1
|
Siebor E, Neuwirth C. Overview of Salmonella Genomic Island 1-Related Elements Among Gamma-Proteobacteria Reveals Their Wide Distribution Among Environmental Species. Front Microbiol 2022; 13:857492. [PMID: 35479618 PMCID: PMC9035990 DOI: 10.3389/fmicb.2022.857492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to perform an in silico analysis of the available whole-genome sequencing data to detect syntenic genomic islands (GIs) having homology to Salmonella genomic island 1 (SGI1), analyze the genetic variations of their backbone, and determine their relatedness. Eighty-nine non-redundant SGI1-related elements (SGI1-REs) were identified among gamma-proteobacteria. With the inclusion of the thirty-seven backbones characterized to date, seven clusters were identified based on integrase homology: SGI1, PGI1, PGI2, AGI1 clusters, and clusters 5, 6, and 7 composed of GIs mainly harbored by waterborne or marine bacteria, such as Vibrio, Shewanella, Halomonas, Idiomarina, Marinobacter, and Pseudohongiella. The integrase genes and the backbones of SGI1-REs from clusters 6 and 7, and from PGI1, PGI2, and AGI1 clusters differed significantly from those of the SGI1 cluster, suggesting a different ancestor. All backbones consisted of two parts: the part from attL to the origin of transfer (oriT) harbored the DNA recombination, transfer, and mobilization genes, and the part from oriT to attR differed among the clusters. The diversity of SGI1-REs resulted from the recombination events between GIs of the same or other families. The oriT appeared to be a high recombination site. The multi-drug resistant (MDR) region was located upstream of the resolvase gene. However, most SGI1-REs in Vibrio, Shewanella, and marine bacteria did not harbor any MDR region. These strains could constitute a reservoir of SGI1-REs that could be potential ancestors of SGI1-REs encountered in pathogenic bacteria. Furthermore, four SGI1-REs did not harbor a resolvase gene and therefore could not acquire an integron. The presence of mobilization genes and AcaCD binding sites indicated that their conjugative transfer could occur with helper plasmids. The plasticity of SGI1-REs contributes to bacterial adaptation and evolution. We propose a more relevant classification to categorize SGI1-REs into different clusters based on their integrase gene similarity.
Collapse
Affiliation(s)
- Eliane Siebor
- Laboratory of Bacteriology, University Hospital of Dijon, Dijon, France
- UMR-CNRS 6249 Chrono-Environnement, University of Burgundy - Franche-Comté, Besançon, France
| | - Catherine Neuwirth
- Laboratory of Bacteriology, University Hospital of Dijon, Dijon, France
- UMR-CNRS 6249 Chrono-Environnement, University of Burgundy - Franche-Comté, Besançon, France
- *Correspondence: Catherine Neuwirth,
| |
Collapse
|
2
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
3
|
Sharma PK, Fu J, Zhang X, Fristensky B, Sparling R, Levin DB. Genome features of Pseudomonas putida LS46, a novel polyhydroxyalkanoate producer and its comparison with other P. putida strains. AMB Express 2014; 4:37. [PMID: 25401060 PMCID: PMC4230813 DOI: 10.1186/s13568-014-0037-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/13/2022] Open
Abstract
A novel strain of Pseudomonas putida LS46 was isolated from wastewater on the basis of its ability to synthesize medium chain-length polyhydroxyalkanoates (mcl-PHAs). P.putida LS46 was differentiated from other P.putida strains on the basis of cpn60 (UT). The complete genome of P.putida LS46 was sequenced and annotated. Its chromosome is 5,86,2556 bp in size with GC ratio of 61.69. It is encoding 5316 genes, including 7 rRNA genes and 76 tRNA genes. Nucleotide sequence data of the complete P. putida LS46 genome was compared with nine other P. putida strains (KT2440, F1, BIRD-1, S16, ND6, DOT-T1E, UW4, W619 and GB-1) identified either as biocontrol agents or as bioremediation agents and isolated from different geographical region and different environment. BLASTn analysis of whole genome sequences of the ten P. putida strains revealed nucleotide sequence identities of 86.54 to 97.52%. P.putida genome arrangement was LS46 highly similar to P.putida BIRD1 and P.putida ND6 but was markedly different than P.putida DOT-T1E, P.putida UW4 and P.putida W619. Fatty acid biosynthesis (fab), fatty acid degradation (fad) and PHA synthesis genes were highly conserved among biocontrol and bioremediation P.putida strains. Six genes in pha operon of P. putida LS46 showed >98% homology at gene and proteins level. It appears that polyhydroxyalkanoate (PHA) synthesis is an intrinsic property of P. putida and was not affected by its geographic origin. However, all strains, including P. putida LS46, were different from one another on the basis of house keeping genes, and presence of plasmid, prophages, insertion sequence elements and genomic islands. While P. putida LS46 was not selected for plant growth promotion or bioremediation capacity, its genome also encoded genes for root colonization, pyoverdine synthesis, oxidative stress (present in other soil isolates), degradation of aromatic compounds, heavy metal resistance and nicotinic acid degradation, manganese (Mn II) oxidation. Genes for toluene or naphthalene degradation found in the genomes of P. putida F1, DOT-T1E, and ND6 were absent in the P. putida LS46 genome. Heavy metal resistant genes encoded by the P. putida W619 genome were also not present in the P. putida LS46 genome. Despite the overall similarity among genome of P.putida strains isolated for different applications and from different geographical location a number of differences were observed in genome arrangement, occurrence of transposon, genomic islands and prophage. It appears that P.putida strains had a common ancestor and by acquiring some specific genes by horizontal gene transfer it differed from other related strains.
Collapse
|
4
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
5
|
Pingoud V, Sudina A, Geyer H, Bujnicki JM, Lurz R, Lüder G, Morgan R, Kubareva E, Pingoud A. Specificity Changes in the Evolution of Type II Restriction Endonucleases. J Biol Chem 2005; 280:4289-98. [PMID: 15563460 DOI: 10.1074/jbc.m409020200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How restriction enzymes with their different specificities and mode of cleavage evolved has been a long standing question in evolutionary biology. We have recently shown that several Type II restriction endonucleases, namely SsoII (downward arrow CCNGG), PspGI (downward arrow CCWGG), Eco-RII (downward arrow CCWGG), NgoMIV (G downward arrow CCGGC), and Cfr10I (R downward arrow CCGGY), which recognize similar DNA sequences (as indicated, where the downward arrows denote cleavage position), share limited sequence similarity over an interrupted stretch of approximately 70 amino acid residues with MboI, a Type II restriction endonuclease from Moraxella bovis (Pingoud, V., Conzelmann, C., Kinzebach, S., Sudina, A., Metelev, V., Kubareva, E., Bujnicki, J. M., Lurz, R., Luder, G., Xu, S. Y., and Pingoud, A. (2003) J. Mol. Biol. 329, 913-929). Nevertheless, MboI has a dissimilar DNA specificity (downward arrow GATC) compared with these enzymes. In this study, we characterize MboI in detail to determine whether it utilizes a mechanism of DNA recognition similar to SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. Mutational analyses and photocross-linking experiments demonstrate that MboI exploits the stretch of approximately 70 amino acids for DNA recognition and cleavage. It is therefore likely that MboI shares a common evolutionary origin with SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. This is the first example of a relatively close evolutionary link between Type II restriction enzymes of widely different specificities.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalytic Domain
- Chromatography, Gel
- Computational Biology
- Cross-Linking Reagents/pharmacology
- DNA/chemistry
- DNA/metabolism
- DNA Mutational Analysis
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Dimerization
- Escherichia coli/metabolism
- Evolution, Molecular
- Light
- Magnesium/chemistry
- Manganese/chemistry
- Mass Spectrometry
- Microscopy, Electron, Transmission
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Salts/pharmacology
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Time Factors
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Bujnicki JM, Radlinska M. Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their polyphyletic origin. Nucleic Acids Res 1999; 27:4501-9. [PMID: 10536161 PMCID: PMC148735 DOI: 10.1093/nar/27.22.4501] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA N4-cytosine methyltransferases (N4mC MTases) are a family of S-adenosyl-L-methionine (AdoMet)-dependent MTases. Members of this family were previously found to share nine conserved sequence motifs, but the evolutionary basis of these similarities has never been studied in detail. We performed phylogenetic analysis of 37 known and potential new family members from the multiple sequence alignment using distance matrix, parsimony and maximum likelihood approaches to infer the evolutionary relationship among the N4mC MTases and classify them into groups of orthologs. All the treeing algorithms employed as well as results of exhaustive sequence database searching support a scenario, in which the majority of N4mC MTases, except for M. Bal I and M. Bam HI, arose by divergence from a common ancestor. Interestingly, MTases M. Bal I and M. Bam HI apparently originated from N6-adenine MTases and represent the most recent addendum to the N4mC MTase family. In addition to the previously reported nine sequence motifs, two more conserved sequence patches were detected. Phylogenetic analysis also provided the evidence for massive horizontal transfer of MTase genes, presumably with the whole restriction-modification systems, between Bacteria and Archaea.
Collapse
Affiliation(s)
- J M Bujnicki
- Molecular Biology Research Program, Henry Ford Health System, One Ford Place Suite 5D, Detroit, MI 48202, USA.
| | | |
Collapse
|
8
|
Yeo CC, Tham JM, Kwong SM, Poh CL. Characterization of the Pac25I restriction-modification genes isolated from the endogenous pRA2 plasmid of Pseudomonas alcaligenes NCIB 9867. Plasmid 1998; 40:203-13. [PMID: 9806857 DOI: 10.1006/plas.1998.1365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes for the class II Pseudomonas alcaligenes NCIB 9867 restriction-modification (R-M) system, Pac25I, have been cloned from its 33-kb endogenous plasmid, pRA2. The Pac25I endonuclease and methylase genes were found to be aligned in a head-to-tail orientation with the methylase gene preceding and overlapping the endonuclease gene by 1 bp. The deduced amino acid sequence of the Pac25I methylase revealed significant similarity with the XcyI, XmaI, Cfr9I, and SmaI methylases. High sequence similarity was displayed between the Pac25I endonuclease and the XcyI, XmaI, and Cfr9I endonucleases which cleave between the external cytosines of the recognition sequence (i.e., 5'-C CCGGG-3') and are thus perfect isoschizomers. However, no sequence similarity was detected between the Pac25I endonuclease and the SmaI endonuclease which cleaves between the internal CpG of the recognition sequence (i.e., 5'-CCCGGG-3'). Both the Pac25I methylase and endonuclease were expressed in Escherichia coli. An open reading frame encoding a protein which shows significant similarity to invertases and resolvases was located immediately upstream of the Pac25I R-M operon. In addition, a transposon designated Tn5563 was located 1531 bp downstream of the R-M genes. The location on a self-transmissible plasmid as well as the close association with genes involved in DNA mobility suggests horizontal transfer as a possible mode of distribution of this family of R-M genes in various bacteria.
Collapse
Affiliation(s)
- C C Yeo
- Faculty of Medicine, Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | | | | | | |
Collapse
|
9
|
Lubys A, Lubienè J, Kulakauskas S, Stankevicius K, Timinskas A, Janulaitis A. Cloning and analysis of the genes encoding the type IIS restriction-modification system HphI from Haemophilus parahaemolyticus. Nucleic Acids Res 1996; 24:2760-6. [PMID: 8759008 PMCID: PMC146015 DOI: 10.1093/nar/24.14.2760] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genomic region encoding the type IIS restriction-modification (R-M) system HphI (enzymes recognizing the asymmetric sequence 5'-GGTGA-3'/5'-TCACC-3') from Haemophilus parahaemolyticus were cloned into Escherichia coli and sequenced. Sequence analysis of the R-M HphI system revealed three adjacent genes aligned in the same orientation: a cytosine 5 methyltransferase (gene hphIMC), an adenine N6 methyltransferase (hphIMA) and the HphI restriction endonuclease (gene hphIR). Either methyltransferase is capable of protecting plasmid DNA in vivo against the action of the cognate restriction endonuclease. hphIMA methylation renders plasmid DNA resistant to R.Hindill at overlapping sites, suggesting that the adenine methyltransferase modifies the 3'-terminal A residue on the GGTGA strand. Strong homology was found between the N-terminal part of the m6A methyltransferasease and an unidentified reading frame interrupted by an incomplete gaIE gene of Neisseria meningitidis. The HphI R-M genes are flanked by a copy of a 56 bp direct nucleotide repeat on each side. Similar sequences have also been identified in the non-coding regions of H.influenzae Rd DNA. Possible involvement of the repeat sequences in the mobility of the HphI R-M system is discussed.
Collapse
Affiliation(s)
- A Lubys
- Institute of Biotechnology, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
10
|
Kusano K, Naito T, Handa N, Kobayashi I. Restriction-modification systems as genomic parasites in competition for specific sequences. Proc Natl Acad Sci U S A 1995; 92:11095-9. [PMID: 7479944 PMCID: PMC40578 DOI: 10.1073/pnas.92.24.11095] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Restriction-modification (RM) systems are believed to have evolved to protect cells from foreign DNA. However, this hypothesis may not be sufficient to explain the diversity and specificity in sequence recognition, as well as other properties, of these systems. We report that the EcoRI restriction endonuclease-modification methylase (rm) gene pair stabilizes plasmids that carry it and that this stabilization is blocked by an RM of the same sequence specificity (EcoRI or its isoschizomer, Rsr I) but not by an RM of a different specificity (PaeR7I) on another plasmid. The PaeR7I rm likewise stabilizes plasmids, unless an rm gene pair with identical sequence specificity is present. Our analysis supports the following model for stabilization and incompatibility: the descendants of cells that have lost an rm gene pair expose the recognition sites in their chromosomes to lethal attack by any remaining restriction enzymes unless modification by another RM system of the same specificity protects these sites. Competition for specific sequences among these selfish genes may have generated the great diversity and specificity in sequence recognition among RM systems. Such altruistic suicide strategies, similar to those found in virus-infected cells, may have allowed selfish RM systems to spread by effectively competing with other selfish genes.
Collapse
Affiliation(s)
- K Kusano
- Department of Molecular Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Withers BE, Dunbar JC. DNA determinants in sequence-specific recognition by XmaI endonuclease. Nucleic Acids Res 1995; 23:3571-7. [PMID: 7567471 PMCID: PMC307239 DOI: 10.1093/nar/23.17.3571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The XmaI endonuclease recognizes and cleaves the sequence C decreases CCGGG. Magnesium is required for catalysis, however, the enzyme forms stable, specific complexes with DNA in the absence of magnesium. An association constant of 1.2 x 10(9)/M was estimated for the affinity of the enzyme for a specific 195 bp fragment. Competition assays revealed that the site-specific association constant represented an approximately 10(4)-fold increase in affinity over that for non-cognate sites. Missing nucleoside analyses suggested an interaction of the enzyme with each of the cytosines and guanines within the recognition site. Recognition of each of the guanines was also indicated by dimethylsulfate interference footprinting assays. The phosphates 5' to the guanines within the recognition site appeared to be the major sites of interaction of XmaI with the sugar-phosphate backbone. No significant interaction of the protein was observed with phosphates flanking the recognition sequence. Comparison of the footprinting patterns of XmaI with those of the neoschizomer SmaI (CCC decreases GGG) revealed that the two enzymes utilize the same DNA determinants in their specific interaction with the CCCGGG recognition site.
Collapse
Affiliation(s)
- B E Withers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
12
|
Siksnys V, Timinskas A, Klimasauskas S, Butkus V, Janulaitis A. Sequence similarity among type-II restriction endonucleases, related by their recognized 6-bp target and tetranucleotide-overhang cleavage. Gene 1995; 157:311-4. [PMID: 7607515 DOI: 10.1016/0378-1119(94)00632-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The type-II restriction endonucleases (ENases) EcoRI (recognition sequence G decreases AATTC), RsrI (G decreases AATTC), XcyI (C decreases CCGGG), Cfr9I (C decreases CCGGG) and MunI (C decreases AATTG), all cleave hexanucleotide palindromic sequences, leaving tetranucleotide 5'-overhangs. Two regions of similarity that appear in the same order and relative position were identified among the amino-acid sequences of ENases. These regions map to the structural elements of EcoRI involved in the building of the catalytic site and in interactions with the central nucleotides of the recognized sequence. We propose that these ENases might all share a similar structural organization of the active site and structural motifs involved in interactions with specific DNA recognition sequences.
Collapse
Affiliation(s)
- V Siksnys
- Institute of Biotechnology Fermentas, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
13
|
McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1994; 22:3640-59. [PMID: 7937074 PMCID: PMC308336 DOI: 10.1093/nar/22.17.3640] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.
Collapse
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
14
|
Siksnys V, Zareckaja N, Vaisvila R, Timinskas A, Stakenas P, Butkus V, Janulaitis A. CAATTG-specific restriction-modification munI genes from Mycoplasma: sequence similarities between R.MunI and R.EcoRI. Gene 1994; 142:1-8. [PMID: 8181741 DOI: 10.1016/0378-1119(94)90347-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genes coding for the MunI restriction-modification (R-M) system, which recognize the sequence 5'-CAATTG, have been cloned and expressed in Escherichia coli, and their nucleotide sequences have been determined. The restriction endonuclease (ENase; R.MunI) is encoded by an open reading frame (ORF) of 606 bp, and a 699-bp ORF codes for the methyltransferase (MTase). The two genes are transcribed divergently from a 355-bp region. The gene encoding the ENase is preceded by a short co-linear ORF of 222 bp. The deduced amino acid (aa) sequence of this short ORF (SORF) closely resembles the sequences of a family of regulatory proteins that are associated with other type-II R-M systems. Comparative analysis of the deduced aa sequence of R.MunI revealed several regions of similarity to the EcoRI and RsrI ENases that recognize the GAATTC sequence. The similar mode of interaction of MunI, EcoRI and RsrI with the tetranucleotide AATT, common to the recognition sequences of these ENases, was suggested.
Collapse
Affiliation(s)
- V Siksnys
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
15
|
Lubys A, Menkevicius S, Timinskas A, Butkus V, Janulaitis A. Cloning and analysis of translational control for genes encoding the Cfr9I restriction-modification system. Gene 1994; 141:85-9. [PMID: 8163180 DOI: 10.1016/0378-1119(94)90132-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The complete type-II Cfr9I restriction-modification (R-M) system of Citrobacter freundii strain RFL9, recognizing the DNA sequence CCCGGG, has been cloned and expressed, and functionally active enzymes have been produced in Escherichia coli. Both the methyltransferase (MTase; M.Cfr9I) and restriction endonuclease (ENase; R.Cfr9I) were found to be encoded on a 2.3-kb cloned fragment in the same transcriptional orientation, but differing in translational phases. The last codon (underlined) (ATGA) of the MTase-encoding gene (Cfr9IM) overlaps with the start codon for the ENase-encoding gene (overlined) (cfr9IR). A nucleotide sequence complementary to a predicted Shine-Dalgarno sequence preceding cfr9IR is within this gene. Predicted free energy (delta G) for formation of the mRNA secondary structure involving these complementary sequences was found to be -16.1 kcal/mol. Amino-acid sequence homology of 80% was found between R.Cfr9I and R.XcyI.
Collapse
Affiliation(s)
- A Lubys
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
16
|
Nelson M, Raschke E, McClelland M. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1993; 21:3139-54. [PMID: 8392715 PMCID: PMC309743 DOI: 10.1093/nar/21.13.3139] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
17
|
Withers BE, Dunbar JC. The endonuclease isoschizomers, SmaI and XmaI, bend DNA in opposite orientations. Nucleic Acids Res 1993; 21:2571-7. [PMID: 8332454 PMCID: PMC309583 DOI: 10.1093/nar/21.11.2571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The SmaI and XmaI endonucleases are imperfect isoschizomers that recognize the sequence CCCGGG. SmaI cleaves between the internal CpG to produce blunt end scissions whereas XmaI cleaves between the external cytosines to produce a four base, five prime overhang. Each of the endonucleases forms stable, specific complexes with DNA in the absence of magnesium. Circular permutation analyses of the protein-DNA complexes revealed that each of the endonucleases induces bending of the DNA. Phase sensitive detection analyses verified the existence of the SmaI and XmaI induced bends. Furthermore, bending of the helix axis by the endonucleases appeared to be directed in opposite orientations. The orientation of the SmaI induced bend appeared to be towards the major groove and is reminiscent of the direction of the bend induced by EcoRV which similarly induces blunt end scissions. Conversely, XmaI appeared to bend the DNA towards the minor groove.
Collapse
Affiliation(s)
- B E Withers
- Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|