1
|
Pandey R, Mukerji M. From 'JUNK' to Just Unexplored Noncoding Knowledge: the case of transcribed Alus. Brief Funct Genomics 2011; 10:294-311. [DOI: 10.1093/bfgp/elr029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
2
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|
3
|
New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect 2010; 12:337-45. [PMID: 20116446 DOI: 10.1016/j.micinf.2010.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/24/2022]
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by reprogramming the host cell. Here we review new information regarding the newly characterized effector molecules and the complex network of molecular host-pathogen interactions that the organism exploits enabling it to thrive and persist intracellularly.
Collapse
|
4
|
Tomilin NV. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 2008; 30:338-48. [PMID: 18348251 DOI: 10.1002/bies.20741] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Genomes of higher eukaryotes contain abundant non-coding repeated sequences whose overall biological impact is unclear. They comprise two categories. The first consists of retrotransposon-derived elements. These are three major families of retroelements (LINEs, SINEs and LTRs). SINEs are clustered in gene-rich regions and are found in promoters of genes while LINEs are concentrated in gene-poor regions and are depleted from promoters. The second class consists of non-coding tandem repeats (satellite DNAs and TTAGGG arrays), which are associated with mammalian centromeres, heterochromatin and telomeres. Terminal TTAGGG arrays are involved in telomere capping and satellite DNAs are located in heterochromatin, which is implicated in transcription silencing by gene repositioning (relocalization). It is unknown whether interstitial TTAGGG sequences, which are present in many vertebrates, have a function. Here, evidence will be presented that retroelements and TTAGGG arrays are involved in regulation of gene expression. Retroelements can provide binding sites for transcription factors and protect promoter CpG islands from repressive chromatin modifications, and may be also involved in nuclear compartmentalization of transcriptionally active and inactive domains. Interstitial telomere-like sequences can form dynamically maintained three-dimensional nuclear networks of transcriptionally inactive domains, which may be involved in transcription silencing like classic heterochromatin.
Collapse
Affiliation(s)
- Nikolai V Tomilin
- Institute of Cytology, Russian Academy of Sciences, 194064 St.Petersburg, Tikchoretskii Av. 4, Russia.
| |
Collapse
|
5
|
Abstract
There are clear theoretical reasons and many well-documented examples which show that repetitive, DNA is essential for genome function. Generic repeated signals in the DNA are necessary to format expression of unique coding sequence files and to organise additional functions essential for genome replication and accurate transmission to progeny cells. Repetitive DNA sequence elements are also fundamental to the cooperative molecular interactions forming nucleoprotein complexes. Here, we review the surprising abundance of repetitive DNA in many genomes, describe its structural diversity, and discuss dozens of cases where the functional importance of repetitive elements has been studied in molecular detail. In particular, the fact that repeat elements serve either as initiators or boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the repetitive component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the 'functionalist' perspective on repetitive DNA leads to new ways of thinking about the systemic organisation of cellular genomes and provides several novel possibilities involving repeat elements in evolutionarily significant genome reorganisation. These ideas may facilitate the interpretation of comparisons between sequenced genomes, where the repetitive DNA component is often greater than the coding sequence component.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
6
|
Oei SL, Babich VS, Kazakov VI, Usmanova NM, Kropotov AV, Tomilin NV. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters. Genomics 2004; 83:873-82. [PMID: 15081116 DOI: 10.1016/j.ygeno.2003.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
Primate genomes contain a very large number of short interspersed GC-rich repeats of the Alu family, which are abundant in introns and intergenic spacers but also present in 5' flanking regions of genes enriched in binding motifs (BMs) for transcription factors and frequently containing CpG islands. Here we studied whether CpG islands located in promoters of human genes overlap with Alu repeats and with clusters of BMs for the zinc-finger transcription factors Sp1, estrogen receptor alpha, and YY1. The presence of estrogen-response elements in Alu was shown earlier and here we confirm the presence in the consensus Alu sequence of the binding sites for Sp1 and YY1. Analyzing >5000 promoters from the two databases we found that Alu sequences are underrepresented in promoters compared to introns and that approximately 4% of CpG islands located within the -1000 to +200 segments of human promoters overlap with Alu repeats. Although this fraction was found to be lower for proximal segments of promoters (-500 to +100), our results indicate that a significant number (>1000) of all human genes may be controlled by Alu-associated CpG islands. Analysis of clustering of potential BMs for the indicated transcription factors within some promoters also suggests that the Alu family contributed to the evolution of transcription cis-regulatory modules in the human genome. It is important that among Alu sequences overlapping with CpG islands in promoters a large fraction of members of the old Alu subfamilies is found, suggesting extensive retroposon-assisted regulatory genome evolution during the divergence of the primates.
Collapse
Affiliation(s)
- Shiao-Li Oei
- Institute of Biochemistry, Free University of Berlin, Thielallee 63, D-14195, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Mukhopadhyay SS, Sheikh FG, Gupta P. In vitro binding of cattle PstI SINE with a 33-kDa nuclear protein. Genome 2000; 43:981-7. [PMID: 11195352 DOI: 10.1139/g00-072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A PstI family of SINEs (short interspersed elements) has been identified in some of the members of the family Bovidae, for example, cattle, buffalo and goat. In vitro DNA-protein interactions were studied to provide a better understanding of the function of these SINEs in the genome. Use of one such cattle PstI interspersed repeat sequence, as a probe in gel retardation assays, has lead to the identification of a repeat DNA-binding factor PIRBP (PstI interspersed repeat binding protein) from cattle liver nuclear extract. Southwestern analysis with liver nuclear extracts from cattle, goat, and buffalo revealed the presence of a PIRBP-like nuclear factor in all three species belonging to the family Bovidae. Deletion analysis localized the PIRBP binding site to an 80-bp (337-417 bp) region within the cattle PstI sequence. UV crosslinking and Southwestern analyses clearly indicated that PIRBP is a singular, small polypeptide of 33-kDa molecular mass. Homology search of the nucleic acids database revealed that the cattle PstI sequence was associated with many different genes of the family Bovidae, either in the 5' flanking region, 5' locus activating region, 3' UTR or in intervening sequences. The binding of the cattle PstI SINE by PIRBP and its association with the regulatory regions of the genes suggests that it plays an important role in the bovine genome.
Collapse
|
8
|
Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A, Krutilina R, Oei SL, Griesenbeck J, Buchlow G, Tomilin N. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:336-46. [PMID: 10095767 DOI: 10.1046/j.1432-1327.1999.00162.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we identified a novel protein which may contribute to the transcriptional inactivity of Alu retroposons in vivo. A human cDNA clone encoding this protein (ACR1) was isolated from a human expression library using South-western screening with an Alu subfragment, implicated in the regulation of Alu in vitro transcription and interacting with a HeLa nuclear protein down-regulated in adenovirus-infected cells. Bacterially expressed ACR1 is demonstrated to inhibit RNA polymerase III (Pol III)-dependent Alu transcription in vitro but showed no repression of transcription of a tRNA gene or of a reporter gene under control of a Pol II promoter. ACR1 mRNA is also found to be down-regulated in adenovirus-infected HeLa cells, consistent with a possible repressor function of the protein in vivo. ACR1 is mainly (but not exclusively) located in cytoplasm and appears to be a member of a weakly characterized redox protein family having a central, highly conserved sequence motif, PGAFTPXCXXXXLP. One member of the family identified earlier as peroxisomal membrane protein (PMP)20 is known to interact in a sequence-specific manner with a yeast homolog of mammalian cyclosporin-A-binding protein cyclophilin, and mammalian cyclophilin A (an abundant ubiquitously expressed protein) is known to interact with human transcriptional repressor YY1, which is a major sequence-specific Alu-binding protein in human cells. It appears, therefore, that transcriptional silencing of Alu in vivo is a result of complex interactions of many proteins which bind to its Pol III promoter.
Collapse
Affiliation(s)
- A Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Available data on possible genetic impacts of mammalian retroposons are reviewed. Most important is the growing number of established examples showing the involvement of retroposons in modulation of expression of protein-coding genes transcribed by RNA polymerase II (Pol II). Retroposons contain conserved blocks of nucleotide sequence for binding of some important Pol II transcription factors as well as sequences involved in regulation of stability of mRNA. Moreover, these mobile genes provide short regions of sequence homology for illegitimate recombinations, leading to diverse genome rearrangements during evolution. Therefore, mammalian retroposons representing a significant fraction of noncoding DNA cannot be considered at present as junk DNA but as important genetic symbionts driving the evolution of regulatory networks controlling gene expression.
Collapse
Affiliation(s)
- N V Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
10
|
Oei SL, Griesenbeck J, Schweiger M, Babich V, Kropotov A, Tomilin N. Interaction of the transcription factor YY1 with human poly(ADP-ribosyl) transferase. Biochem Biophys Res Commun 1997; 240:108-11. [PMID: 9367892 DOI: 10.1006/bbrc.1997.7621] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Poly(ADP-ribosyl) transferase (ADPRT) is a nuclear enzyme that catalyzes the synthesis of ADP-ribose polymers from NAD+ as well as the transfer of these polymers onto acceptor proteins. The function of ADPRT is thought to be related to a number of nuclear processes including DNA repair and transcription. The transcription factor Yin Yang 1 (YY1) is a potent regulator of RNA polymerase II (Pol II)-dependent transcription. In this study Alu-retroposon-associated binding sites for YY1 located in the distal region of the promoter of the human ADPRT gene have been identified suggesting a possible involvement of this protein in the regulation of ADPRT-gene expression. In the presence of the recombinant automodification domain of the ADPRT the formation of specific YY1 complexes, detected in gel-shift experiments, was strongly inhibited, indicating that this domain of the enzyme may interact directly with YY1. In accordance with this result YY1 was specifically precipitated from nuclear extracts by ADPRT immobilized on sepharose. These results suggest a direct ADPRT-YY1 interaction which may be of importance in the regulation of Pol II-dependent transcription. They also indicate that in some human promoters this regulation may be mediated by retroposons of the Alu family.
Collapse
Affiliation(s)
- S L Oei
- Institute fur Biochemie, Freie Universitat Berlin-Dahlem, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Britten RJ. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci U S A 1996; 93:9374-7. [PMID: 8790336 PMCID: PMC38434 DOI: 10.1073/pnas.93.18.9374] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Current evidence on the long-term evolutionary effect of insertion of sequence elements into gene regions is reviewed, restricted to cases where a sequence derived from a past insertion participates in the regulation of expression of a useful gene. Ten such examples in eukaryotes demonstrate that segments of repetitive DNA or mobile elements have been inserted in the past in gene regions, have been preserved, sometimes modified by selection, and now affect control of transcription of the adjacent gene. Included are only examples in which transcription control was modified by the insert. Several cases in which merely transcription initiation occurred in the insert were set aside. Two of the examples involved the long terminal repeats of mammalian endogenous retroviruses. Another two examples were control of transcription by repeated sequence inserts in sea urchin genomes. There are now six published examples in which Alu sequences were inserted long ago into human gene regions, were modified, and now are central in control/enhancement of transcription. The number of published examples of Alu sequences affecting gene control has grown threefold in the last year and is likely to continue growing. Taken together, all of these examples show that the insertion of sequence elements in the genome has been a significant source of regulatory variation in evolution.
Collapse
Affiliation(s)
- R J Britten
- Division of Biology, California Institute of Technology, Corona del Mar 92625, USA
| |
Collapse
|
12
|
Kazakov VI, Tomilin NV. Increased concentration of some transcription factor binding sites in human retroposons of the Alu family. Genetica 1996; 97:15-22. [PMID: 8851879 DOI: 10.1007/bf00132576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic gene expression is dependent on short protein-binding DNA sequence motifs promoting the assembly of multiprotein transcription complexes. Human retroposons of the Alu family are known to contain some high-affinity binding sites for transcription factors, which may serve as signals in regulation of expression of RNA-polymerase II-transcribed genes. In this computer study we have compared the density of ten consensus transcription factor binding sites in a set of human mature mRNA, human promotors and Alu repeats. Our results indicate that Alu retroposons and promotor sequences have significantly higher mean density of these sites compared to RNAs. It is suggested that the majority of Alu repeats do have the potential for regulating gene expression via modulation of RNA polymerase II-dependent transcription.
Collapse
Affiliation(s)
- V I Kazakov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| | | |
Collapse
|
13
|
Kropotov AV, Tomilin NV. Evidence for a regulatory protein complex on RNA polymerase III promoter of human retroposons of Alu family. Genetica 1996; 98:223-33. [PMID: 9204547 DOI: 10.1007/bf00057587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abundant human retroposons of the Alu family produce few RNA polymerase III (RPIII)-dependent transcripts in vivo. This suggests that either the bulk of the repeats has no proper promoter elements or that transcription of Alu by RPIII is repressed. In this study, we analyzed complexes formed by human nuclear proteins with the Alu B-box and with an adjacent downstream sequence (DB-sequence). Four complexes (C1-C4) were detected and two of them (C2 and C3) were found to be induced by different proteins. C3 formation was found to be sensitive to minor sequence variation within the Alu DB-sequence. The C2 complex is specifically repressed by the competing VA1 B-box oligonucleotide and was found to be very stable. In addition, it is downregulated in human cells transformed by adenovirus 5. This is consistent with a view that the C2 complex is formed by a protein (designated as ACR1) that is different from TFIIIC2. The ACR1 protein may be involved in the modulation of Alu transcription in vivo by interfering or cooperating with TFIIIC2. A similar complex is detected with the efficiently transcribed adenovirus VA1 RNA gene B-box. We compared the affinity of complexes formed by ACR1 with Alu and VA1 B-boxes. It was found that both B-boxes bind ACR1 with equal affinity with a dissociation constant of about 2 nM. However, DB-sequences in Alu and VA1 promoters are non-homologous, and C3/C4 complexes are found to be formed with Alu DB, but not formed with VA1 DB sequences. The Alu-specific protein forming C3 (named as ACR2) may cooperate with ACR1 in selective repression of RPIII-dependent Alu transcription in vivo.
Collapse
Affiliation(s)
- A V Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
14
|
Abstract
Reverse transcription has been an important mediator of genomic change. This influence dates back more than three billion years, when the RNA genome was converted into the DNA genome. While the current cellular role(s) of reverse transcriptase are not yet completely understood, it has become clear over the last few years that this enzyme is still responsible for generating significant genomic change and that its activities are one of the driving forces of evolution. Reverse transcriptase generates, for example, extra gene copies (retrogenes), using as a template mature messenger RNAs. Such retrogenes do not always end up as nonfunctional pseudogenes but form, after reinsertion into the genome, new unions with resident promoter elements that may alter the gene's temporal and/or spatial expression levels. More frequently, reverse transcriptase produces copies of nonmessenger RNAs, such as small nuclear or cytoplasmic RNAs. Extremely high copy numbers can be generated by this process. The resulting reinserted DNA copies are therefore referred to as short interspersed repetitive elements (SINEs). SINEs have long been considered selfish DNA, littering the genome via exponential propagation but not contributing to the host's fitness. Many SINEs, however, can give rise to novel genes encoding small RNAs, and are the migrant carriers of numerous control elements and sequence motifs that can equip resident genes with novel regulatory elements [Brosius J. and Gould S.J., Proc Natl Acad Sci USA 89, 10706-10710, 1992]. Retrosequences, such as SINEs and portions of retroelements (e.g., long terminal repeats, LTRs), are capable of donating sequence motifs for nucleosome positioning, DNA methylation, transcriptional enhancers and silencers, poly(A) addition sequences, determinants of RNA stability or transport, splice sites, and even amino acid codons for incorporation into open reading frames as novel protein domains. Retroposition can therefore be considered as a major pacemaker for evolution (including speciation). Retroposons, with their unique properties and actions, form the molecular basis of important evolutionary concepts, such as exaptation [Gould S.J. and Vrba E., Paleobiology 8, 4-15, 1982] and punctuated equilibrium [Elredge N. and Gould S.J. in Schopf T.J.M. (ed). Models in Paleobiology. Freeman, Cooper, San Francisco, 1972, pp. 82-115].
Collapse
Affiliation(s)
- J Brosius
- Institute for Experimental Pathology, ZMBE University of Münster, Germany.
| | | |
Collapse
|
15
|
Liu WM, Chu WM, Choudary PV, Schmid CW. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 1995; 23:1758-65. [PMID: 7784180 PMCID: PMC306933 DOI: 10.1093/nar/23.10.1758] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The abundance of Alu RNA is transiently increased by heat shock in human cell lines. This effect is specific to Alu repeats among Pol III transcribed genes, since the abundance of 7SL, 7SK, 5S and U6 RNAs is essentially unaffected by heat shock. The rapid induction of Alu expression precedes the heat shock induction of mRNAs for the ubiquitin and HSP 70 heat shock genes. Heat shock mimetics also transiently induce Alu expression indicating that increased Alu expression is a general cell-stress response. Cycloheximide treatment rapidly and transiently increases the abundance of Alu RNA. Again, compared with other genes transcribed by Pol III, this increase is specific to Alu. However, as distinguished from the cell stress response, cycloheximide does not induce expression of HSP 70 and ubiquitin mRNAs. Puromycin also increases Alu expression, suggesting that this response is generally caused by translational inhibition. The response of mammalian SINEs to cell stress and translational inhibition is not limited to SINEs which are Alu homologues. Heat shock and cycloheximide each transiently induce Pol III directed expression of B1 and B2 RNAs in mouse cells and C-element RNA in rabbit cells. Together, these three species exemplify the known SINE composition of placental mammals, suggesting that mammalian SINEs are similarly regulated and may serve a common function.
Collapse
Affiliation(s)
- W M Liu
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
16
|
Britten RJ. Evolutionary selection against change in many Alu repeat sequences interspersed through primate genomes. Proc Natl Acad Sci U S A 1994; 91:5992-6. [PMID: 8016103 PMCID: PMC44123 DOI: 10.1073/pnas.91.13.5992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations have been examined in the 1500 interspersed Alu repeats of human DNA that have been sequenced and are nearly full length. There is a set of particular changes at certain positions that rarely occur (termed suppressed changes) compared to the average of identical changes of identical nucleotides in the rest of the sequence. The suppressed changes occur in positions that are clustered together in what appear to be sites for protein binding. There is a good correlation of the suppression in different positions, and therefore the joint probability of absence of mutation at many pairs of such positions is significantly higher than that expected at random. The suppression of mutation appears to result from selection that is not due to requirements for Alu sequence replication. The implication is that hundreds of thousands of Alu sequences have sequence-dependent functions in the genome that are selectively important for primates. In a few known cases Alu inserts have been adapted to function in the regulation of gene transcription.
Collapse
Affiliation(s)
- R J Britten
- Division of Biology of the California Institute of Technology, Kerckhoff Marine Laboratory, Corona Del Mar 92625
| |
Collapse
|
17
|
Boyko V, Mudrak O, Svetlova M, Negishi Y, Ariga H, Tomilin N. A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein. FEBS Lett 1994; 345:139-42. [PMID: 8200445 DOI: 10.1016/0014-5793(94)00419-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have screened a human cDNA expression library in lambda gt11 for clones encoding Alu-binding proteins using direct binding of labeled Alu DNA to recombinant phage lysates fixed on a membrane, and isolated a clone 98% identical in sequence to the well-known substrate of protein kinases, annexin II, which was suggested earlier to play a role in transduction of mitogenic signals and DNA replication. A diagnostic property of annexins is their binding to phospholipids in the presence of calcium ions, and we have found that the interaction of proteins of human nuclear extracts with Alu subsequences is suppressed by Ca/phosphatidylserine liposomes, suggesting overlapping of Ca/phospholipid- and DNA-binding domains in annexin II.
Collapse
Affiliation(s)
- V Boyko
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg
| | | | | | | | | | | |
Collapse
|
18
|
Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol Cell Biol 1993. [PMID: 8413295 DOI: 10.1128/mcb.13.11.7056] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the human CD8 alpha gene is restricted to cells of the lymphoid lineage and developmentally regulated during thymopoiesis. As an initial step towards understanding the molecular basis for tissue-specific expression of this gene, we surveyed the surrounding chromatin structure for potential cis-acting regulatory regions by DNase I hypersensitivity mapping and found four hypersensitive sites, three of which were T cell restricted. By using a reporter-based expression approach, a T-cell-specific enhancer was identified by its close association with a prominent T-cell-restricted hypersensitive sites in the last intron of the CD8 alpha gene. Deletion studies demonstrated that the minimal enhancer is adjacent to a negative regulatory element. DNA sequence analysis of the minimal enhancer revealed a striking cluster of consensus binding sites for Ets-1, TCF-1, CRE, GATA-3, LyF-1, and bHLH proteins which were verified by electrophoretic mobility shift assays. In addition, the 5' end of the enhancer was composed of an Alu repeat which contained the GATA-3, bHLH, and LyF-1 binding sites. Site-directed mutation of the Ets-1 and GATA-3 sites dramatically reduced enhancer activity. The functional importance of the other binding sites only became apparent when combinations of mutations were analyzed. Taken together, these results suggest that the human CD8 alpha gene is regulated by the interaction of multiple T-cell nuclear proteins with a transcriptional enhancer located in the last intron of the gene. Comparison of the CD8 alpha enhancer with other recently identified T-cell-specific regulatory elements suggests that a common set of transcription factors regulates several T-cell genes.
Collapse
|
19
|
Hambor JE, Mennone J, Coon ME, Hanke JH, Kavathas P. Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol Cell Biol 1993; 13:7056-70. [PMID: 8413295 PMCID: PMC364767 DOI: 10.1128/mcb.13.11.7056-7070.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Expression of the human CD8 alpha gene is restricted to cells of the lymphoid lineage and developmentally regulated during thymopoiesis. As an initial step towards understanding the molecular basis for tissue-specific expression of this gene, we surveyed the surrounding chromatin structure for potential cis-acting regulatory regions by DNase I hypersensitivity mapping and found four hypersensitive sites, three of which were T cell restricted. By using a reporter-based expression approach, a T-cell-specific enhancer was identified by its close association with a prominent T-cell-restricted hypersensitive sites in the last intron of the CD8 alpha gene. Deletion studies demonstrated that the minimal enhancer is adjacent to a negative regulatory element. DNA sequence analysis of the minimal enhancer revealed a striking cluster of consensus binding sites for Ets-1, TCF-1, CRE, GATA-3, LyF-1, and bHLH proteins which were verified by electrophoretic mobility shift assays. In addition, the 5' end of the enhancer was composed of an Alu repeat which contained the GATA-3, bHLH, and LyF-1 binding sites. Site-directed mutation of the Ets-1 and GATA-3 sites dramatically reduced enhancer activity. The functional importance of the other binding sites only became apparent when combinations of mutations were analyzed. Taken together, these results suggest that the human CD8 alpha gene is regulated by the interaction of multiple T-cell nuclear proteins with a transcriptional enhancer located in the last intron of the gene. Comparison of the CD8 alpha enhancer with other recently identified T-cell-specific regulatory elements suggests that a common set of transcription factors regulates several T-cell genes.
Collapse
Affiliation(s)
- J E Hambor
- Department of Molecular Genetics and Protein Chemistry, Pfizer Central Research, Groton, Connecticut 06340
| | | | | | | | | |
Collapse
|