species, thus making it plausible that the mechanism of synapsis worked out for E. coli RecA protein will hold for all three organismal domains. The boundaries of the puzzle of homologous genetic recombination therefore seem complete and the pieces to the complex picture they encompass are falling into place.
Collapse
Affiliation(s)
- A J Clark
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202
| | | |
Collapse
|
35
|
Sandler SJ, Clark AJ. Use of high and low level overexpression plasmids to test mutant alleles of the recF gene of Escherichia coli K-12 for partial activity. Genetics 1993; 135:643-54. [PMID: 8293970 PMCID: PMC1205709 DOI: 10.1093/genetics/135.3.643] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We showed that sufficient overexpression of the wild-type recF gene interfered with three normal cell functions: (1) UV induction of transcription from the LexA-protein-repressed sulA promoter, (2) UV resistance and (3) cell viability at 42 degrees. To show this, we altered a low-level overexpressing recF+ plasmid with a set of structurally neutral mutations that increased the rate of expression of recF. The resulting high-level overexpressing plasmid interfered with UV induction of the sulA promoter, as did the low-level overexpressing plasmid. It also reduced UV resistance more than its low level progenitor and decreased viability at 42 degrees, an effect not seen with the low-level plasmid. We used the high-level plasmid to test four recF structural mutations for residual activity. The structural alleles consisted of an insertion mutation, two single amino acid substitution mutations and a double amino acid substitution mutation. On the Escherichia coli chromosome the three substitution mutations acted similarly to a recF deletion in reducing UV resistance in a recB21 recC22 sbcB15 sbcC201 genetic background. By this test, therefore, all three appeared to be null alleles. Measurements of conjugational recombination revealed, however, that the three substitution mutations may have residual activity. On the high-level overexpressing plasmid all three substitution mutations definitely showed partial activity. By contrast, the insertion mutation on the high-level overexpressing plasmid showed no partial activity and can be considered a true null mutation. One of the substitutions, recF143, showed a property attributable to a leaky mutation. Another substitution, recF4101, may block selectively two of the three interference phenotypes, thus allowing us to infer a mechanism for them.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
36
|
Whitby MC, Ryder L, Lloyd RG. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 1993; 75:341-50. [PMID: 8402917 DOI: 10.1016/0092-8674(93)80075-p] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RecG protein of E. coli is a junction-specific DNA helicase involved in recombination and DNA repair. The function of the protein was investigated using an in vitro recombination reaction catalyzed by RecA. We show that RecG counters RecA-driven strand exchange by catalyzing branch migration of the Holliday junction in the reverse direction. This activity represents a new mechanism for resolving recombination intermediates that is independent of junction cleavage. We discuss how reverse branch migration can facilitate DNA repair, promote recombination in conjugational crosses, and confine the distribution of Chi-stimulated cross-overs. We suggest that the RecG mechanism for resolution of junctions is universal and provides a simple system that allows gene conversion without associated crossing over.
Collapse
Affiliation(s)
- M C Whitby
- Department of Genetics, University of Nottingham, Queens Medical Centre, England
| | | | | |
Collapse
|
37
|
Alonso J, Stiege A, Dobrinski B, Lurz R. Purification and properties of the RecR protein from Bacillus subtilis 168. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54092-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Madiraju MV, Clark AJ. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J Bacteriol 1992; 174:7705-10. [PMID: 1447139 PMCID: PMC207484 DOI: 10.1128/jb.174.23.7705-7710.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RecF protein is one of the important proteins involved in DNA recombination and repair. RecF protein has been shown to bind single-stranded DNA (ssDNA) in the absence of ATP (T. J. Griffin IV and R. D. Kolodner, J. Bacteriol. 172:6291-6299, 1990; M. V. V. S. Madiraju and A. J. Clark, Nucleic Acids Res. 19:6295-6300, 1991). In the present study, using 8-azido-ATP, a photo-affinity analog of ATP, we show that RecF protein binds ATP and that the binding is specific in the presence of DNA. 8-Azido-ATP photo-cross-linking is stimulated in the presence of DNA (both ssDNA and double-stranded DNA [dsDNA]), suggesting that DNA enhances the affinity of RecF protein for ATP. These data suggest that RecF protein possesses independent ATP- and DNA-binding sites. Further, we find that stable RecF protein-dsDNA complexes are obtained in the presence of ATP or ATP-gamma-S [adenosine-5'-O-(3-thio-triphosphate)]. No other nucleoside triphosphates served as necessary cofactors for dsDNA binding, indicating that RecF is an ATP-dependent dsDNA-binding protein. Since a mutation in a putative phosphate-binding motif of RecF protein results in a recF mutant phenotype (S. J. Sandler, B. Chackerian, J. T. Li, and A. J. Clark, Nucleic Acids Res. 20:839-845, 1992), we suggest on the basis of our data that the interactions of RecF protein with ATP, with dsDNA, or with both are physiologically important for understanding RecF protein function in vivo.
Collapse
Affiliation(s)
- M V Madiraju
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
39
|
Abstract
Bacteria provide a simple system for the genetic analysis of homologous recombination. More than twenty genes have been identified in Escherichia coli. The enzymatic activities associated with the products of many of these genes have been revealed by studies with model DNA substrates. It is now possible to pair homologous molecules in vitro and process these through defined intermediates into mature recombinants of the types predicted by genetic crosses.
Collapse
Affiliation(s)
- R G Lloyd
- University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
40
|
Sandler SJ, Chackerian B, Li JT, Clark AJ. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop. Nucleic Acids Res 1992; 20:839-45. [PMID: 1542576 PMCID: PMC312026 DOI: 10.1093/nar/20.4.839] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have compared the recF genes from Escherichia coli K-12, Salmonella typhimurium, Pseudomonas putida, and Bacillus subtilis at the DNA and amino acid sequence levels. To do this we determined the complete nucleotide sequence of the recF gene from Salmonella typhimurium and we completed the nucleotide sequence of recF gene from Pseudomonas putida begun by Fujita et al. (1). We found that the RecF proteins encoded by these two genes contain respectively 92% and 38% amino acid identity with the E. coli RecF protein. Additionally, we have found that the S. typhimurium and P. putida recF genes will complement an E. coli recF mutant, but the recF gene from Bacillus subtilis [showing about 20% identity with E. coli (2)] will not. Amino acid sequence alignment of the four proteins identified four highly conserved regions. Two of these regions are part of a putative phosphate binding loop. In one region (position 36), we changed the lysine codon (which is essential for ATPase, GTPase and kinase activity in other proteins having this phosphate binding loop) to an arginine codon. We then tested this mutation (recF4101) on a multicopy plasmid for its ability to complement a recF chromosomal mutation and on the E. coli chromosome for its effect on sensitivity to UV irradiation. The strain with recF4101 on its chromosome is as sensitive as a null recF mutant strain. The strain with the plasmid-borne mutant allele is however more UV resistant than the null mutant strain. We conclude that lysine-36 and possibly a phosphate binding loop is essential for full recF activity. Lastly we made two chimeric recF genes by exchanging the amino terminal 48 amino acids of the S. typhimurium and E. coli recF genes. Both chimeras could complement E. coli chromosomal recF mutations.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|