1
|
Chiruvella KK, Sebastian R, Sharma S, Karande AA, Choudhary B, Raghavan SC. Time-Dependent Predominance of Nonhomologous DNA End-Joining Pathways during Embryonic Development in Mice. J Mol Biol 2012; 417:197-211. [DOI: 10.1016/j.jmb.2012.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/26/2022]
|
2
|
Association of mitochondrial DNA variations with lung cancer risk in a Han Chinese population from southwestern China. PLoS One 2012; 7:e31322. [PMID: 22363619 PMCID: PMC3283641 DOI: 10.1371/journal.pone.0031322] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/05/2012] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutation due to the high rate of reactive oxygen species (ROS) production and limited DNA-repair capacity in mitochondrial. Previous studies demonstrated that the increased mtDNA copy number for compensation for damage, which was associated with cigarette smoking, has been found to be associated with lung cancer risk among heavy smokers. Given that the common and “non-pathological” mtDNA variations determine differences in oxidative phosphorylation performance and ROS production, an important determinant of lung cancer risk, we hypothesize that the mtDNA variations may play roles in lung cancer risk. To test this hypothesis, we conducted a case-control study to compare the frequencies of mtDNA haplogroups and an 822 bp mtDNA deletion between 422 lung cancer patients and 504 controls. Multivariate logistic regression analysis revealed that haplogroups D and F were related to individual lung cancer resistance (OR = 0.465, 95%CI = 0.329–0.656, p<0.001; and OR = 0.622, 95%CI = 0.425–0.909, p = 0.014, respectively), while haplogroups G and M7 might be risk factors for lung cancer (OR = 3.924, 95%CI = 1.757–6.689, p<0.001; and OR = 2.037, 95%CI = 1.253–3.312, p = 0.004, respectively). Additionally, multivariate logistic regression analysis revealed that cigarette smoking was a risk factor for the 822 bp mtDNA deletion. Furthermore, the increased frequencies of the mtDNA deletion in male cigarette smoking subjects of combined cases and controls with haplogroup D indicated that the haplogroup D might be susceptible to DNA damage from external ROS caused by heavy cigarette smoking.
Collapse
|
3
|
McKay MJ, Withana N, Davey DS, Bishop D, Chao M, Sprung CN. Lymphoid and fibroblastic cell lineages from radiosensitive cancer patients: molecular analysis of DNA double strand break repair by major non-homologous end-joining sub-pathways. Asia Pac J Clin Oncol 2011; 7:17-26. [PMID: 21332647 DOI: 10.1111/j.1743-7563.2010.01364.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Radiation therapy (RT) is used in the treatment of approximately half of all cancer patients. Although there have been great improvements in tumor localization and the technical accuracy of RT delivery, some RT patients still have idiosyncratic hypersensitivity to ionizing radiation (IR) in their normal tissues. Although much effort has been expended in the search for assays that could detect radiosensitive individuals prior to treatment and facilitate tailored therapy; a suitable and clinically practical predictive assay has yet to be realized. Since DNA double-strand breaks (DSB) are a major lesion caused by IR, we hypothesized that radiation hypersensitive individuals might be deficient in the repair of such lesions. METHODS To test this hypothesis we quantitatively and functionally characterized DSB repair of the two major non-homologous end-joining (NHEJ) sub-pathways in a pilot study using a plasmid repair reconstitution assay in lymphoblastoid and fibroblast cell lines from radiosensitive cancer patients and controls. Experiments using well-characterized mammalian DSB repair mutants demonstrated the ability of the assay to distinguish NHEJ sub-pathways. The proportion of direct end-joining repair compared with that of microhomology-directed repair was used as a functional end-point of DSB repair competence in the different cell lines. RESULTS We found that the overall level of NHEJ sub-pathway repair competency was similar in cell lines from radiosensitive patients and controls. CONCLUSION These data suggest that this assay in these cell lineages has limited usefulness as a predictive screen for the endogenous DNA DSB repair competency of radiosensitive cancer patients' cells but can usefully characterize major cellular DSB repair phenotypes.
Collapse
Affiliation(s)
- Michael J McKay
- Divisions of Radiation Oncology Research, Peter MacCallum Cancer Centre, Australian National University and Canberra Hospital, Yamba Drive, Canberra, ACT 2604, Australia.
| | | | | | | | | | | |
Collapse
|
4
|
Sharma S, Choudhary B, Raghavan SC. Efficiency of nonhomologous DNA end joining varies among somatic tissues, despite similarity in mechanism. Cell Mol Life Sci 2011; 68:661-76. [PMID: 20680388 PMCID: PMC11114952 DOI: 10.1007/s00018-010-0472-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/07/2010] [Accepted: 07/16/2010] [Indexed: 01/09/2023]
Abstract
Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.
Collapse
Affiliation(s)
- Sheetal Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| | - Bibha Choudhary
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 071 India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| |
Collapse
|
5
|
Datta K, Purkayastha S, Neumann RD, Pastwa E, Winters TA. Base damage immediately upstream from double-strand break ends is a more severe impediment to nonhomologous end joining than blocked 3'-termini. Radiat Res 2011; 175:97-112. [PMID: 21175352 PMCID: PMC3518376 DOI: 10.1667/rr2332.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation-induced DNA double-strand breaks (DSBs) are critical cytotoxic lesions that are typically repaired by nonhomologous end joining (NHEJ) in human cells. Our previous work indicated that the highly cytotoxic DSBs formed by (125)I decay possess base damage clustered within 8 to 10 bases of the break and 3'-phosphate (P) and 3'-OH ends. This study examined the effect of such structures on NHEJ in in vitro assays employing either (125)I decay-induced DSB linearized plasmid DNA or structurally defined duplex oligonucleotides. Duplex oligonucleotides that possess either a 3'-P or 3'-phosphoglycolate (PG) or a ligatable 3'-OH end with either an AP site or an 8-oxo-dG 1 nucleotide upstream (-1n) from the 3'-terminus have been examined for reparability. Moderate to severe end-joining inhibition was observed for modified DSB ends or 8-oxo-dG upstream from a 3'-OH end. In contrast, abolition of end joining was observed with duplexes possessing an AP site upstream from a ligatable 3'-OH end or for a lesion combination involving 3'-P plus an upstream 8-oxo-dG. In addition, base mismatches at the -1n position were also strong inhibitors of NHEJ in this system, suggesting that destabilization of the DSB terminus as a result of base loss or improper base pairing may play a role in the inhibitory effects of these structures. Furthermore, we provide data indicating that DSB end joining is likely to occur prior to removal or repair of base lesions proximal to the DSB terminus. Our results show that base damage or base loss near a DSB end may be a severe block to NHEJ and that complex combinations of lesions presented in the context of a DSB may be more inhibitory than the individual lesions alone. In contrast, blocked DSB 3'-ends alone are only modestly inhibitory to NHEJ. Finally, DNA ligase activity is implicated as being responsible for these effects.
Collapse
Affiliation(s)
- Kamal Datta
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Shubhadeep Purkayastha
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ronald D. Neumann
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Elzbieta Pastwa
- Department of Medicinal Chemistry, Medical University of Lodz, Lodz, Poland 92-215
| | - Thomas A. Winters
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Kumar TS, Kari V, Choudhary B, Nambiar M, Akila TS, Raghavan SC. Anti-apoptotic protein BCL2 down-regulates DNA end joining in cancer cells. J Biol Chem 2010; 285:32657-70. [PMID: 20699221 PMCID: PMC2952268 DOI: 10.1074/jbc.m110.140350] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
Cancer cells are often associated with secondary chromosomal rearrangements, such as deletions, inversions, and translocations, which could be the consequence of unrepaired/misrepaired DNA double strand breaks (DSBs). Nonhomologous DNA end joining is one of the most common pathways to repair DSBs in higher eukaryotes. By using oligomeric DNA substrates mimicking various endogenous DSBs in a cell-free system, we studied end joining (EJ) in different cancer cell lines. We found that the efficiency of EJ varies among cancer cells; however, there was no remarkable difference in the mechanism and expression of EJ proteins. Interestingly, cancer cells with lower levels of EJ possessed elevated expression of BCL2 and vice versa. Removal of BCL2 by immunoprecipitation or protein fractionation led to elevated EJ. More importantly, we show that overexpression of BCL2 or the addition of purified BCL2 led to the down-regulation of EJ. Further, we found that BCL2 interacts with KU proteins both in vitro and in vivo. Hence, our results suggest that EJ in cancer cells could be negatively regulated by the anti-apoptotic protein, BCL2, and this may contribute toward increased chromosomal abnormalities in cancer.
Collapse
Affiliation(s)
- Tadi Satish Kumar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Vijayalakshmi Kari
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Bibha Choudhary
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
- the Manipal Institute of Regenerative Medicine, Bangalore 560071, India
| | - Mridula Nambiar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - T. S. Akila
- the Manipal Institute of Regenerative Medicine, Bangalore 560071, India
| | - Sathees C. Raghavan
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
7
|
Sharma S, Raghavan SC. Nonhomologous DNA end joining in cell-free extracts. J Nucleic Acids 2010; 2010. [PMID: 20936167 PMCID: PMC2945661 DOI: 10.4061/2010/389129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 08/05/2010] [Indexed: 12/19/2022] Open
Abstract
Among various DNA damages, double-strand breaks (DSBs) are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ) is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.
Collapse
Affiliation(s)
- Sheetal Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
8
|
Poplawski T, Pastwa E, Blasiak J. Non-homologous DNA end joining in normal and cancer cells and its dependence on break structures. Genet Mol Biol 2010; 33:368-73. [PMID: 21637496 PMCID: PMC3036873 DOI: 10.1590/s1415-47572010005000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 10/06/2009] [Indexed: 11/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a serious threat to the cell, for if not or miss-repaired, they can lead to chromosomal aberration, mutation and cancer. DSBs in human cells are repaired via non-homologous DNA end joining (NHEJ) and homologous recombination repair pathways. In the former process, the structure of DNA termini plays an important role, as does the genetic constitution of the cells, through being different in normal and pathological cells. In order to investigate the dependence of NHEJ on DSB structure in normal and cancer cells, we used linearized plasmids with various, complementary or non-complementary, single-stranded or blunt DNA termini, as well as whole-cell extract isolated from normal human lymphocytes, chronic myeloid leukemia K562 cells and lung cancer A549 cells. We observed a pronounced variability in the efficacy of NHEJ reaction depending on the type of ends. Plasmids with complementary and blunt termini were more efficiently repaired than the substrate with 3' protruding single-strand ends. The hierarchy of the effectiveness of NHEJ was on average, from the most effective to the least, A549/ normal lymphocytes/ K562. Our results suggest that the genetic constitution of the cells together with the substrate terminal structure may contribute to the efficacy of the NHEJ reaction. This should be taken into account on considering its applicability in cancer chemo- or radiotherapy by pharmacologically modulating NHEJ cellular responses.
Collapse
Affiliation(s)
- Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Banacha, Lodz Poland
| | | | | |
Collapse
|
9
|
Fuchs O, Kostecka A, Provaznikova D, Krasna B, Brezinova J, Filkukova J, Kotlin R, Kouba M, Kobylka P, Neuwirtova R, Jonasova A, Caniga M, Schwarz J, Markova J, Maaloufova J, Sponerova D, Novakova L, Cermak J. Nature of frequent deletions in CEBPA. Blood Cells Mol Dis 2009; 43:260-3. [PMID: 19651529 DOI: 10.1016/j.bcmd.2009.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
C/EBPalpha (CCAAT/enhancer binding protein alpha) belongs to the family of leucine zipper transcription factors and is necessary for transcriptional control of granulocyte, adipocyte and hepatocyte differentiation, glucose metabolism and lung development. C/EBPalpha is encoded by an intronless gene. CEBPA mutations cause a myeloid differentiation block and were detected in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), multiple myeloma and non-Hodgkin's lymphoma (NHL) patients. In this study we identified in 41 individuals from 824 screened individuals (290 AML patients, 382 MDS patients, 56 NHL patients and 96 healthy individuals) a single class of 23 deletions in CEBPA gene which involved a direct repeat of at least 2 bp. These mutations are characterised by the loss of one of two same repeats at the ends of deleted sequence. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493-498_865-870), GCCAAGCAGC (508-517_907-916) and GG (486-487_885-886), all according to GenBank accession no. NM_004364.2. A mechanism for deletion formation between two repetitive sequences can be recombination events in the repair process. Double-stranded cut in DNA can initiate these recombination events of adjacent DNA sequences.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, Department of Cell Physiology, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- J. Thacker
- DNA Repair and Mutagenesis Group, MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD, UK
| |
Collapse
|
11
|
Affiliation(s)
- D.G. Harnden
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 9BX, UK
| |
Collapse
|
12
|
Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM. What causes mitochondrial DNA deletions in human cells? Nat Genet 2008; 40:275-9. [PMID: 18305478 DOI: 10.1038/ng.f.94] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease and are likely to have a central role in the aging of postmitotic tissues. Understanding the mechanism of the formation and subsequent clonal expansion of these mtDNA deletions is an essential first step in trying to prevent their occurrence. We review the previous literature and recent results from our own laboratories, and conclude that mtDNA deletions are most likely to occur during repair of damaged mtDNA rather than during replication. This conclusion has important implications for prevention of mtDNA disease and, potentially, for our understanding of the aging process.
Collapse
Affiliation(s)
- Kim J Krishnan
- Mitochondrial Research Group, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Decottignies A. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 2007; 176:1403-15. [PMID: 17483423 PMCID: PMC1931558 DOI: 10.1534/genetics.107.071621] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two DNA repair pathways are known to mediate DNA double-strand-break (DSB) repair: homologous recombination (HR) and nonhomologous end joining (NHEJ). In addition, a nonconservative backup pathway showing extensive nucleotide loss and relying on microhomologies at repair junctions was identified in NHEJ-deficient cells from a variety of organisms and found to be involved in chromosomal translocations. Here, an extrachromosomal assay was used to characterize this microhomology-mediated end-joining (MMEJ) mechanism in fission yeast. MMEJ was found to require at least five homologous nucleotides and its efficiency was decreased by the presence of nonhomologous nucleotides either within the overlapping sequences or at DSB ends. Exo1 exonuclease and Rad22, a Rad52 homolog, were required for repair, suggesting that MMEJ is related to the single-strand-annealing (SSA) pathway of HR. In addition, MMEJ-dependent repair of DSBs with discontinuous microhomologies was strictly dependent on Pol4, a PolX DNA polymerase. Although not strictly required, Msh2 and Pms1 mismatch repair proteins affected the pattern of MMEJ repair. Strikingly, Pku70 inhibited MMEJ and increased the minimal homology length required for efficient MMEJ. Overall, this study strongly suggests that MMEJ does not define a distinct DSB repair mechanism but reflects "micro-SSA."
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
Kosmider B, Wells RD. Double-strand breaks in the myotonic dystrophy type 1 and the fragile X syndrome triplet repeat sequences induce different types of mutations in DNA flanking sequences in Escherichia coli. Nucleic Acids Res 2006; 34:5369-82. [PMID: 17012280 PMCID: PMC1636463 DOI: 10.1093/nar/gkl612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The putative role of double-strand breaks (DSBs) created in vitro by restriction enzyme cleavage in or near CGG*CCG or CTG*CAG repeat tracts on their genetic instabilities, both within the repeats and in their flanking sequences, was investigated in an Escherichia coli plasmid system. DSBs at TRS junctions with the vector generated a large number of mutagenic events in flanking sequences whereas DSBs within the repeats elicited no similar products. A substantial enhancement in the number of mutants was caused by transcription of the repeats and by the absence of recombination functions (recA-, recBC-). Surprisingly, DNA sequence analyses on mutant clones revealed the presence of only single deletions of 0.4-1.6 kb including the TRS and the flanking sequence from plasmids originally containing (CGG*CCG)43 but single, double and multiple deletions as well as insertions were found for plasmids originally containing (CTG*CAG)n (where n = 43 or 70). Non-B DNA structures (slipped structures with loops, cruciforms, triplexes and tetraplexes) as well as microhomologies are postulated to participate in the recombination and/or repair processes.
Collapse
Affiliation(s)
| | - Robert D. Wells
- To whom correspondence should be addressed. Tel: +1 713 677 7651; Fax: +1 713 677 7689;
| |
Collapse
|
15
|
Pfeiffer P, Kuhfittig-Kulle S, Goedecke W. Mechanisms of Non-Homologous DNA End Joining:Aspects of In Vitro Assays. Genome Integr 2006. [DOI: 10.1007/7050_008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Zingler N, Willhoeft U, Brose HP, Schoder V, Jahns T, Hanschmann KMO, Morrish TA, Löwer J, Schumann GG. Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining. Genome Res 2005; 15:780-9. [PMID: 15930490 PMCID: PMC1142468 DOI: 10.1101/gr.3421505] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insertion of the human non-LTR retrotransposon LINE-1 (L1) into chromosomal DNA is thought to be initiated by a mechanism called target-primed reverse transcription (TPRT). This mechanism readily accounts for the attachment of the 3'-end of an L1 copy to the genomic target, but the subsequent integration steps leading to the attachment of the 5'-end to the chromosomal DNA are still cause for speculation. By applying bioinformatics to analyze the 5' junctions of recent L1 insertions in the human genome, we provide evidence that L1 uses at least two distinct mechanisms to link the 5'-end of the nascent L1 copy to its genomic target. While 5'-truncated L1 elements show a statistically significant preference for short patches of overlapping nucleotides between their target site and the point of truncation, full-length insertions display no distinct bias for such microhomologies at their 5'-ends. In a second genome-wide approach, we analyzed Alu elements to examine whether these nonautonomous retrotransposons, which are thought to be mobilized through L1 proteins, show similar characteristics. We found that Alu elements appear to be predominantly integrated via a pathway not involving overlapping nucleotides. The results indicate that a cellular nonhomologous DNA end-joining pathway may resolve intermediates from incomplete L1 retrotransposition events and thus lead to 5' truncations.
Collapse
Affiliation(s)
- Nora Zingler
- Fachgebiet Pr2/Retroelemente, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Raghavan SC, Raman MJ. Nonhomologous end joining of complementary and noncomplementary DNA termini in mouse testicular extracts. DNA Repair (Amst) 2004; 3:1297-310. [PMID: 15336625 DOI: 10.1016/j.dnarep.2004.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/24/2022]
Abstract
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
18
|
Affiliation(s)
- David C Samuels
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
19
|
Furuno-Fukushi I, Masumura KI, Furuse T, Noda Y, Takahagi M, Saito T, Hoki Y, Suzuki H, Wynshaw-Boris A, Nohmi T, Tatsumi K. Effect ofAtmDisruption on Spontaneously Arising and Radiation-Induced Deletion Mutations in Mouse Liver. Radiat Res 2003; 160:549-58. [PMID: 14565827 DOI: 10.1667/rr3073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Deletion mutations were efficiently recovered in mouse liver after total-body irradiation with X rays by using a transgenic mouse "gpt-delta" system that harbored a lambda EG10 shuttle vector with the red and gam genes for Spi- (sensitive to P2 lysogen interference) selection. We incorporated this system into homozygous Atm-knockout mice as a model of the radiosensitive hereditary disease ataxia telangiectasia (AT). Lambda phages recovered from the livers of X-irradiated mice with the Atm+/+ genotype showed a dose-dependent increase in the Spi- mutant frequency up to sixfold at 50 Gy over the unirradiated control of 2.8x10(-6). The livers from Atm-/- mice yielded a virtually identical dose-response curve for X rays with a background fraction of 2.4x10(-6). Structural analyses revealed no significant difference in the proportion of -1 frameshifts and larger deletions between Atm+/+ and Atm-/- mice, although larger deletions prevailed in X-ray-induced Spi- mutants irrespective of Atm status. While a possible defect in DNA repair after irradiation has been strongly indicated in the literature for nondividing cultured cells in vitro from AT patients, the Atm disruption does not significantly affect radiation mutagenesis in the stationary mouse liver in vivo.
Collapse
Affiliation(s)
- Ikuko Furuno-Fukushi
- Research Center for Radiation Safety, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
21
|
Wronka G, Fechteler K, Schmitz B, Doerfler W. Integrative recombination between adenovirus type 12 DNA and mammalian DNA in a cell-free system: joining by short sequence homologies. Virus Res 2002; 90:225-42. [PMID: 12457977 DOI: 10.1016/s0168-1702(02)00201-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cell-free system was developed to investigate the mechanism of how junctions are formed between viral and cellular DNAs during adenoviral DNA integration into the hamster cell genome. Recombination between the segment of adenovirus type 12 (Ad12) DNA, that comprises sequence coordinates 20885-24053, subsequently termed PstI-D fragment and the hamster preinsertion DNA sequence p7 was studied in a cell-free system. The p7 DNA segment had served as viral DNA integration site in the Ad12-induced tumor CLAC1. Nuclear extracts initially from uninfected BHK21 hamster cells were fractionated by a series of chromatographic steps. DNAs of the in vitro generated recombinants were analyzed in detail. In the course of the recombination reaction, the two linear molecules were joined. The reaction took place between two short homologous sequences one of which was always at or very close to a DNA terminus, the second one could be several kilobase pairs remote from a DNA terminus. Apparently, the nucleotide sequence at the terminus of one recombining molecule determined the point of junction by searching for short homologies in the partner molecule. The recombination reaction was not conservative, the sequences in-between the short sequence homologies and one of the short sequence homologies were deleted in the in vitro recombinants. Two main criteria influenced the choice of interacting short sequence homologies: perfect homologies of 8-9 bp were most frequently found, they were preferred over more extended, but less perfect homologies. Comparing different short sequence homologies with similar stabilities, those combinations seemed to be chosen in the reaction which led to a minimal loss of nucleotides in the recombinants. The in vitro activity was found in nuclear extracts from both hamster and human cells. The activity was, hence, available for Ad12 DNA in productively infected human and abortively infected hamster cells. The specific recombination activity was increased in nuclear extracts of hamster cells abortively infected with Ad12. The junction sites in the recombinants, which were generated by the cell-free system, were very similar to junctions between adenoviral and cellular DNAs cloned from Ad12-induced tumor cells and Ad12-transformed cell lines.
Collapse
Affiliation(s)
- Gerd Wronka
- Institut für Genetik, Universität zu Köln, Weyertal 121, D-50931, Köln, Germany
| | | | | | | |
Collapse
|
22
|
Tachibana A, Sasaki MS. Characteristics of the end-joining of DNA double-strand breaks by the ataxia-telangiectasia nuclear extract. Biochem Biophys Res Commun 2002; 297:275-81. [PMID: 12237114 DOI: 10.1016/s0006-291x(02)02191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A double-strand break was introduced in plasmid pZErO-2 at a specific site within the ccdB gene that is lethal to Escherichia coli cells and treated with nuclear extracts from human cells. The efficiency of rejoining was monitored by Southern blot analysis and the fidelity of rejoining was measured by expressing the ccdB gene after bacterial transformation. The efficiency of rejoining in the nuclear extract from an ataxia-telangiectasia (A-T) cell line was comparable to that from a control cell line. However, the accuracy of rejoining was much lower for the A-T cell extract than for the control cell extract. All mutations were deletions, most of which contained short direct repeats at the breakpoint junctions. The deletion spectrum caused by the A-T nuclear extract was distinct from that of the control extract. These results indicate that the ccdB gene is useful for analysis of mis-rejoining and that A-T cells have certain deficiencies in end-joining of double-strand breaks in DNA.
Collapse
Affiliation(s)
- Akira Tachibana
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Japan.
| | | |
Collapse
|
23
|
Wang P, Lee JW, Yu Y, Turner K, Zou Y, Jackson-Cook CK, Povirk LF. Gene rearrangements induced by the DNA double-strand cleaving agent neocarzinostatin: conservative non-homologous reciprocal exchanges in an otherwise stable genome. Nucleic Acids Res 2002; 30:2639-46. [PMID: 12060680 PMCID: PMC117282 DOI: 10.1093/nar/gkf369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among a collection of 74 aprt mutations induced by treatment of plateau phase Chinese hamster ovary CHO cells with the radiomimetic DNA double-strand cleaving agent neocarzinostatin, nine were large-scale rearrangements. Molecular analysis indicated that all nine were highly conservative, non-homologous reciprocal exchanges, most of which were intrachromosomal as determined by fluorescence in situ hybridization. All but one of the parental sequences contained potential double-strand cleavage sites positioned such that the observed rearrangements could be explained by drug-induced double-strand breakage followed by trimming, templated patching and ligation of the exchanged ends. Predicted non-complementary 3' overhangs were often preserved in the newly formed junctions, suggesting alignment-based fill-in of the overhangs. Banding of metaphase spreads of these mutants, and of a number of mutants induced by the functionally similar compound bleomycin, revealed that bleomycin-induced reciprocal exchange mutants had multiple additional chromosome alterations and considerable chromosomal heterogeneity within each mutant line. In contrast, neocarzinostatin-induced reciprocal exchange mutants, as well as bleomycin-induced base substitution and single base deletion mutants, retained stable pseudodiploid karyotypes similar to that of the parent line. Thus, some reciprocal exchanges arising from misjoining of double-strand breaks were associated with global chromosomal instability, while other ostensibly similar events were not.
Collapse
Affiliation(s)
- Peng Wang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0230, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Collis SJ, Sangar VK, Tighe A, Roberts SA, Clarke NW, Hendry JH, Margison GP. Development of a novel rapid assay to assess the fidelity of DNA double-strand-break repair in human tumour cells. Nucleic Acids Res 2002; 30:E1. [PMID: 11788727 PMCID: PMC99840 DOI: 10.1093/nar/30.2.e1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular survival following ionising radiation-mediated damage is primarily a function of the ability to successfully detect and repair DNA double-strand breaks (DSBs). Previous studies have demonstrated that radiosensitivity, determined as a reduction in colony forming ability in vitro, may be related to the incorrect repair (misrepair) of DSBs. The novel rapid dual fluorescence (RDF) assay is a plasmid-based reporter system that rapidly assesses the correct rejoining of a restriction-enzyme produced DSBs within transfected cells. We have utilised this novel assay to determine the fidelity of DSB repair in the prostate tumour cell line LNCaP, the bladder tumour cell line MGH-U1 and a radiosensitive subclone S40b. The two bladder cell lines have been shown in previous studies to differ in their ability to correctly repair plasmids containing a single DSB. Using the RDF assay we found that a substantial portion of LNCaP cells [80.4 +/- 5.3(standard error)%] failed to reconstitute reporter gene expression; however, there was little difference in this measure of DSB repair fidelity between the two bladder cell lines (48.3 +/- 3.5% for MGH-U1; 39.9 +/- 8.2% for S40b). The RDF assay has potential to be developed to study the relationship between DSB repair fidelity and radiosensitivity as well as the mechanisms associated with this type of repair defect.
Collapse
Affiliation(s)
- S J Collis
- CRC Experimental Radiation Oncology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Ostertag EM, Kazazian HH. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 2001; 11:2059-65. [PMID: 11731496 PMCID: PMC311219 DOI: 10.1101/gr.205701] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
L1 retrotransposons are pervasive in the human genome. Approximately 25% of recent L1 insertions in the genome are inverted and truncated at the 5' end of the element, but the mechanism of L1 inversion has been a complete mystery. We analyzed recent L1 inversions from the genomic database and discovered several findings that suggested a mechanism for the creation of L1 inversions, which we call twin priming. Twin priming is a consequence of target primed reverse transcription (TPRT), a coupled reverse transcription/integration reaction that L1 elements are thought to use during their retrotransposition. In TPRT, the L1 endonuclease cleaves DNA at its target site to produce a double-strand break with two single-strand overhangs. During twin priming, one of the overhangs anneals to the poly(A) tail of the L1 RNA, and the other overhang anneals internally on the RNA. The overhangs then serve as primers for reverse transcription. The data further indicate that a process identical to microhomology-driven single-strand annealing resolves L1 inversion intermediates.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
26
|
Pospiech H, Rytkönen AK, Syväoja JE. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 2001; 29:3277-88. [PMID: 11470886 PMCID: PMC55831 DOI: 10.1093/nar/29.15.3277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5' or 3' overhangs was stimulated by 20-53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of alpha-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase alpha were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases beta and epsilon did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.
Collapse
Affiliation(s)
- H Pospiech
- Biocenter Oulu and Department of Biochemistry, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | |
Collapse
|
27
|
Klugbauer S, Pfeiffer P, Gassenhuber H, Beimfohr C, Rabes HM. RET rearrangements in radiation-induced papillary thyroid carcinomas: high prevalence of topoisomerase I sites at breakpoints and microhomology-mediated end joining in ELE1 and RET chimeric genes. Genomics 2001; 73:149-60. [PMID: 11318605 DOI: 10.1006/geno.2000.6434] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Children exposed to radioactive iodine after the Chernobyl reactor accident frequently developed papillary thyroid carcinomas (PTC). The predominant molecular lesions in these tumors are rearrangements of the RET receptor tyrosine kinase gene. Various types of RET rearrangements have been described. More than 90% of PTC with RET rearrangement exhibit a PTC1 or PTC3 type of rearrangement with an inversion of the H4 or ELE1 gene, respectively, on chromosome 10. To obtain closer insight into the mechanisms underlying PTC3 inversions, we analyzed the genomic breakpoints of 22 reciprocal and 4 nonreciprocal ELE1 and RET rearrangements in 26 post-Chernobyl tumor samples. In contrast to previous assumptions, an accumulation of breakpoints at the two Alu elements in the ELE1 sequence was not observed. Instead, breakpoints are distributed in the affected introns of both genes without significant clustering. When compared to the corresponding wildtype sequences, the majority of breakpoints (92%) do not contain larger deletions or insertions. Most remarkably, at least one topoisomerase I site was found exactly at or in close vicinity to all breakpoints, indicating a potential role for this enzyme in the formation of DNA strand breaks and/or ELE1 and RET inversions. The presence of short regions of sequence homology (microhomologies) and short direct and inverted repeats at the majority of breakpoints furthermore indicates a nonhomologous DNA end-joining mechanism in the formation of chimeric ELE1/Ret and Ret/ELE1 genes.
Collapse
Affiliation(s)
- S Klugbauer
- Institute of Pathology, Ludwig Maximilians University of Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | | | | | | | | |
Collapse
|
28
|
de Jager M, Dronkert ML, Modesti M, Beerens CE, Kanaar R, van Gent DC. DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 2001; 29:1317-25. [PMID: 11238998 PMCID: PMC29748 DOI: 10.1093/nar/29.6.1317] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.
Collapse
Affiliation(s)
- M de Jager
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, Dr Molewaterplein 50, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Cells of higher eukaryotes possess several very efficient systems for the repair of radiation-induced lesions in DNA. Different strategies have been adopted at the cellular level to remove or even tolerate various types of lesions in order to assure survival and limit the mutagenic consequences. In mammalian cells, the main DNA repair systems comprise direct reversion of damage, excision of damage and exchange mechanisms with intact DNA. Among these, the direct ligation of single strand breaks (SSB) by a DNA ligase and the multi-enzymatic repair systems of mismatch repair, base and nucleotide excision repair as well as the repair of double strand breaks (DSB) by homologous recombination or non homologous end-joining are the most important systems. Most of these processes are error-free except the non homologous end-joining pathway used mainly for the repair of DSB. Moreover, certain lesions can be tolerated by more or less accurately acting polymerases capable of performing translesional DNA syntheses. The DNA repair systems are intimately integrated in the network of cellular regulation. Some of their components are DNA damage inducible. Radiation-induced mutagenesis is largely due to unrepaired DNA damage but also involves error-prone repair processes like the repair of DSB by non-homologous end-joining. Generally, mammalian cells are well prepared to repair radiation-induced lesions. However, some questions remain to be asked about mechanistic details and efficiencies of the systems for removing certain types of radiation-damage and about their order and timing of action. The answers to these questions would be important for radioprotection as well as radiotherapy.
Collapse
Affiliation(s)
- D Averbeck
- Institut Curie, laboratoires Raymond-Latarjet, UMR2027 CNRS, centre universitaire d'Orsay, France
| |
Collapse
|
30
|
Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 2000; 28:2585-96. [PMID: 10871410 PMCID: PMC102716 DOI: 10.1093/nar/28.13.2585] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2000] [Revised: 05/18/2000] [Accepted: 05/18/2000] [Indexed: 01/30/2023] Open
Abstract
Non-homologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair in mammalian cells and depends, among other things, on the DNA end-binding Ku70/80 hetero-dimer. To investigate the function of Ku in NHEJ we have compared the ability of cell-free extracts from wild-type CHO-K1 cells, Ku80-deficient xrs6 cells and Ku80-cDNA-complemented xrs6 cells (xrs6-Ku80) to rejoin different types of DSB in vitro. While the two Ku80-proficient extracts were highly efficient and accurate in rejoining all types of DNA ends, the xrs6 extract displayed strongly decreased NHEJ efficiency and accuracy. The lack of accuracy is most evident in non-homologous terminus configurations containing 3'-overhangs that abut a 5'-overhang or blunt end. While the sequences of the 3'-overhangs are mostly preserved by fill-in DNA synthesis in the Ku80-proficient extracts, they are always completely lost in the xrs6 extract so that, instead, small deletions displaying microhomology patches at their breakpoints arise. In summary, our results are consistent with previous results from Ku-deficient yeast strains and indicate that Ku may serve as an alignment factor that not only increases NHEJ efficiency but also accuracy. Furthermore, a secondary NHEJ activity is present in the absence of Ku which is error-prone and possibly assisted by base pairing interactions.
Collapse
Affiliation(s)
- E Feldmann
- Institut für Zellbiologie des Universitätsklinikums Essen, Germany
| | | | | | | | | |
Collapse
|
31
|
Zhang K, Cheah HK. Cell-free recombination of immunoglobulin switch-region DNA with nuclear extracts. Clin Immunol 2000; 94:140-51. [PMID: 10637099 DOI: 10.1006/clim.1999.4824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an in vitro recombination system employing cell-free nuclear extracts from human B lymphocytes capable of detecting the recombination between human mu switch (Smu) and Sepsilon sequences in a model plasmid. Nuclear extracts from CD40-stimulated B lymphocytes gave a higher frequency of recombination in the assay than the unstimulated B cells. Recombination between Smu and Sepsilon was mediated by the nuclear extracts as the recombinational products could be amplified prior to bacterial transformation. Characterization of the recombination products demonstrated that the recombination process had the characteristics of immunoglobulin (Ig) isotype switching, as it was (i) switch-region-sequence specific, (ii) nonhomologous recombination, and (iii) enhanced by CD40 stimulation. Transcription through the S region DNA was not required for recombination in the system. These results demonstrate that Ig switch-region DNA recombination can be accomplished in vitro by cell-free nuclear extracts. This in vitro system for Ig switch-region DNA recombination using cell-free nuclear extracts will permit the dissection of the events involved in IgE class switch recombination, a critical event in the development of allergic diseases.
Collapse
Affiliation(s)
- K Zhang
- The Hart and Louise Lyon Laboratory, UCLA School of Medicine, Los Angeles, California 90095-1680, USA.
| | | |
Collapse
|
32
|
Abstract
Damage to DNA is considered to be the main initiating event by which genotoxins cause hereditary effects and cancer. Single or double strand breaks, bases modifications or deletions, intra- or interstrand DNA-DNA or DNA-protein cross-links constitute the major lesions formed in different proportions according to agents and to DNA sequence context. They can result in cell death or in mutational events which in turn may initiate malignant transformation. Normal cells are able to repair these lesions with fidelity or by introducing errors. Base excision (BER) and nucleotide excision (NER) repair are error-free processes acting on the simpler forms of DNA damage. A specialized form of BER involves the removal of mismatched DNA bases occurring as errors of DNA replication or from miscoding properties of damaged bases. Severe damage will be repaired according to several types of recombinational processes: homologous, illegitimate and site-specific recombination pathways. The loss of repair capacity as seen in a number of human genetic diseases and mutant cell lines leads to hypersensitivity to environmental agents. Repair-defective cells show qualitative (mutation spectrum) and quantitative alterations in dose-effect relationships. For such repair-deficient systems, direct measurements at low doses are possible and the extrapolation from large to low doses fits well with the linear or the linear-quadratic no-threshold models. Extensive debate still takes place as to the shape of the dose-response relationships in the region at which genetic effects are not directly detectable in repair-proficient normal cells. Comparison of repair mutants and wild-type organisms pragmatically suggests that, for many genotoxins and tissues, very low doses may have no effect at all in normal cells.
Collapse
Affiliation(s)
- E Moustacchi
- Institut Curie-Recherche, UMR 218 CNRS, LRC no. 1 CEA, 26 rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
33
|
Hyland PL, Keegan AL, Curran MD, Middleton D, McKenna PG, Barnett YA. Effect of a dCTP:dTTP pool imbalance on DNA replication fidelity in Friend murine erythroleukemia cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:87-96. [PMID: 11013406 DOI: 10.1002/1098-2280(2000)36:2<87::aid-em2>3.0.co;2-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleotide pool imbalances have been reported to affect the fidelity of DNA replication and repair in prokaryotic and eukaryotic cells. We have reported previously that the mutagen-hypersensitive thymidine kinase (TK)-deficient Friend erythroleukemia (FEL) cells (subclones 707BUF and 707BUE), have a more than sixfold increase in the dCTP:dTTP pool ratio when compared to that of wild-type, TK-positive (TK(+)) clone 707 cells. In this study we present the results of an investigation of the effect of the dCTP:dTTP pool imbalance on the accuracy of DNA replication within 707BUF cells. We examined the spontaneous mutation spectra occurring at the adenine phosphoribosyltransferase (aprt) locus within clone 707 (TK(+)) and 707BUF (TK(-)) FEL cells. Mutations recovered at the aprt locus in FEL cells comprised: base substitutions (43:73), frameshifts (14:13.5), and deletions (43:13.5) [clone 707 (TK(+)):707BUF (TK(-)), respectively, expressed as percentages]. A comparison of the mutation spectra obtained for the two cell lines did not reveal any significant increase in misincorporation of dCTP, the nucleotide in excess, in 707BUF (TK(-)) cells, during DNA replication synthesis. These data suggest that the dCTP:dTTP pool imbalance does not alter the fidelity of DNA replication synthesis in 707BUF (TK(-)) FEL cells. Rather, the predominance of GC --> AT transitions (53%) in the 707BUF (TK(-)) spectrum may reflect a reduced efficiency of repair by uracil DNA glycosylase of uracil residues within these cells.
Collapse
Affiliation(s)
- P L Hyland
- School of Clinical Dentistry, The Queen's University of Belfast, Belfast, Northern Ireland
| | | | | | | | | | | |
Collapse
|
34
|
Mezhevaya K, Winters TA, Neumann RD. Gene targeted DNA double-strand break induction by (125)I-labeled triplex-forming oligonucleotides is highly mutagenic following repair in human cells. Nucleic Acids Res 1999; 27:4282-90. [PMID: 10518622 PMCID: PMC148705 DOI: 10.1093/nar/27.21.4282] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A parallel binding motif 16mer triplex-forming oligonucleotide (TFO) complementary to a polypurine-polypyrimidine target region near the 3'-end of the SupF gene of plasmid pSP189 was labeled with [5-(125)I]dCMP at position 15. Following triplex formation and decay accumulation, radiation-induced site-specific double-strand breaks (DSBs) were produced in the pSP189 SupF gene. Bulk damaged DNA and the isolated site-specific DSB-containing DNA were separately transfected into human WI38VA13 cells and allowed to repair prior to recovery and analysis of mutants. Bulk damaged DNA had a relatively low mutation frequency of 2.7 x 10(-3). In contrast, the isolated linear DNA containing site-specific DSBs had an unusually high mutation frequency of 7.9 x 10(-1). This was nearly 300-fold greater than that observed for the bulk damaged DNA mixture, and >1.5 x 10(4)-fold greater than background. The mutation spectra displayed a high proportion of deletion mutants targeted to the(125)I binding position within the SupF gene for both bulk damaged DNA and isolated linear DNA. Both spectra were characterized by complex mutations with mixtures of changes. However, mutations recovered from the linear site-specific DSB-containing DNA presented a much higher proportion of complex deletion mutations.
Collapse
Affiliation(s)
- K Mezhevaya
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
35
|
Abstract
Double strand DNA breaks are usually caused by ionizing radiation and radiomimetic drugs, but can also occur under normal physiological conditions during double strand break-induced recombination, such as the rearrangement of T-cell receptor and immunoglobulin genes during lymphoid development or the mating type switching in yeast. The main repair mechanism for double strand breaks in higher eukaryotes is nonhomologous DNA end joining (NHEJ), which modifies and ligates the two DNA ends without the help of extensive base-pairing interactions for alignment. Defects in double strand break repair are associated with radiosensitivity, predisposition to cancer and immunodeficiency syndromes, and the analysis of the underlying mutations has lead to the identification of several proteins involved in NHEJ. However, these genetic studies have yielded little information on the mechanism of NHEJ, and while some of the protein factors identified possess the expected enzymatic or DNA-binding activities, the precise role of others remains unclear. Systems for cell-free NHEJ have been available for over 10 years, but the biochemical analysis of NHEJ has lagged behind the genetic analysis, and not a single protein factor required for NHEJ has been identified by biochemical purification and reconstitution of NHEJ activity. Here I review the current status of in vitro systems for NHEJ, summarize the results obtained and information gained, and discuss the outlook for biochemical approaches to study NHEJ.
Collapse
Affiliation(s)
- P Labhart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
36
|
Murray A, Webb J, Dennis N, Conway G, Morton N. Microdeletions in FMR2 may be a significant cause of premature ovarian failure. J Med Genet 1999; 36:767-70. [PMID: 10528856 PMCID: PMC1734234 DOI: 10.1136/jmg.36.10.767] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic causes of premature ovarian failure (POF) include X chromosome deletions and fragile X (FRAXA) premutations. While screening a cohort of women with POF for FRAXA premutations, a more distal trinucleotide repeat, FRAXE, was also tested. We found an unexpected excess of FRAXE alleles with apparently fewer than 11 repeats in the POF group. However, sequence analysis of these alleles showed that the excess was caused by three females who carry cryptic deletions in FMR2, the gene associated with FRAXE. We propose that microdeletions within FMR2 may be a significant cause of premature ovarian failure, being found in 1.5% of women with the condition, and in only 0.04% of the general female population. The deletions may affect transcription of either FMR2 or an adjacent gene.
Collapse
Affiliation(s)
- A Murray
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, Wiltshire, UK
| | | | | | | | | |
Collapse
|
37
|
Grasso M, Faravelli F, Lo Nigro C, Chiurazzi P, Sperandeo MP, Argusti A, Pomponi MG, Lecora M, Sebastio GF, Perroni L, Andria G, Neri G, Bricarelli FD. Mosaicism for the full mutation and a microdeletion involving the CGG repeat and flanking sequences in the FMR1 gene in eight fragile X patients. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 85:311-6. [PMID: 10398249 DOI: 10.1002/(sici)1096-8628(19990730)85:3<311::aid-ajmg24>3.0.co;2-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular mechanism of the fragile X syndrome is based on the expansion of an unstable CGG repeat in the 5' untranslated region of the FMR1 gene in most patients. This expansion is associated with an abnormal DNA methylation leading to the absence of production of FMR1 protein (FMRP). Such expansion apparently predisposes the repeat and flanking regions to further instability that may lead to mosaic conditions with a full mutation and a premutation or, rarely, with normal or reduced alleles that can sometimes be transcriptionally active. In this study we describe eight unrelated fragile X patients who are mosaic for both a full mutation and an allele of normal (four cases) or reduced size (four cases). Sequencing analysis of the deletion breakpoints in 6 patients demonstrated an internal deletion confined to the CGG repeat in four of them, which represents the most likely explanation for the regression of the full mutation to a normal sized allele. In two patients with a reduced allele, the deletion encompassed the entire CGG repeat and part of the flanking regions. Analysis of FMRP by Western blot was performed in one of the mosaics with a normal sized allele and in three of those with a reduced allele. In the first patient's lymphocytes FMRP was detected, whereas in the three other patients the deletion is likely to impair transcription as no FMRP was present in their lymphocytes.
Collapse
Affiliation(s)
- M Grasso
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Britten RA, Kuny S, Perdue S. Modification of non-conservative double-strand break (DSB) rejoining activity after the induction of cisplatin resistance in human tumour cells. Br J Cancer 1999; 79:843-9. [PMID: 10070879 PMCID: PMC2362674 DOI: 10.1038/sj.bjc.6690135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The induction of collateral radioresistance after the development of cisplatin resistance is a well-documented phenomenon; however, the exact processes that are responsible for the cisplatin-induced radioresistance remain to be elucidated. There was no obvious difference in the level of radiation-induced DNA double strand breaks (DSBs), in DSB rejoining rates, or the level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in the cisplatin- and radiation-sensitive 2780/WT and cisplatin-resistant 2780/CP cell lines. However, there was a significantly (P < 0.01) lower level of DSB misrejoining activity within nuclear protein extracts derived from the cisplatin- and radiation-sensitive 2780/WT and OAW42/WT tumour cell lines than in similar extracts from their cisplatin- (and radiation-) resistant 2780/CP and OAW42/CP counterparts. All of the DSB misrejoining events involved deletions of between 134 and 444 bp that arose through illegitimate recombination at short repetitive sequences, such as those that arise through non-homologous repair (NHR). These data further support the notion that the radiosensitivity of DSB repair proficient human tumour cell lines may be partly determined by the predisposition of these cell lines to activate non-conservative DSB rejoining pathways. Furthermore, our data suggest that the induction of acquired cisplatin resistance is associated with a two- to threefold decrease in the activity of a non-conservative DSB rejoining mechanism that appears to be a manifestation of NHR.
Collapse
Affiliation(s)
- R A Britten
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | | | | |
Collapse
|
39
|
Thacker J. Repair of ionizing radiation damage in mammalian cells. Alternative pathways and their fidelity. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:103-8. [PMID: 10196659 DOI: 10.1016/s0764-4469(99)80030-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ionizing radiation causes a variety of types of damage to DNA in cells, requiring the concerted action of a number of DNA repair enzymes to restore genomic integrity. The DNA base-excision repair and DNA double-strand break repair pathways are particularly important. While single base damages are rapidly excised and repaired using the opposite (undamaged) strand as a template, the correct repair of DNA double-strand breaks may present more difficulties to cellular enzymes owing to the loss of template. In the last few years evidence in support of several enzymatic pathways for the repair of such double-stranded damage has been found. At present we may distinguish at least three pathways: homologous recombination repair, non-homologous (DNA-PK-dependent) end joining, and repeat-driven end joining. This paper focuses on evidence for the first and third of these pathways, and considers in particular their relative importance in mammalian cells and implications for the fidelity of repair.
Collapse
Affiliation(s)
- J Thacker
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire, UK.
| |
Collapse
|
40
|
Thacker J. The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells. Biochimie 1999; 81:77-85. [PMID: 10214913 DOI: 10.1016/s0300-9084(99)80041-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The role of homologous recombination processes in the repair of severe forms of DNA damage is reviewed, with particular attention to the functions of members of the recA/RAD51 family of genes. In the yeast Saccharomyces cerevisiae, several of the gene products involved in homologous recombination repair (HRR) have been studied in detail, and a picture is beginning to emerge of the repair mechanism for DNA double-strand breaks. Knowledge is fragmentary for other eukaryotic organisms and for other types of DNA damage. In mammalian cells, while it has been known for some years that HRR occurs, the relative importance of the process in repairing DNA damage is unknown and very few of the gene products involved have been identified. Very recently, a number of RAD51-like genes have been identified in mammals, either through cloning genes complementing cell lines sensitive to DNA-damaging agents (XRCC2, XRCC3), or through homology searches (RAD51L1, RAD51L2, RAD51L3). As yet the role of these genes and their possible functions are speculative, although the combination of sequence conservation and gene expression patterns suggest that they function in HRR pathways.
Collapse
Affiliation(s)
- J Thacker
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire, UK
| |
Collapse
|
41
|
Majumdar A, Khorlin A, Dyatkina N, Lin FL, Powell J, Liu J, Fei Z, Khripine Y, Watanabe KA, George J, Glazer PM, Seidman MM. Targeted gene knockout mediated by triple helix forming oligonucleotides. Nat Genet 1998; 20:212-4. [PMID: 9771719 DOI: 10.1038/2530] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Triple helix forming oligonucleotides (TFOs) recognize and bind sequences in duplex DNA and have received considerable attention because of their potential for targeting specific genomic sites. TFOs can deliver DNA reactive reagents to specific sequences in purified chromosomal DNA (ref. 4) and nuclei. However, chromosome targeting in viable cells has not been demonstrated, and in vitro experiments indicate that chromatin structure is incompatible with triplex formation. We have prepared modified TFOs, linked to the DNA-crosslinking reagent psoralen, directed at a site in the Hprt gene. We show that stable Hprt-deficient clones can be recovered following introduction of the TFOs into viable cells and photoactivation of the psoralen. Analysis of 282 clones indicated that 85% contained mutations in the triplex target region. We observed mainly deletions and some insertions. These data indicate that appropriately constructed TFOs can find chromosomal targets, and suggest that the chromatin structure in the target region is more dynamic than predicted by the in vitro experiments.
Collapse
Affiliation(s)
- A Majumdar
- National Institute on Aging, NIH, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Friedl AA, Kiechle M, Fellerhoff B, Eckardt-Schupp F. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways. Genetics 1998; 148:975-88. [PMID: 9539418 PMCID: PMC1460056 DOI: 10.1093/genetics/148.3.975] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.
Collapse
Affiliation(s)
- A A Friedl
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Strahlenbiologie, Oberschleissheim, Germany.
| | | | | | | |
Collapse
|
43
|
Gorbunova V, Levy AA. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 1997; 25:4650-7. [PMID: 9358178 PMCID: PMC147090 DOI: 10.1093/nar/25.22.4650] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double strand DNA breaks in plants are primarily repaired via non-homologous end joining. However, little is known about the molecular events underlying this process. We have studied non-homologous end joining of linearized plasmid DNA with different termini configurations following transformation into tobacco cells. A variety of sequences were found at novel end junctions. Joining with no sequence alterations was rare. In most cases, deletions were found at both ends, and rejoining usually occurred at short repeats. A distinct feature of plant junctions was the presence of relatively large, up to 1.2 kb long, insertions (filler DNA), in approximately 30% of the analyzed clones. The filler DNA originated either from internal regions of the plasmid or from tobacco genomic DNA. Some insertions had a complex structure consisting of several reshuffled plasmid-related regions. These data suggest that double strand break repair in plants involves extensive end degradation, DNA synthesis following invasion of ectopic templates and multiple template switches. Such a mechanism is reminiscent of the synthesis-dependent recombination in bacteriophage T4. It can also explain the frequent 'DNA scrambling' associated with illegitimate recombination in plants.
Collapse
Affiliation(s)
- V Gorbunova
- Department of Plant Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
44
|
Escarceller M, Rousset S, Moustacchi E, Papadopoulo D. The fidelity of double strand breaks processing is impaired in complementation groups B and D of Fanconi anemia, a genetic instability syndrome. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:401-11. [PMID: 9661703 DOI: 10.1007/bf02673750] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammalian cells, nonhomologous end-joining is the predominant mechanism to eliminate DNA double strand breaks. Such events are at the origin of deletion mutagenesis and chromosomal rearrangements. The hallmark of Fanconi anemia, an inherited cancer prone disorder, is increased chromosomal breakage associated to over-production of deletions. Knowing that double strand breaks are at the origin of deletion mutagenesis, the question arises whether their processing is affected in FA. We set up a "host cell end-joining assay" to analyze the fate of double strand breaks into extrachromosomal substrates transiently replicated in normal and FA-D lymphoblasts. Although no difference in plasmid survival was found, blunt-ended breaks were sealed with significantly lower fidelity in FA cells, resulting in a higher deletion frequency and a larger deletion size. The results suggest that FA-D and FA-B gene products are likely to play a role in end-joining fidelity of specific DNA double strand breaks.
Collapse
Affiliation(s)
- M Escarceller
- UMR 218 CNRS, LRC n(0) 1 du CEA, Institut Curie-Recherche, Paris, France
| | | | | | | |
Collapse
|
45
|
Taghian DG, Nickoloff JA. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol 1997; 17:6386-93. [PMID: 9343400 PMCID: PMC232490 DOI: 10.1128/mcb.17.11.6386] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double-strand breaks (DSBs) stimulate chromosomal and extrachromosomal recombination and gene targeting. Transcription also stimulates spontaneous recombination by an unknown mechanism. We used Saccharomyces cerevisiae I-SceI to stimulate recombination between neo direct repeats in Chinese hamster ovary (CHO) cell chromosomal DNA. One neo allele was controlled by the dexamethasone-inducible mouse mammary tumor virus promoter and inactivated by an insertion containing an I-SceI site at which DSBs were introduced in vivo. The other neo allele lacked a promoter but carried 12 phenotypically silent single-base mutations that create restriction sites (restriction fragment length polymorphisms). This system allowed us to generate detailed conversion tract spectra for recipient alleles transcribed at high or low levels. Transient in vivo expression of I-SceI increased homologous recombination 2,000- to 10,000-fold, yielding recombinants at frequencies as high as 1%. Strikingly, 97% of these products arose by gene conversion. Most products had short, bidirectional conversion tracts, and in all cases, donor neo alleles (i.e., those not suffering a DSB) remained unchanged, indicating that conversion was fully nonreciprocal. DSBs in exogenous DNA are usually repaired by end joining requiring little or no homology or by nonconservative homologous recombination (single-strand annealing). In contrast, we show that chromosomal DSBs are efficiently repaired via conservative homologous recombination, principally gene conversion without associated crossing over. For DSB-induced events, similar recombination frequencies and conversion tract spectra were found under conditions of low and high transcription. Thus, transcription does not further stimulate DSB-induced recombination, nor does it appear to affect the mechanism(s) by which DSBs induce gene conversion.
Collapse
Affiliation(s)
- D G Taghian
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
46
|
Bill CA, Yu Y, Miselis NR, Little JB, Nickoloff JA. A role for p53 in DNA end rejoining by human cell extracts. Mutat Res 1997; 385:21-9. [PMID: 9372845 DOI: 10.1016/s0921-8777(97)00040-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tumor suppressor p53 is a major regulator in the response of human cells to DNA damage. In this study we assessed the role of p53 in the repair of DNA double-strand breaks in plasmid DNA using cell extracts from three human lymphoblastoid cell lines derived from the same donor. TK6, WI-L2-NS and TK6-E6-5e cells express wild-type, mutated and essentially no p53 protein, respectively. Total cellular extracts from TK6, WI-L2-NS and TK6-E6-5e cells were incubated with EcoRI linearized pUC19 DNA. Southern blot analysis of end-rejoined DNA indicated that the major products formed were linear multimers. There was approximately 2-fold greater end rejoining in WI-L2-NS and TK6-E6-5e extracts compared with TK6 extracts. Total DNA from end-rejoining reactions was purified and used to transform bacteria. Using the lacZ reporter gene as a measure of repair fidelity we found that misrepair, as indicated by white colonies, occurred at 4.1% to 6.5% of transformants, with no significant difference between the three cell lines. Gel analysis revealed that misrepair involved only deletions. Sequence analysis of 11 misrepaired products from each cell line showed 12 different deletions from 4 to 48 bp in length, but each cell line yielded similar product types. These results indicate that total cellular extracts from human lymphoblastoid cells lacking p53 or expressing mutated p53 have increased end-rejoining activity as compared with extracts from cells expressing wild-type p53. However, the p53 status does not influence the ratio of misrepair:correct repair, or the type of misrepair events.
Collapse
Affiliation(s)
- C A Bill
- Department of Cancer Biology, Harvard University School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Daza P, Schübler H, McMillan TJ, Girod SC, Pfeiffer P. Radiosensitivity and double-strand break rejoining in tumorigenic and non-tumorigenic human epithelial cell lines. Int J Radiat Biol 1997; 72:91-100. [PMID: 9246198 DOI: 10.1080/095530097143572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radiosensitivity and repair of DNA damage induced by ionizing radiation and restriction enzymes were investigated in three human epithelial cell lines: two tumorigenic squamous carcinoma cell lines (SCC-4 and SCC-25), and a non-tumorigenic epidermal keratinocyte cell line (RHEK-1). Sensitivity to ionizing radiation was determined using a clonogenic cell survival assay, which showed SCC-4 to be more radiosensitive than SCC-25 and RHEK-1, which in turn displayed about equal sensitivity. Using DNA precipitation under alkaline conditions for the analysis of induction and repair of DNA single-strand breaks (ssb), an increased level of ssb induction was found for SCC-4 while the efficiency of ssb repair was about equal in all three cell lines. Using pulsed-field gel electrophoresis (PFGE) for the measurement of induction and repair of DNA double-strand breaks (dsb), no consistent differences were detected between the three cell lines. A plasmid reconstitution assay was used to determine the capacity to rejoin restriction enzyme-induced dsb in whole-cell extracts prepared from the three cell lines. In these experiments, dsb rejoining was shown to be significantly reduced in the most radiosensitive SCC-4 cell line while it was about equal in RHEK-1 and SCC-25. The results indicate that plasmid reconstitution in cell-free extracts is a sufficiently sensitive assay to detect differences in repair capacity among tumour cell lines of different radiosensitivity which remain undetectable by DNA precipitation and PFGE.
Collapse
Affiliation(s)
- P Daza
- Department of Cell Biology, University of Seville, Spain
| | | | | | | | | |
Collapse
|
48
|
Ahne F, Jha B, Eckardt-Schupp F. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:743-9. [PMID: 9016623 PMCID: PMC146520 DOI: 10.1093/nar/25.4.743] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In wild-type yeast, the repair of a 169 bp double-strand gap induced by the restriction enzymes ApaI and NcoI in the URA3gene of the shuttle vector YpJA18 occurs with high fidelity according to the homologous chromosomal sequence. In contrast, only 25% of the cells of rad5-7 and rad5 Delta mutants perform correct gap repair. As has been proven by sequencing of the junction sites, the remaining cells recircularise the gapped plasmids by joining of the non-compatible, non-homologous ends. Thus, regarding the repair of DNA double-strand breaks, the rad5 mutants behave like mammalian cells rather than budding yeast. The majority of the end joined plasmids miss either one or both of the 3'and 5'protruding single-strands of the restriction ends completely and have undergone blunt-end ligation accompanied by fill-in DNA synthesis. These results imply an important role for the Rad5 protein (Rad5p) in the protection of protruding single-strand ends and for the avoidance of non-homologous end joining during repair of double-strand gaps in budding yeast. Alternatively, the Rad5p may be an accessory factor increasing the efficiency of homologous recombination in yeast, however, the molecular mechanism of Rad5p function requires further investigation.
Collapse
Affiliation(s)
- F Ahne
- Institut für Strahlenbiologie, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Neuherberg, Germany
| | | | | |
Collapse
|
49
|
Meima R, Haijema BJ, Dijkstra H, Haan GJ, Venema G, Bron S. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis. J Bacteriol 1997; 179:1219-29. [PMID: 9023205 PMCID: PMC178819 DOI: 10.1128/jb.179.4.1219-1229.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the major recombination enzyme, RecA. Strains carrying a mutation in the ATP-binding site of the AddB subunit exhibited high levels of plasmid instability, whereas a comparable mutation in the A subunit did not affect plasmid stability. Using an alternative plasmid system, pGP100, we were able to demonstrate that the differences in stability reflected differences in initial recombination frequencies. Based on a comparison of endpoint sequences observed in the various hosts, we speculate that at least two different mechanisms underlie the deletion events involved, the first (type I) occurring between nonrepeated sequences, and the second (type II) occurring between short direct repeats (DRs). The latter event was independent of single-strand replication intermediates and the mode of replication and possibly requires the introduction of double-strand breaks (DSBs) between the repeats. In the absence of functional AddAB complex, or the AddB subunit, DSBs are likely to be processed via a recA-independent mechanism, resulting in intramolecular recombination between the DRs. In wild-type cells, such DSBs are supposed to be either repaired by a mechanism involving AddAB-dependent recombination or degraded by the AddAB-associated exonuclease activity. Plasmid stability assays in a recA mutant showed that (i) the level of deletion formation was considerably higher in this host and (ii) that deletions between short DRs occurred at higher frequencies than those described previously for the parental strain. We propose that in wild-type cells, the recA gene product is involved in recombinational repair of DSBs.
Collapse
Affiliation(s)
- R Meima
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Hofseth LJ, Tsang SS, Rosin MP. Rejoining of DNA double-strand breaks after the introduction of chromosome 11 into a radiosensitive bladder carcinoma cell line. Mutat Res 1997; 383:21-30. [PMID: 9042416 DOI: 10.1016/s0921-8777(96)00042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insertion of a normal chromosome 11 into tumour cell lines can protect against a sensitivity to irradiation and oxidative stress. A possible mechanism underlying this effect is that there is a correction of a defect in the rejoining of double-strand breaks (dsb) by the chromosome insertion. In order to explore this hypothesis, three cell lines were evaluated for their ability to rejoin dsb: (1) a bladder carcinoma cell line ('parent') previously shown to be sensitive to irradiation and radical generating species; (2) a derivative of this cell line into which a normal chromosome 11 had been inserted by microcell fusion ('hybrid') showing corrected radiosensitivity; and (3) a 'revertant' cell line that had spontaneously lost the insert and reverted to the radiosensitive phenotype. Nuclear extracts from the 3 lines were isolated and evaluated for their capacity to rejoin plasmid (pUC18) DNA broken at defined restriction sites (SalI, EcoRI, KpnI, SmaI) in the lacZ gene. The extent of rejoining was determined by gel electrophoresis and the fidelity of rejoining determined by expression of the lacZ gene in E. coli DH5 alpha bacteria. Results suggest there is no difference between the 'parent', 'hybrid' and 'revertant' nuclear extracts in the fidelity and the total extent of rejoining, regardless of the type of break. However, there is an alteration in the distribution of rejoined products. Nuclear extracts from 'hybrid' cells tend to rejoin linear DNA into circular monomers with a greater efficiency than extracts from both 'parent' and 'revertant' cells. This alteration in distribution is observed when 3'- or 5'-protruding ends are rejoined but not in the rejoining of blunt ends. The results suggest that loci on chromosome 11 are involved in the rejoining of dsb, affecting the relative amount of the different rejoined products. Whether this alteration plays a role in the 'parent' cell's radiosensitivity is yet to be determined.
Collapse
Affiliation(s)
- L J Hofseth
- Division of Epidemiology and Cancer Prevention, British Columbia Cancer Agency, Vancouver, Canada
| | | | | |
Collapse
|