1
|
Sakuta K, Uchida K, Fukuhara T, Komatsu K, Okada R, Moriyama H. Successful full-length genomic cloning and characterization of site-specific nick structures of Phytophthora endornaviruses 2 and 3 in yeast, Saccharomyces cerevisiae. Front Microbiol 2023; 14:1243068. [PMID: 37771702 PMCID: PMC10523305 DOI: 10.3389/fmicb.2023.1243068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Two endornaviruses, Phytophthora endornavirus 2 (PEV2) and Phytophthora endornavirus 3 (PEV3), have been discovered in pathogens targeting asparagus. In this study, we analyzed the nick structure in the RNA genomes of PEV2 and PEV3 in the host oomycetes. Northern blot hybridization using positive and negative strand-specific RNA probes targeting the 5' and 3' regions of PEV2 and PEV3 RNA genomes revealed approximately 1.0 kilobase (kb) RNA fragments located in the 5' regions of the two genomes. 3' RACE analysis determined that the size of the RNA fragments were 958 nucleotides (nt) for PEV2 and 968 nt for PEV3. We have successfully constructed full-length cDNA clones of the entire RNA genomes of PEV2 and PEV3 using a homologous recombination system in the yeast, Saccharomyces cerevisiae. These full-length cDNA sequences were ligated downstream of a constitutive expression promoter (TDH3) or a galactose-inducing promoter (GAL1) in the shuttle vector to enable the production of the full-length RNA transcripts of PEV2 and PEV3 in yeast cells. Interestingly, a 1.0 kb RNA fragment from the PEV3 positive-strand transcript was also detected with a 5'-region RNA probe, indicating that site-specific cleavage also occurred in yeast cells. Further, when PEV2 or PEV3 mRNA was overexpressed under the GAL1 promoter, yeast cell growth was suppressed. A fusion protein combining EGFP to the N-terminus of the full-length PEV2 ORF or C-terminus of the full-length PEV3 ORF was expressed, and allowed PEV2 and PEV3 ORFs to be successfully visualized in yeast cells. Expression of the fusion protein also revealed presence of heterogeneous bodies in the cells.
Collapse
Affiliation(s)
- Kohei Sakuta
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiko Uchida
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryo Okada
- Horticultural Research Institute, Agricultural Center, Kasama, Ibaraki, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
2
|
He Y, Wang R, Dai X, Zhao Y. On Improving CRISPR for Editing Plant Genes: Ribozyme-Mediated Guide RNA Production and Fluorescence-Based Technology for Isolating Transgene-Free Mutants Generated by CRISPR. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:151-166. [PMID: 28712495 DOI: 10.1016/bs.pmbts.2017.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9-mediated genome editing technology has been used to successfully edit numerous genes in various organisms including plants. There are still two major challenges in using CRISPR/Cas9 technology for gene editing in plants. First, there are very limited choices of promoters that are suitable for in vivo production of single-guide RNAs (sgRNAs), which is complementary to the target sequence and which guides Cas9 to generate double-strand breaks at the target site. It is especially difficult to produce sgRNA molecules with temporal and spatial precision. Second, there is a lack of efficient methods for identifying plants that (1) contain heritable and stable mutations generated by CRISPR/Cas9, and (2) no longer harbor the CRISPR/Cas9 construct and other transgenes. In this chapter, we describe the development of a ribozyme-based strategy that enables the production of sgRNA molecules from any chosen promoter. More importantly, the ribozyme-based technology makes it feasible to produce sgRNAs with temporal and spatial precision, greatly expanding the scope and applications of CRISPR/Cas9 technology. We also developed a fluorescence-based technology that allows us to efficiently and reliably isolate Cas9-free stable Arabidopsis mutants. Thus, we provide effective protocols to overcome two important obstacles in using CRISPR/Cas9 for editing genes in plants.
Collapse
Affiliation(s)
- Yubing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, United States
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
3
|
Preclinical characterization of PF-00868554, a potent nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 2009; 53:2544-52. [PMID: 19307358 DOI: 10.1128/aac.01599-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PF-00868554 is a nonnucleoside inhibitor of the hepatitis C virus (HCV) RNA polymerase, which exerts its inhibitory effect by binding to the thumb base domain of the protein. It is a potent and selective inhibitor, with a mean 50% inhibitory concentration of 0.019 microM against genotype 1 polymerases and a mean 50% effective concentration (EC(50)) of 0.075 microM against the genotype 1b-Con1 replicon. To determine the in vitro antiviral activity of PF-00868554 against various HCV strains, a panel of chimeric replicons was generated, in which polymerase sequences derived from genotype 1a and 1b clinical isolates were cloned into the 1b-Con1 subgenomic reporter replicon. Our results indicate that PF-00868554 has potent in vitro antiviral activity against a majority (95.8%) of genotype 1a and 1b replicons, with an overall mean EC(50) of 0.059 microM. PF-00868554 showed no cytotoxic effect in several human cell lines, up to the highest concentration evaluated (320 microM). Furthermore, the antiviral activity of PF-00868554 was retained in the presence of human serum proteins. An in vitro resistance study of PF-00868554 identified M423T as the predominant resistance mutation, resulting in a 761-fold reduction in susceptibility to PF-00868554 but no change in susceptibility to alpha interferon and a polymerase inhibitor that binds to a different region. PF-00868554 also showed good pharmacokinetic properties in preclinical animal species. Our results demonstrate that PF-00868554 has potent and broad-spectrum antiviral activity against genotype 1 HCV strains, supporting its use as an oral antiviral agent in HCV-infected patients.
Collapse
|
4
|
Liang JJ, Liao CL, Liao JT, Lee YL, Lin YL. A Japanese encephalitis virus vaccine candidate strain is attenuated by decreasing its interferon antagonistic ability. Vaccine 2009; 27:2746-54. [PMID: 19366580 DOI: 10.1016/j.vaccine.2009.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 12/24/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes acute encephalitis with high mortality in humans. To understand the virus-host interactions that influence JEV virulence, we determined the lethality of a neurovirulent (RP-9) and an attenuated (RP-2ms) variant of JEV in several immunodeficient mice strains. The attenuated phenotype of RP-2ms was completely lost in Stat-1-deficient mice, but its virulence was only slightly increased in mice lacking the components of adaptive immunity, suggesting an important role of the interferon (IFN) system in controlling JEV infection. Cell-based assays demonstrated that RP-2ms is more sensitive to IFN-alpha treatment; however, the NS5 protein of RP-2ms was still a potent antagonist of IFN, like RP-9 NS5. Using a recombinant infectious clone of RP-9, we found that a single Glu-->Lys mutation at residue 138 of the envelope protein (E-E138K) rendered the mutated RP-9 sensitive to the antiviral effect of IFN-alpha. Furthermore, IFN signaling was blocked earlier in the RP-9-infected cells relative to that in cells infected with RP-2ms or recombinant RP-9 bearing the E-E138K mutation. Thus, the E-E138K mutation of JEV appears to affect the viral growth properties, leading to a reduced efficiency in blocking IFN signaling, which then results in an attenuated phenotype in inoculated animals.
Collapse
Affiliation(s)
- Jian-Jong Liang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
5
|
Development of intergenotypic chimeric replicons to determine the broad-spectrum antiviral activities of hepatitis C virus polymerase inhibitors. Antimicrob Agents Chemother 2008; 52:3523-31. [PMID: 18694956 DOI: 10.1128/aac.00533-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To address the need for broad-spectrum antiviral activity characterization of hepatitis C virus (HCV) polymerase inhibitors, we created a panel of intergenotypic chimeric replicons containing nonstructural (NS) protein NS5B sequences from genotype 2b (GT2b), GT3a, GT4a, GT5a, and GT6a HCV isolates. Viral RNA extracted from non-GT1 HCV patient plasma was subjected to reverse transcription. The NS5B region was amplified by nested PCR and introduced into the corresponding region of the GT1b (Con-1) subgenomic reporter replicon by Splicing by Overlap Extension (SOEing) PCR. Stable cell lines were generated with replication-competent chimeras for in vitro antiviral activity determination of HCV nonnucleoside polymerase inhibitors (NNIs) that target different regions of the protein. Compounds that bind to the NNI2 (thiophene carboxylic acid) or NNI3 (benzothiadiazine) allosteric sites showed 8- to >1,280-fold reductions in antiviral activity against non-GT1 NS5B chimeric replicons compared to that against the GT1b subgenomic replicon. Smaller reductions in susceptibility, ranging from 0.2- to 33-fold, were observed for the inhibitor binding to the NNI1 (benzimidazole) site. The inhibitor binding to the NNI4 (benzofuran) site showed broad-spectrum antiviral activity against all chimeric replicons evaluated in this study. In conclusion, evaluation of HCV NNIs against intergenotypic chimeric replicons showed differences in activity spectrum for inhibitors that target different regions of the enzyme, some of which could be associated with specific residues that differ between GT1 and non-GT1 polymerases. Our study demonstrates the utility of chimeric replicons for broad-spectrum activity determination of HCV inhibitors.
Collapse
|
6
|
Brown TS, Chadalavada DM, Bevilacqua PC. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength. J Mol Biol 2004; 341:695-712. [PMID: 15288780 DOI: 10.1016/j.jmb.2004.05.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/18/2004] [Accepted: 05/21/2004] [Indexed: 11/23/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA that resides in the HDV genome and regulates its replication. The native fold of the ribozyme is complex, having two pseudoknots. Earlier work implicated four non-native pairings in slowing pseudoknot formation: Alt 1, Alt 2, Alt 3, and Alt P1. The goal of the present work was design of a kinetically simplified and maximally reactive construct for in vitro mechanistic and structural studies. The initial approach chosen was site-directed mutagenesis in which known alternative pairings were destabilized while leaving the catalytic core intact. Based on prior studies, the G11C/U27Delta double mutant was prepared. However, biphasic kinetics and antisense oligonucleotide response trends opposite those of the well-studied G11C mutant were observed suggesting that new alternative pairings with multiple registers, termed Alt X and Alt Y, had been created. Enzymatic structure mapping of oligonucleotide models supported this notion. This led to a model wherein Alt 2 and the phylogenetically conserved Alt 3 act as "folding guides", facilitating folding of the major population of the RNA molecules by hindering formation of the Alt X and Alt Y registers. Attempts to eliminate the strongest of the Alt X pairings by rational design of a quadruple mutant only resulted in more complex kinetic behavior. In an effort to simultaneously destabilize multiple alternative pairings, studies were carried out on G11C/U27Delta in the presence of urea or increased monovalent ion concentration. Inclusion of physiological ionic strength allowed the goal of monophasic, fast-folding (kobs approximately 60 min(-1)) kinetics to be realized. To account for this, a model is developed wherein Na+, which destabilizes secondary and tertiary structures in the presence of Mg2+, facilitates native folding by destabilizing the multiple alternative secondary structures with a higher-order dependence.
Collapse
Affiliation(s)
- Trevor S Brown
- The Huck Institutes of the Life, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
7
|
|
8
|
Affiliation(s)
- Robert G. Kuimelis
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167
| | | |
Collapse
|
9
|
Rastogi T, Collins RA. Smaller, faster ribozymes reveal the catalytic core of Neurospora VS RNA. J Mol Biol 1998; 277:215-24. [PMID: 9514764 DOI: 10.1006/jmbi.1997.1623] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the structural requirements for cis-cleavage of the VS ribozyme by designing deletions, substitutions, and circular permutations based on the secondary structure model. Four of the six helices predicted in the model have been shortened, resulting in self-cleaving RNAs of only 121 to 126 nucleotides. Remarkably, the shorter ribozymes exhibit a 30 to 40-fold faster cis-cleavage rate. The increase in activity results from disrupting an inhibitory helix whose 5' side contains bases upstream of the cleavage site, and from constructing a circular permutation that tethers the helix containing the cleavage site to a shortened version of the rest of the ribozyme. The non-essential regions identified by the deletions map to the periphery of a recently proposed structure model, revealing a central ribozyme core that contains the essential structural elements required for activity of the VS ribozyme.
Collapse
Affiliation(s)
- T Rastogi
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
10
|
Bravo C, Lescure F, Laugâa P, Fourrey JL, Favre A. Folding of the HDV antigenomic ribozyme pseudoknot structure deduced from long-range photocrosslinks. Nucleic Acids Res 1996; 24:1351-9. [PMID: 8614641 PMCID: PMC145789 DOI: 10.1093/nar/24.7.1351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A trans-acting system has been designed in order to explore the three-dimensional structure of the anti-genomic HDV ribozyme. In this system, the substrate (SANT) is associated by base-pairing to the catalytic RNA (RzANT) forming helix H1. RzANT is able to cleave specifically the RNA substrate as well as a deoxysubstrate analogue containing a single ribocytidine at the cleavage site (position -1). This demonstrates that such deoxysubstrate analogues are valuable tools for structural studies of this ribozyme domain. They form however weak complexes with RzANT which is due in part to their ability to fold as stable hairpins unlike the RNA substrate. Using a set of full deoxy or of mixed deoxy-ribo substrate analogues site-specific substituted with the photoaffinity probe deoxy-4-thiouridine, ds4U, at a defined position, we were able to determine a number of long range contacts between the substrate and the ribozyme core. In particular, crosslinks between substrate position -1 and position -2 with residues C15, G19 and C67, thought to be involved in the ribozyme catalytic site, were detected. A three dimensional model of the antigenomic ribozyme system, derived from the structure proposed by Tanner et al. [Current Biol (1994) 4, 488-498] for the genomic system was constructed. Apart from residue deletion or insertion, only minor accommodations were needed to account for all photocrosslinks but one which is attributed to an alternative hybridization of the substrate with the ribozyme. This study therefore further supports the structure proposed by Tanner et al. for the pseudoknot model.
Collapse
Affiliation(s)
- C Bravo
- Laboratoire de Photobiologie Moléculaire, Institute Jacque Monod, CNRS, Université Paris, France
| | | | | | | | | |
Collapse
|
11
|
Branch AD, Polaskova JA. 3-D models of the antigenomic ribozyme of the hepatitis delta agent with eight new contacts suggested by sequence analysis of 188 cDNA clones. Nucleic Acids Res 1995; 23:4180-9. [PMID: 7479082 PMCID: PMC307360 DOI: 10.1093/nar/23.20.4180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We mapped 359 mutations at 25 positions in synthetic variants of the antigenomic ribozyme of the hepatitis delta agent by analyzing the sequences of 188 cDNA clones. These data were used to identify three features of the ribozyme: highly conserved nucleotides, positions with restricted nucleotide substitutions and three-dimensional relationships between nucleotides. The distribution of mutations at the 25 positions was as follows: G-11 (the eleventh nucleotide from the cleavage site) was mutated in 56 clones; G-12 in 36; U-15 in 33; C-13 in 26; G-28 in 23; C-27 in 21; C-29 in 19; U-26 in 17; C-18 in 14; A-14 in 13; C-16 in 13; C-19 in 12; U-17 in 11; A-20 in 10; G-42 in 9; G-40 in 7; G-41 in 7; C-24 in 6; U-32 in 6; U-23 in 5; C-25 in 4; C-21 in 3; G-30 in 3; G-31 in 3; C-22 in 1. All clones containing a mutation at C-25 had an A at this position, suggesting that the extra cyclic amino group present in adenine and cytosine may function during the cleavage event. Mutations at certain positions were common in simple clones (containing only one or two mutations), while mutations at other positions were over-represented in more complex clones. Both compensatory base changes and co-mutational frequencies were used to identify eight pairs of nucleotides which may interact with each other: G-11 and C-18, G-12 and C-27, C-13 and G-28, C-21 and U-23/C-24, C-21 and G-30, U-23 and G-31/U-32, C24 and G-30, C-27 and G-42. These pairs, which involve some of the most conserved positions in the molecule, suggest interactions among nucleotides previously depicted in open-loop structures. The newly proposed points of contact between pairs of nucleotides are compatible with both the axehead and pseudoknot secondary structural models and were combined with previously proposed Watson-Crick base paired helices to produce two three dimensional models. In both of these, C-25 and C-76 are placed near the cleavage site.
Collapse
Affiliation(s)
- A D Branch
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029, USA
| | | |
Collapse
|
12
|
Tanner NK, Schaff S, Thill G, Petit-Koskas E, Crain-Denoyelle AM, Westhof E. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr Biol 1994; 4:488-98. [PMID: 7922369 DOI: 10.1016/s0960-9822(00)00109-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hepatitis delta virus (HDV), which has a single-stranded RNA genome about 1700 nucleotides long, is a satellite virus of hepatitis B, and is associated with a high incidence of fulminant hepatitis and death in infected humans. Like certain pathogenic subviral RNAs that infect plants, HDV RNA features a closed-circular conformation, a rolling-circle mechanism of replication and RNA-catalyzed self-cleaving reactions of both genomic and anti-genomic strands in vitro. The catalytic domains cannot be folded into either the hammerhead or hairpin secondary-structure motifs that have been found in other self-cleaving RNAs. RESULTS A pseudoknot secondary-structure model has been suggested for the catalytic domain (ribozyme) of HDV RNA. We conducted extensive mutational analyses of regions of the HDV ribozyme predicted in this model to be single stranded, and found that several of them are important for catalytic activity. We used these data, sequence comparisons between different isolates and previously published structural analyses to produce a computer graphic model of the three-dimensional architecture of the HDV ribozyme. CONCLUSIONS Our model supports the pseudoknotted structure and rationalizes several observations relating to the lengths of the various stems and the sequence requirements of the single-stranded regions. It also provides insight into the catalytic mechanism of the HDV ribozyme. We specifically propose that residues C75, U20 and C21 form the basis of the catalytic region and are close to the cleavable phosphate.
Collapse
MESH Headings
- Base Sequence
- DNA, Viral/genetics
- Hepatitis Delta Virus/enzymology
- Hepatitis Delta Virus/genetics
- Humans
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Homology, Nucleic Acid
Collapse
|
13
|
Wieczorek A, Dinter-Gottlieb G, Gottlieb PA. Evidence that total substitution of adenine with 7-deazaadenine in the HDV antigenomic ribozyme changes the kinetics of RNA folding. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80668-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Puttaraju M, Perrotta AT, Been MD. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res 1993; 21:4253-8. [PMID: 7692400 PMCID: PMC310058 DOI: 10.1093/nar/21.18.4253] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A circular trans-acting ribozyme designed to adopt the motif of the hepatitis delta virus (HDV) trans-acting ribozyme was produced. The circular form was generated in vitro by splicing a modified group I intron precursor RNA in which the relative order of the 5' and 3' splice sites, flanking the single HDV-like ribozyme sequence-containing exon, is reversed. Trans-cleavage activity of the circular HDV-like ribozyme was comparable to linear permutations of HDV ribozymes containing the same core sequence, and was shown not to be due to linear contaminants in the circular ribozyme preparation. In nuclear and cytoplasmic extracts from HeLa cells, the circular ribozyme had enhanced resistance to nuclease degradation relative to a linear form of the ribozyme, suggesting that circularization may be a viable alternative to chemical modification as a means of stabilizing ribozymes against nuclease degradation.
Collapse
Affiliation(s)
- M Puttaraju
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
15
|
Perrotta AT, Been MD. Assessment of disparate structural features in three models of the hepatitis delta virus ribozyme. Nucleic Acids Res 1993; 21:3959-65. [PMID: 8371972 PMCID: PMC309977 DOI: 10.1093/nar/21.17.3959] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three models for the secondary structure of the hepatitis delta virus (HDV) antigenomic self-cleaving RNA element were tested by site-directed mutagenesis. Two models in which bases 5' to the cleavage site are paired with sequence at the 3' end of the element were both inconsistent with the data from the mutagenesis. Specifically, mutations in the 3' sequence which decrease self-cleavage activity could not be compensated by base changes in the 5' sequence as predicted by these models. The evidence was consistent with a third model in which the 3' end pairs with a portion of a loop within the ribozyme sequence to generate a pseudoknot structure. This same pairing was also required to generate higher rates of cleavage in trans with a 15-mer ribozyme, thus ruling out a proposed hammerhead-like 'axehead' model for the HDV ribozyme.
Collapse
Affiliation(s)
- A T Perrotta
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
16
|
Suh YA, Kumar PK, Taira K, Nishikawa S. Self-cleavage activity of the genomic HDV ribozyme in the presence of various divalent metal ions. Nucleic Acids Res 1993; 21:3277-80. [PMID: 8341602 PMCID: PMC309767 DOI: 10.1093/nar/21.14.3277] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To identify the divalent metal ions that can support the self-cleavage activity of the genomic ribozyme of human hepatitis delta virus (HDV), we tested the activity of various divalent metal ions in the ribozyme reactions catalyzed by HDV88 (683-770 nt) and 88DI3 (HDV88 with the sequence from 740-752 nt deleted). Among various metal ions tested, Mg2+, Mn2+, Ca2+ and Sr2+ efficiently supported the self-cleavage reactions of the HDV88 and 88DI3 ribozymes. In the case of the 88DI3 ribozyme, other divalent metal ions, such as Cd2+, Ba2+, Co2+, Pb2+ and Zn2+, were also able to support the self-cleavage reaction to some extent (< 10%). In the presence of spermidine (0.5 mM), the cleavage reaction was promoted at lower concentrations of effective divalent metal ions. The HDV ribozyme represents the only example of ribozyme to date of a ribozyme that catalyzes the self-cleavage reaction in the presence of Ca2+ ions as efficiently as it does in the presence of Mg2+ ions.
Collapse
Affiliation(s)
- Y A Suh
- National Institute of Bioscience and Human Technology, MITI, Ibaraki, Japan
| | | | | | | |
Collapse
|
17
|
Blumenfeld M, Thill G, Lescure F, Vasseur M. Structure-function relation of the hepatitis delta virus genomic ribozyme. Ann N Y Acad Sci 1992; 660:336-8. [PMID: 1340152 DOI: 10.1111/j.1749-6632.1992.tb21106.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Kumar PK, Suh YA, Miyashiro H, Nishikawa F, Kawakami J, Taira K, Nishikawa S. Random mutations to evaluate the role of bases at two important single-stranded regions of genomic HDV ribozyme. Nucleic Acids Res 1992; 20:3919-24. [PMID: 1508677 PMCID: PMC334067 DOI: 10.1093/nar/20.15.3919] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In elucidating function of two important single-stranded regions [SSrA (726-731 nt) and SSrB (762-766 nt)] derived mainly from three secondary structure models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several random mutants at those two regions on the HDV88 molecule (683-770 nt) by oligonucleotide-directed mutagenesis. When self-cleavage activities were compared among mutants, at the region SSrA, G726 was found to play an important role during cleavage reaction since substitutions of the base to A (mutant A20) or C (mutant A16) or U (mutant A23), reduced the ribozyme activity to very low levels suggesting the importance of G726 position. C763 at SSrB region was found to play a more significant role during catalysis than G726 (at region SSrA) since any substitutions at C763 completely inactivated the ribozyme. Other bases located in these two regions could be substituted to other bases at the expense of some self-cleavage activity. The results presented here together with our previous deletion analysis indicate that these two regions may play an important role during cleavage process.
Collapse
Affiliation(s)
- P K Kumar
- Department of Cellular and Molecular Biology, Agency of Industrial Science & Technology, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Suh YA, Kumar PK, Nishikawa F, Kayano E, Nakai S, Odai O, Uesugi S, Taira K, Nishikawa S. Deletion of internal sequence on the HDV-ribozyme: elucidation of functionally important single-stranded loop regions. Nucleic Acids Res 1992; 20:747-53. [PMID: 1542571 PMCID: PMC312013 DOI: 10.1093/nar/20.4.747] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In elucidating functionally important single-stranded loop regions derived mainly from three models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several internal deletion variants of the HDV133 molecule (654-786 nt on genomic RNA) by oligonucleotide-directed mutagenesis. When self-cleavage activities were compared among variants, the HDV133DI-1 (deletion of 701-718 nt) and HDV133DI-3 (deletion of 740-752 nt) ribozyme could maintain their self-cleavage activity, despite at reduced level. However, the activity could be regained in both mutants by some extent under partially denaturing conditions. These results suggest that the above two single-stranded RNA loop regions in HDV ribozyme are not part of the catalytic core but might be involved in the stability of the molecule. In contrast, deletion mutants such as HDV133DI-2 (deletion of 696-722 nt), HDV88DI-1 (deletion of 701-718 nt), HDV88DI-2 (deletion of 696-722 nt), and HDV88DI-4 (deletion of 733-760 nt) abolished catalytic activity. These results suggest that the remaining single-stranded regions of bases between 726-731 and 762-766 in the HDV88 ribozyme may be the potential regions to interact with Mg2+ ions.
Collapse
Affiliation(s)
- Y A Suh
- Fermentation Research Institute, Agency of Industrial Science & Technology, MITI, Tsukuba Science City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
An indexed bibliography of antisense literature, 1991. ANTISENSE RESEARCH AND DEVELOPMENT 1992; 2:63-107. [PMID: 1422087 DOI: 10.1089/ard.1992.2.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Prasad Y, Smith JB, Gottlieb PA, Bentz J, Dinter-Gottlieb G. Deriving a 67-nucleotide trans-cleaving ribozyme from the hepatitis delta virus antigenomic RNA. ANTISENSE RESEARCH AND DEVELOPMENT 1992; 2:267-77. [PMID: 1292776 DOI: 10.1089/ard.1992.2.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNAs derived from the genomic and antigenomic hepatitis delta virus are capable of self-cleavage, and thus have the potential for serving as ribozymes in a trans-cleaving reaction. Because the catalytic core of such an enzymatic RNA was not evident from phylogenetic data, we took a step-wise approach to identifying the core, reducing the RNA in size, and characterizing various properties for each size class. Thus, a 186-nucleotide antigenomic RNA (termed Ag180) was found to be capable of cleaving well in 20 M formamide (Smith and Dinter-Gottlieb, 1991), and this unusual stability in formamide was lost by reducing the 3' end of the molecule, leaving a 140-nucleotide RNA (Ag 140). Both RNAs showed only intramolecular cleavage at a wide range of concentrations, and a number of conformers could be seen in the Ag140 RNA, some of which were resistant to cleavage at 37 degrees C. Since Ag140 could not cleave in 20 M formamide, the 5' and 3' termini of Ag180 were truncated and produced Ag5-84, which cleaved to 100% at 37 degrees C in less than 0.25 min. Internal deletions of the Stem IV region resulted in Ag5-73, still capable of efficient cleavage, although with a lessened stability in formamide. A trans-cleaving enzyme-substrate pair was finally derived from this RNA, and it consisted of a 67-nucleotide enzyme that cleaved a 13-nucleotide RNA substrate.
Collapse
Affiliation(s)
- Y Prasad
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|