1
|
Lian K, Furulund BMN, Tveita AA, Haugen P, Johansen SD. Mobile group I introns at nuclear rDNA position L2066 harbor sense and antisense homing endonuclease genes intervened by spliceosomal introns. Mob DNA 2022; 13:23. [PMID: 36209098 PMCID: PMC9548176 DOI: 10.1186/s13100-022-00280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Mobile group I introns encode homing endonucleases that confer intron mobility initiated by a double-strand break in the intron-lacking allele at the site of insertion. Nuclear ribosomal DNA of some fungi and protists contain mobile group I introns harboring His-Cys homing endonuclease genes (HEGs). An intriguing question is how protein-coding genes embedded in nuclear ribosomal DNA become expressed. To address this gap of knowledge we analyzed nuclear L2066 group I introns from myxomycetes and ascomycetes. Results A total of 34 introns were investigated, including two identified mobile-type introns in myxomycetes with HEGs oriented in sense or antisense directions. Intriguingly, both HEGs are interrupted by spliceosomal introns. The intron in Didymium squamulosum, which harbors an antisense oriented HEG, was investigated in more detail. The group I intron RNA self-splices in vitro, thus generating ligated exons and full-length intron circles. The intron HEG is expressed in vivo in Didymium cells, which involves removal of a 47-nt spliceosomal intron (I-47) and 3′ polyadenylation of the mRNA. The D. squamulosum HEG (lacking the I-47 intron) was over-expressed in E. coli, and the corresponding protein was purified and shown to confer endonuclease activity. The homing endonuclease was shown to cleave an intron-lacking DNA and to produce a pentanucleotide 3′ overhang at the intron insertion site. Conclusions The L2066 family of nuclear group I introns all belong to the group IE subclass. The D. squamulosum L2066 intron contains major hallmarks of a true mobile group I intron by encoding a His-Cys homing endonuclease that generates a double-strand break at the DNA insertion site. We propose a potential model to explain how an antisense HEG becomes expressed from a nuclear ribosomal DNA locus. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00280-4.
Collapse
Affiliation(s)
- Kjersti Lian
- Nofima AS, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Betty M N Furulund
- Genomics division, Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Anders A Tveita
- Medical Department, Bærum Hospital, Vestre Viken Hospital Trulst, Drammen, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Steinar D Johansen
- Genomics division, Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| |
Collapse
|
2
|
Structural Organization of S516 Group I Introns in Myxomycetes. Genes (Basel) 2022; 13:genes13060944. [PMID: 35741706 PMCID: PMC9223047 DOI: 10.3390/genes13060944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Group I introns are mobile genetic elements encoding self-splicing ribozymes. Group I introns in nuclear genes are restricted to ribosomal DNA of eukaryotic microorganisms. For example, the myxomycetes, which represent a distinct protist phylum with a unique life strategy, are rich in nucleolar group I introns. We analyzed and compared 75 group I introns at position 516 in the small subunit ribosomal DNA from diverse and distantly related myxomycete taxa. A consensus secondary structure revealed a conserved group IC1 ribozyme core, but with a surprising RNA sequence complexity in the peripheral regions. Five S516 group I introns possess a twintron organization, where a His-Cys homing endonuclease gene insertion was interrupted by a small spliceosomal intron. Eleven S516 introns contained direct repeat arrays with varying lengths of the repeated motif, a varying copy number, and different structural organizations. Phylogenetic analyses of S516 introns and the corresponding host genes revealed a complex inheritance pattern, with both vertical and horizontal transfers. Finally, we reconstructed the evolutionary history of S516 nucleolar group I introns from insertion of mobile-type introns at unoccupied cognate sites, through homing endonuclease gene degradation and loss, and finally to the complete loss of introns. We conclude that myxomycete S516 introns represent a family of genetic elements with surprisingly dynamic structures despite a common function in RNA self-splicing.
Collapse
|
3
|
A Phylogenetic Approach to Structural Variation in Organization of Nuclear Group I Introns and Their Ribozymes. Noncoding RNA 2021; 7:ncrna7030043. [PMID: 34449660 PMCID: PMC8395846 DOI: 10.3390/ncrna7030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023] Open
Abstract
Nuclear group I introns are restricted to the ribosomal DNA locus where they interrupt genes for small subunit and large subunit ribosomal RNAs at conserved sites in some eukaryotic microorganisms. Here, the myxomycete protists are a frequent source of nuclear group I introns due to their unique life strategy and a billion years of separate evolution. The ribosomal DNA of the myxomycete Mucilago crustacea was investigated and found to contain seven group I introns, including a direct repeat-containing intron at insertion site S1389 in the small subunit ribosomal RNA gene. We collected, analyzed, and compared 72 S1389 group IC1 introns representing diverse myxomycete taxa. The consensus secondary structure revealed a conserved ribozyme core, but with surprising sequence variations in the guanosine binding site in segment P7. Some S1389 introns harbored large extension sequences in the peripheral region of segment P9 containing direct repeat arrays. These repeats contained up to 52 copies of a putative internal guide sequence motif. Other S1389 introns harbored homing endonuclease genes in segment P1 encoding His-Cys proteins. Homing endonuclease genes were further interrupted by small spliceosomal introns that have to be removed in order to generate the open reading frames. Phylogenetic analyses of S1389 intron and host gene indicated both vertical and horizontal intron transfer during evolution, and revealed sporadic appearances of direct repeats, homing endonuclease genes, and guanosine binding site variants among the myxomycete taxa.
Collapse
|
4
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0230-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Abstract
Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.
Collapse
|
7
|
Abstract
The abundance of group I introns, intragenic RNA sequences capable of self-splicing, in Gram-positive bacteriophage genomes, is illustrated by various new group I introns recently described in Staphylococcus phage genomes. These introns were found to interrupt DNA metabolism genes as well as late genes. These group I introns often code for homing endonucleases, which promote lateral transfer of group I introns, thereby enabling spread through a population. Homing endonucleases encoded by group I introns in Staphylococcus phage genomes were predicted to belong to the GIY-YIG, LAGLIDADG, HNH or EDxHD family of endonucleases. The group I intron distribution in Staphylococcus phage genomes exemplifies the homology between these introns as well as the encoded endonucleases. Despite several suggested functions, the role of group I introns in bacteriophages remains unclear or might be nonexistent. However, transcriptome analysis might provide additional information to elucidate the possible purpose of group I introns in phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| | - Katrien Vandersteegen
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| |
Collapse
|
8
|
Hedberg A, Johansen SD. Nuclear group I introns in self-splicing and beyond. Mob DNA 2013; 4:17. [PMID: 23738941 PMCID: PMC3679873 DOI: 10.1186/1759-8753-4-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/14/2013] [Indexed: 01/09/2023] Open
Abstract
Group I introns are a distinct class of RNA self-splicing introns with an ancient origin. All known group I introns present in eukaryote nuclei interrupt functional ribosomal RNA genes located in ribosomal DNA loci. The discovery of the Tetrahymena intron more than 30 years ago has been essential to our understanding of group I intron catalysis, higher-order RNA structure, and RNA folding, but other intron models have provided information about the biological role. Nuclear group I introns appear widespread among eukaryotic microorganisms, and the plasmodial slime molds (myxomycetes) contain an abundance of self-splicing introns. Here, we summarize the main conclusions from previous work on the Tetrahymena intron on RNA self-splicing catalysis as well as more recent work on myxomycete intron biology. Group I introns in myxomycetes that represent different evolutionary stages, biological roles, and functional settings are discussed.
Collapse
Affiliation(s)
- Annica Hedberg
- RNA lab-RAMP, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø N-9037, Norway.
| | | |
Collapse
|
9
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
10
|
Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol 2009; 191:6193-202. [PMID: 19666710 DOI: 10.1128/jb.00675-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Sokolowska M, Czapinska H, Bochtler M. Crystal structure of the beta beta alpha-Me type II restriction endonuclease Hpy99I with target DNA. Nucleic Acids Res 2009; 37:3799-810. [PMID: 19380375 PMCID: PMC2699513 DOI: 10.1093/nar/gkp228] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII).
Collapse
Affiliation(s)
- Monika Sokolowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
12
|
Milstein D, Oliveira MC, Martins FM, Matioli SR. Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the Eastern coast of South America. BMC Evol Biol 2008; 8:308. [PMID: 18992156 PMCID: PMC2585584 DOI: 10.1186/1471-2148-8-308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/07/2008] [Indexed: 11/24/2022] Open
Abstract
Background Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific evolutionary history of a nuclear group I intron; to use nuclear, mitochondrial and chloroplast DNA for population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.
Collapse
Affiliation(s)
- Daniela Milstein
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, cep 05508-900, Brazil.
| | | | | | | |
Collapse
|
13
|
Feau N, Hamelin RC, Bernier L. Variability of nuclear SSU-rDNA group introns within Septoria species: incongruence with host sequence phylogenies. J Mol Evol 2007; 64:489-99. [PMID: 17457635 DOI: 10.1007/s00239-005-0309-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
We report structural features and distribution patterns of 26 different group I introns located at three distinct nucleotide positions in nuclear small subunit ribosomal DNA (SSU-rDNA) of 10 Septoria and 4 other anamorphic species related to the teleomorphic genus Mycosphaerella. Secondary structure and sequence characteristics assigned the introns to the common IC1 and IE groups. Intron distribution patterns and phylogenetic relationships strongly suggested that some horizontal transfer events have occurred among the closely related fungal species sampled. To test this hypothesis, we used a comparative approach of intron- and rDNA-based phylogenies through MP- and ML-based topology tests. Our results showed two statistically well-supported major incongruences between the intron and the equivalent internal transcribed spacer (ITS) tree comparisons made. Such absence of a co-evolutive history between group I introns and host sequences is discussed relatively to the intron structures, the mechanisms of intron movement, and the biology of the Mycosphaerella pathogenic fungi.
Collapse
Affiliation(s)
- Nicolas Feau
- Centre d'étude de la forêt, Université Laval, Québec, G1K 7P4, Canada
| | | | | |
Collapse
|
14
|
Wikmark OG, Einvik C, De Jonckheere JF, Johansen SD. Short-term sequence evolution and vertical inheritance of the Naegleria twin-ribozyme group I intron. BMC Evol Biol 2006; 6:39. [PMID: 16670006 PMCID: PMC1464144 DOI: 10.1186/1471-2148-6-39] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 05/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNA of several species of the free-living Naegleria amoeba harbors an optional group I intron within the nuclear small subunit ribosomal RNA gene. The intron (Nae.S516) has a complex organization of two ribozyme domains (NaGIR1 and NaGIR2) and a homing endonuclease gene (NaHEG). NaGIR2 is responsible for intron excision, exon ligation, and full-length intron RNA circularization, reactions typical for nuclear group I intron ribozymes. NaGIR1, however, is essential for NaHEG expression by generating the 5' end of the homing endonuclease messenger RNA. Interestingly, this unusual class of ribozyme adds a lariat-cap at the mRNA. RESULTS To elucidate the evolutionary history of the Nae.S516 twin-ribozyme introns we have analyzed 13 natural variants present in distinct Naegleria isolates. Structural variabilities were noted within both the ribozyme domains and provide strong comparative support to the intron secondary structure. One of the introns, present in N. martinezi NG872, contains hallmarks of a degenerated NaHEG. Phylogenetic analyses performed on separate data sets representing NaGIR1, NaGIR2, NaHEG, and ITS1-5.8S-ITS2 ribosomal DNA are consistent with an overall vertical inheritance pattern of the intron within the Naegleria genus. CONCLUSION The Nae.S516 twin-ribozyme intron was gained early in the Naegleria evolution with subsequent vertical inheritance. The intron was lost in the majority of isolates (70%), leaving a widespread but scattered distribution pattern. Why the apparent asexual Naegleria amoebae harbors active intron homing endonucleases, dependent on sexual reproduction for its function, remains a puzzle.
Collapse
Affiliation(s)
- Odd-Gunnar Wikmark
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Christer Einvik
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
- Department of Pediatrics, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Johan F De Jonckheere
- Protozoology Laboratory, Scientific Institute Public Health, B1050 Brussels, Belgium
| | - Steinar D Johansen
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
- Department of Fisheries and Natural Sciences, Bodø University College, N-8049 Bodø, Norway
| |
Collapse
|
15
|
Machouart M, Lacroix C, Bui H, Feuilhade de Chauvin M, Derouin F, Lorenzo F. Polymorphisms and intronic structures in the 18S subunit ribosomal RNA gene of the fungiScytalidium dimidiatumandScytalidium hyalinum. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09789.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Abstract
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group.
Collapse
Affiliation(s)
- Ingo Busse
- Fakultät für Biologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
17
|
Abstract
Homing endonucleases are a class of site-specific DNA endonucleases encoded by open reading frames within introns and inteins. They initiate the mobility of their host element by recognizing intronless or inteinless alleles of their host gene and making a double-strand break. The homing endonucleases are notable for their long target sites and a tolerance for sequence polymorphisms in their substrates. The methods used to study homing endonucleases are similar to those used to study protein-DNA interactions in general. However, some variations and specialized techniques are useful in characterizing homing endonucleases and these methods are discussed.
Collapse
Affiliation(s)
- Joseph C Kowalski
- Molecular Genetics Program, Wadsworth Center, New York State, Department of Health and School of Public Health, State University of New York at Albany, Albany, NY 12201-2002, USA
| | | |
Collapse
|
18
|
Yokoyama E, Yamagishi K, Hara A. Group-I intron containing a putative homing endonuclease gene in the small subunit ribosomal DNA of Beauveria bassiana IFO 31676. Mol Biol Evol 2002; 19:2022-5. [PMID: 12411610 DOI: 10.1093/oxfordjournals.molbev.a004025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Johansen S, Einvik C, Nielsen H. DiGIR1 and NaGIR1: naturally occurring group I-like ribozymes with unique core organization and evolved biological role. Biochimie 2002; 84:905-12. [PMID: 12458083 DOI: 10.1016/s0300-9084(02)01443-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The group I-like ribozyme GIR1 is a unique example of a naturally occurring ribozyme with an evolved biological function. GIR1 generates the 5'-end of a nucleolar encoded messenger RNA involved in intron mobility. GIR1 is found as a cis-cleaving ribozyme within two very different rDNA group I introns (twin-ribozyme introns) in distantly related organisms. The Didymium GIR1 (DiGIR1) and Naegleria GIR1 (NaGIR1) share fundamental features in structural organization and reactivity, and display significant differences when compared to the related group I splicing ribozymes. GIR1 lacks the characteristic P1 segment present in all group I splicing ribozymes, it has a novel core organization, and it catalyses two site-specific hydrolytic cleavages rather than splicing. DiGIR1 and NaGIR1 appear to have originated from eubacterial group I introns in order to fulfil a common biological challenge: the expression of a protein encoding gene in a nucleolar context.
Collapse
Affiliation(s)
- Steinar Johansen
- RNA Research Group, Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 037 Tromsø, Norway.
| | | | | |
Collapse
|
20
|
Haugen P, De Jonckheere JF, Johansen S. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1641-9. [PMID: 11895434 DOI: 10.1046/j.1432-1327.2002.02802.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two group I introns Nae.L1926 and Nmo.L2563, found at two different sites in nuclear LSU rRNA genes of Naegleria amoebo-flagellates, have been characterized in vitro. Their structural organization is related to that of the mobile Physarum intron Ppo.L1925 (PpLSU3) with ORFs extending the L1-loop of a typical group IC1 ribozyme. Nae.L1926, Nmo.L2563 and Ppo.L1925 RNAs all self-splice in vitro, generating ligated exons and full-length intron circles as well as internal processed excised intron RNAs. Formation of full-length intron circles is found to be a general feature in RNA processing of ORF-containing nuclear group I introns. Both Naegleria LSU rDNA introns contain a conserved polyadenylation signal at exactly the same position in the 3' end of the ORFs close to the internal processing sites, indicating an RNA polymerase II-like expression pathway of intron proteins in vivo. The intron proteins I-NaeI and I-NmoI encoded by Nae.L1926 and Nmo.L2563, respectively, correspond to His-Cys homing endonucleases of 148 and 175 amino acids. I-NaeI contains an additional sequence motif homologous to the unusual DNA binding motif of three antiparallel beta sheets found in the I-PpoI endonuclease, the product of the Ppo.L1925 intron ORF.
Collapse
Affiliation(s)
- Peik Haugen
- RNA Research group, Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
21
|
Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001; 29:3757-74. [PMID: 11557808 PMCID: PMC55915 DOI: 10.1093/nar/29.18.3757] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Homing endonucleases confer mobility to their host intervening sequence, either an intron or intein, by catalyzing a highly specific double-strand break in a cognate allele lacking the intervening sequence. These proteins are characterized by their ability to bind long DNA target sites (14-40 bp) and their tolerance of minor sequence changes in these sites. A wealth of biochemical and structural data has been generated for these enzymes over the past few years. Herein we review our current understanding of homing endonucleases, including their diversity and evolution, DNA-binding and catalytic mechanisms, and attempts to engineer them to bind novel DNA substrates.
Collapse
Affiliation(s)
- B S Chevalier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center and Graduate Program in Molecular and Cell Biology, University of Washington, 1100 Fairview Avenue North A3-023, Seattle, WA 98109, USA
| | | |
Collapse
|
22
|
Müller KM, Cannone JJ, Gutell RR, Sheath RG. A structural and phylogenetic analysis of the group IC1 introns in the order Bangiales (Rhodophyta). Mol Biol Evol 2001; 18:1654-67. [PMID: 11504846 DOI: 10.1093/oxfordjournals.molbev.a003954] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study of the North American biogeography of Bangia revealed the presence of two introns inserted at positions 516 and 1506 in the nuclear-encoded SSU rRNA gene. We subsequently sequenced nuclear SSU rRNA in additional representatives of this genus and the sister genus Porphyra in order to examine the distribution, phylogeny, and structural characteristics of these group I introns. The lengths of these introns varied considerably, ranging from 467 to 997 nt for intron 516 and from 509 to 1,082 nt for intron 1506. The larger introns contained large insertions in the P2 domain of intron 516 and the P1 domain of intron 1506 that correspond to open reading frames (ORFs) with His-Cys box homing endonuclease motifs. These ORFs were found on the complementary strand of the 1506 intron in Porphyra fucicola and P. umbilicalis (HG), unlike the 516 intron in P. abbottae, P. kanakaensis, P. tenera (SK), Bangia fuscopurpurea (Helgoland), and B. fuscopurpurea (MA). Frameshifts were noted in the ORFs of the 516 introns in P. kanakaensis and B. fuscopurpurea (HL), and all ORFs terminated prematurely relative to the amino acid sequence for the homing endonuclease I-Ppo I. This raises the possibility that these sequences are pseudogenes. Phylogenies generated using sequences of both introns and the 18S rRNA gene were congruent, which indicated long-term immobility and vertical inheritance of the introns followed by subsequent loss in more derived lineages. The introns within the florideophyte species Hildenbrandia rubra (position 1506) were included to determine relationships with those in the Bangiales. The two sequences of intron 1506 analyzed in Hildenbrandia were positioned on a well-supported branch associated with members of the Bangiales, indicating possible common ancestry. Structural analysis of the intron sequences revealed a signature structural feature in the P5b domain of intron 516 that is unique to all Bangialean introns in this position and not seen in intron 1506 or other group IC1 introns.
Collapse
Affiliation(s)
- K M Müller
- Department of Botany, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Grishin NV. Treble clef finger--a functionally diverse zinc-binding structural motif. Nucleic Acids Res 2001; 29:1703-14. [PMID: 11292843 PMCID: PMC31318 DOI: 10.1093/nar/29.8.1703] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed treble clef finger in this study, forms the protein structural core and is 25-45 residues long. The treble clef motif is assembled around the central zinc ion and consists of a zinc knuckle, loop, beta-hairpin and an alpha-helix. The knuckle and the first turn of the helix each incorporate two zinc ligands. Treble clef domains constitute the core of many structures such as ribosomal proteins L24E and S14, RING fingers, protein kinase cysteine-rich domains, nuclear receptor-like fingers, LIM domains, phosphatidylinositol-3-phosphate-binding domains and His-Me finger endonucleases. The treble clef finger is a uniquely versatile motif adaptable for various functions. This small domain with a 25 residue structural core can accommodate eight different metal-binding sites and can have many types of functions from binding of nucleic acids, proteins and small molecules, to catalysis of phosphodiester bond hydrolysis. Treble clef motifs are frequently incorporated in larger structures or occur in doublets. Present analysis suggests that the treble clef motif defines a distinct structural fold found in proteins with diverse functional properties and forms one of the major zinc finger groups.
Collapse
Affiliation(s)
- N V Grishin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.
| |
Collapse
|
24
|
Abstract
Smad proteins are eukarytic transcription regulators in the TGF-beta signaling cascade. Using a combination of sequence and structure-based analyses, we argue that MH1 domain of Smad is homologous to the diverse His-Me finger endonuclease family enzymes. The similarity is particularly extensive with the I-PpoI endonuclease. In addition to the global fold similarities, both proteins possess a conserved motif of three cysteine residues and one histidine residue which form a zinc-binding site in I-PpoI. Sequence and structure conservation in the motif region strongly suggest that MH1 domain may also incorporate a metal ion in its structural core. MH1 of Smad3 and I-PpoI exhibit similar nucleic acid binding mode and interact with DNA major groove through an antiparallel beta-sheet. MH1 is an example of transcription regulator derived from the ancient enzymatic domain that lost its catalytic activity but retained DNA-binding sites.
Collapse
Affiliation(s)
- N V Grishin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA.
| |
Collapse
|
25
|
Elde M, Willassen NP, Johansen S. Functional characterization of isoschizomeric His-Cys box homing endonucleases from Naegleria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7257-66. [PMID: 11106439 DOI: 10.1046/j.1432-1327.2000.01862.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several species within the amoeboflagellate genus Naegleria harbor an optional ORF containing group I introns in their nuclear small subunit ribosomal DNA. The different ORFs encode homing endonucleases with 65 to 95% identity at the amino-acid level. I-NjaI, I-NanI and I-NitI, from introns in Naegleria jamiesoni, N. andersoni and N. italica, respectively, were analyzed in more detail and found to be isoschizomeric endonucleases that recognize and cleave an approximal 19-bp partially symmetrical sequence, creating a pentanucleotide 3' overhang upon cleavage. The optimal conditions for cleavage activity with respect to temperature, pH, salt and divalent metal ions were investigated. The optimal cleavage temperature for all three endonucleases was found to be 37 degrees C and the activity was dependent on the concentration of NaCl with an optimum at 200 mM. Divalent metal ions, primarily Mg2+, are essential for Naegleria endonuclease activity. Whereas both Mn2+ and Ca2+ could substitute for Mg2+, but with a slower cleavage rate, Zn2+ was unable to support cleavage. Interestingly, the pH dependence of DNA cleavage was found to vary significantly between the I-NitI and I-NjaI/I-NanI endonucleases with optimal pH values at 6.5 and 9, respectively. Site-directed mutagenesis of conserved I-NjaI residues strongly supports the hypothesis that Naegleria homing endonucleases share a similar zinc-binding structure and active site with the His-Cys box homing endonuclease I-PpoI.
Collapse
Affiliation(s)
- M Elde
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromso, Norway
| | | | | |
Collapse
|
26
|
Abstract
Persistence of a mobile DNA element in a population reflects a balance between the ability of the host to eliminate the element and the ability of the element to survive and to disseminate to other individuals. In each of the three biological kingdoms, several families of a mobile DNA element have been identified which encode a single protein that acts on nucleic acids. Collectively termed homing endonuclease genes (HEGs), these elements employ varied strategies to ensure their survival. Some members of the HEG families have a minimal impact on host fitness because they associate with genes having self-splicing introns or inteins that remove the HEGs at the RNA or protein level. The HEG and the intron/intein gene spread throughout the population by a gene conversion process initiated by the HEG-encoded endonuclease called 'homing' in which the HEG and intron/intein genes are copied to cognate alleles that lack them. The endonuclease activity also contributes to a high frequency of lateral transmission of HEGs between species as has been documented in plants and other systems. Other HEGs have positive selection value because the proteins have evolved activities that benefit their host organisms. The success of HEGs in colonizing diverse genetic niches results from the flexibility of the encoded endonucleases in adopting new specificities.
Collapse
Affiliation(s)
- F S Gimble
- Center for Genome Research, Institute of Biosciences and Technology, The Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Texas A and M University, Houston, TX, USA.
| |
Collapse
|
27
|
Lin J, Vogt VM. Functional alpha-fragment of beta-galactosidase can be expressed from the mobile group I intron PpLSU3 embedded in yeast pre-ribosomal RNA derived from the chromosomal rDNA locus. Nucleic Acids Res 2000; 28:1428-38. [PMID: 10684939 PMCID: PMC111048 DOI: 10.1093/nar/28.6.1428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 01/11/2000] [Accepted: 01/21/2000] [Indexed: 11/14/2022] Open
Abstract
PpLSU3, a mobile group I intron found in the ribo-somal RNA genes of Physarum polycephalum, encodes the I-PpoI homing endonuclease. This enzyme represents one of the rare cases in nature where a protein is expressed from an RNA polymerase I transcript. Our previous results showed that the full length intron, but not a further processed species, is the messenger for I-PpoI, implying a role of the untranslated region (UTR) in gene expression. To study the function of the 3'-UTR in expression of the endonuclease and in splicing of the intron, we replaced the I-PpoI gene in PpLSU3 with the gene for the alpha-fragment of Escherichia coli beta-galactosidase, and then integrated this chimeric intron into all the chromosomal rDNA repeats of yeast. The resulting cells synthesized functional alpha-fragment, as evidenced by a complementation assay analogous to that used in E.coli. The beta-galactosidase activity thus provides an unusual and potentially valuable readout for Pol I transcription from chromosomal rDNA. This is the first example in which a eucaryotic homing endonuclease gene has been successfully replaced by a heterologous gene. Using deletion mutagenesis and a novel randomization approach with the alpha-fragment as a reporter, we found that a small segment of the 3'-UTR dramatically influences both splicing and protein expression.
Collapse
Affiliation(s)
- J Lin
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
28
|
Perotto S, Nepote-Fus P, Saletta L, Bandi C, Young JP. A diverse population of introns in the nuclear ribosomal genes of ericoid mycorrhizal fungi includes elements with sequence similarity to endonuclease-coding genes. Mol Biol Evol 2000; 17:44-59. [PMID: 10666705 DOI: 10.1093/oxfordjournals.molbev.a026237] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ericoid mycorrhizal fungi form symbioses with the roots of members of the Ericales. Although only two genera have been identified in culture, the taxonomic diversity of ericoid symbionts is certainly wider. Genetic variation among 40 ericoid fungal isolates was investigated in this study. PCR amplification of the nuclear small-subunit ribosomal DNA (SSU rDNA) and of the internal transcribed spacer (ITS), followed by sequencing, led to the discovery of DNA insertions of various sizes in the SSU rDNA of most isolates. They reached sizes of almost 1,800 bp and occurred in up to five different insertion sites. Their positions and sizes were generally correlated with morphological and ITS-RFLP grouping of the isolates, although some insertions were found to be optional among isolates of the same species, and insertions were not always present in all SSU rDNA repeats within an isolate. Most insertions were identified as typical group I introns, possessing the conserved motifs characteristic of this group. However, other insertions lack these motifs and form a distinct group that includes other fungal ribosomal introns. Alignments with almost 70 additional sequences from fungal nuclear SSU rDNA introns indicate that introns inserted at the same site along the rDNA gene are generally homologous, but they also suggest the possibility of some horizontal transfers. Two of the ericoid fungal introns showed strong homology with a conserved motif found in endonuclease genes from nuclear rDNA introns.
Collapse
Affiliation(s)
- S Perotto
- Centro Studio Micologia del Terreno-CNR, Torino, Italy.
| | | | | | | | | |
Collapse
|
29
|
Friedhoff P, Franke I, Krause KL, Pingoud A. Cleavage experiments with deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) suggest that the homing endonuclease I-PpoI follows the same mechanism of phosphodiester bond hydrolysis as the non-specific Serratia nuclease. FEBS Lett 1999; 443:209-14. [PMID: 9989607 DOI: 10.1016/s0014-5793(98)01660-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We show here that two nucleases, Serratia nuclease and I-PpoI, with contrasting specificities, i.e. non-specific vs. highly sequence specific, share a structurally similar active site region with conservation of the catalytically relevant histidine and asparagine residues. On the basis of a comparison of the available structures and biochemical data for wild type and mutant variants of Serratia nuclease and I-PpoI we propose that both enzymes have a common catalytic mechanism, a proposition that is supported by our finding that both enzymes accept deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) as a substrate and cleave it in an identical manner. According to this mechanism a histidine residue functions as a general base and Mg2+ bound to an asparagine residue as a Lewis acid in phosphodiester bond cleavage.
Collapse
Affiliation(s)
- P Friedhoff
- Institut für Biochemie (FB 15), Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
30
|
Elde M, Haugen P, Willassen NP, Johansen S. I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3' cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:281-8. [PMID: 9914504 DOI: 10.1046/j.1432-1327.1999.00035.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Different species of the amoebo-flagellate Naegleria harbor optional group I introns in the nuclear ribosomal DNA that contain open reading frames. Intron proteins from Naegleria jamiesoni, Naegleria andersoni, and Naegleria italica (named I-NjaI, I-NanI and I-NitI, respectively) were expressed in Escherichia coli and found to be isoschizomeric homing endonucleases that specifically recognize and cleave intron-lacking homologous alleles of ribosomal DNA. The I-NjaI endonuclease was affinity purified, characterized in more detail, and found to generate five-nucleotide 3' staggered ends at the intron insertion site which differs from the ends generated by all other known homing endonucleases. The recognition site was delimited and found to cover an approximately 19 base-pair partially symmetric sequence spanning both the cleavage site and the intron insertion site. The palindromic feature was supported by mutational analysis of the target DNA. All single-site substitutions within the recognition sequence were cleaved by the purified I-NjaI endonuclease, but at different efficiencies. The center of symmetry and cleavage was found to be completely degenerate in specificity, which resembles that of the subclass IIW bacterial restriction enzymes.
Collapse
Affiliation(s)
- M Elde
- Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
31
|
Lin J, Vogt VM. I-PpoI, the endonuclease encoded by the group I intron PpLSU3, is expressed from an RNA polymerase I transcript. Mol Cell Biol 1998; 18:5809-17. [PMID: 9742098 PMCID: PMC109167 DOI: 10.1128/mcb.18.10.5809] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PpLSU3, a mobile group I intron in the rRNA genes of Physarum polycephalum, also can home into yeast chromosomal ribosomal DNA (rDNA) (D. E. Muscarella and V. M. Vogt, Mol. Cell. Biol. 13:1023-1033, 1993). By integrating PpLSU3 into the rDNA copies of a yeast strain temperature sensitive for RNA polymerase I, we have shown that the I-PpoI homing endonuclease encoded by PpLSU3 is expressed from an RNA polymerase I transcript. We have also developed a method to integrate mutant forms of PpLSU3 as well as the Tetrahymena intron TtLSU1 into rDNA, by expressing I-PpoI in trans. Analysis of I-PpoI expression levels in these mutants, along with subcellular fractionation of intron RNA, strongly suggests that the full-length excised intron RNA, but not RNAs that are further cleaved, serves as or gives rise to the mRNA.
Collapse
Affiliation(s)
- J Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
32
|
Argast GM, Stephens KM, Emond MJ, Monnat RJ. I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. J Mol Biol 1998; 280:345-53. [PMID: 9665841 DOI: 10.1006/jmbi.1998.1886] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmid libraries containing partially randomized cleavage sites for the eukaryotic homing endonucleases I-PpoI and I-CreI were constructed, and sites that could be cleaved by I-PpoI or I-CreI were selectively recovered by successive cycles of cleavage and gel separation followed by religation and growth in Escherichia coli. Twenty-one different I-PpoI-sensitive homing sites, including the native homing site, were isolated. These sites were identical at four nucleotide positions within the 15 bp homing site, had a restricted pattern of base substitutions at the remaining 11 positions and displayed a preference for purines flanking the top strand of the homing site sequence. Twenty-one different I-CreI-sensitive homing sites, including the native site, were isolated. Ten nucleotide positions were identical in homing site variants that were I-CreI-sensitive and required the addition of SDS for efficient cleavage product release. Four of these ten positions were identical in homing sites that did not require SDS for product release. There was a preference for pyrimidines flanking the top strand of the homing site sequence. Three of the 24 I-CreI homing site nucleotide positions apparently lacked informational content, i. e. were permissive of cleavage when occupied by any nucleotide. These results suggest that I-PpoI and I-CreI make a large number of DNA-protein contacts across their homing site sequences, and that different subsets of these contacts may be sufficient to maintain a high degree of sequence-specific homing site recognition and cleavage. The sequential enrichment protocol we used should be useful for defining the sequence degeneracy and informational content of other homing endonuclease target sites.
Collapse
Affiliation(s)
- G M Argast
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
33
|
Flick KE, Jurica MS, Monnat RJ, Stoddard BL. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature 1998; 394:96-101. [PMID: 9665136 DOI: 10.1038/27952] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Homing endonucleases are a diverse collection of proteins that are encoded by genes with mobile, self-splicing introns. They have also been identified in self-splicing inteins (protein introns). These enzymes promote the movement of the DNA sequences that encode them from one chromosome location to another; they do this by making a site-specific double-strand break at a target site in an allele that lacks the corresponding mobile intron. The target sites recognized by these small endonucleases are generally long (14-44 base pairs). Four families of homing endonucleases have been identified, including the LAGLIDADG, the His-Cys box, the GIY-YIG and the H-N-H endonucleases. The first identified His-Cys box homing endonuclease was I-PpoI from the slime mould Physarum polycephalum. Its gene resides in one of only a few nuclear introns known to exhibit genetic mobility. Here we report the structure of the I-PpoI homing endonuclease bound to homing-site DNA determined to 1.8 A resolution. I-PpoI displays an elongated fold of dimensions 25 x 35 x 80 A, with mixed alpha/beta topology. Each I-PpoI monomer contains three antiparallel beta-sheets flanked by two long alpha-helices and a long carboxy-terminal tail, and is stabilized by two bound zinc ions 15 A apart. The enzyme possesses a new zinc-bound fold and endonuclease active site. The structure has been determined in both uncleaved substrate and cleaved product complexes.
Collapse
Affiliation(s)
- K E Flick
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle 98109, USA
| | | | | | | |
Collapse
|
34
|
De Jonckheere JF, Brown S. Three different group I introns in the nuclear large subunit ribosomal DNA of the amoeboflagellate Naegleria. Nucleic Acids Res 1998; 26:456-61. [PMID: 9421500 PMCID: PMC147285 DOI: 10.1093/nar/26.2.456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have amplified the large subunit ribosomal DNA (LSUrDNA) of the 12 described Naegleria spp. and of 34 other Naegleria lineages that might be distinct species. Two strains yielded a product that is longer than 3 kb, which is the length of the LSUrDNA of all described Naegleria spp. Sequencing data revealed that the insert in one of these strains is a group I intron without an open reading frame (ORF), while the other strain contains two different group I introns, of which the second intron has an ORF of 175 amino acids. In the latter ORF there is a conserved His-Cys box, as in the homing endonucleases present in group I introns in the small subunit ribosomal DNA (SSUrDNA) of Naegleria spp. Although the group I introns in the LSUrDNA differ in sequence, they are more related to each other than they are to the group I introns in the SSUrDNA of Naegleria spp. The three group I introns in the LSUrDNA in Naegleria are at different locations and are probably acquired by horizontal transfer, contrary to the SSUrDNA group I introns in this genus which are of ancestral origin and are transmitted vertically.
Collapse
Affiliation(s)
- J F De Jonckheere
- Protozoology Laboratory, Scientific Institute of Public Health-Louis Pasteur, B-1050 Brussels, Belgium.
| | | |
Collapse
|
35
|
Jabri E, Aigner S, Cech TR. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis. Biochemistry 1997; 36:16345-54. [PMID: 9405070 DOI: 10.1021/bi9718595] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NanGIR1 is a catalytic element inserted in the P6 loop of a group I intron (NanGIR2) in the small subunit rRNA precursor of the protist Naegleria andersoni [Einvik, C., Decatur, W. A., Embley, T. M., Vogt, V. M., and Johansen, S. (1997) RNA 3, 710-720]. It catalyzes site-specific hydrolysis at an internal processing site (IPS) after a G residue that immediately follows the P9 stem-loop. Functional and structural analyses were initiated to compare NanGIR1 to group I introns that carry out self-splicing. Chemical modification and site-directed mutagenesis studies showed that NanGIR1 shares many structural elements with other group I introns, but also contains a pseudoknot (P15), which is important for catalytic activity. Deletion analysis revealed the boundaries of the minimum self-cleaving unit (178 nucleotides). The rate of self-cleavage was measured as a function of mono- and divalent ion concentration, temperature, and pH. The reaction at the IPS yields 5'-phosphate and 3'-hydroxyl termini, requires Mg2+or Mn2+ ions, and is first-order in [OH-] between pH 5.0 and 8.5. The latter results suggest that the nucleophile in the reaction is hydroxide or possibly a Mg2+-coordinated hydroxide. With a second-order rate constant of 1 x 10(5) min-1 M-1, the self-cleavage reaction of NanGIR1 is 2 orders of magnitude faster than a similar site-specific hydrolysis reaction of the circular form of the Tetrahymena group I intron.
Collapse
Affiliation(s)
- E Jabri
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
36
|
Flick KE, McHugh D, Heath JD, Stephens KM, Monnat RJ, Stoddard BL. Crystallization and preliminary X-ray studies of I-PpoI: a nuclear, intron-encoded homing endonuclease from Physarum polycephalum. Protein Sci 1997; 6:2677-80. [PMID: 9416623 PMCID: PMC2143617 DOI: 10.1002/pro.5560061226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The homing endonuclease I-PpoI is encoded by an optional third intron, Pp LSU 3, found in nuclear, extrachromosomal copies of the Physarum polycephalum 26S rRNA gene. This endonuclease promotes the lateral transfer or "homing" of its encoding intron by recognizing and cleaving a partially symmetric, 15 bp homing site in 26S rDNA alleles that lack the Pp LSU 3 intron. The open reading frame encoding I-PpoI has been subcloned, and the endonuclease has been overproduced in E. coli. Purified recombinant I-PpoI has been co-crystallized with a 21 bp homing site DNA duplex. The crystals belong to space group P3(1)21, with unit cell dimensions a = b = 114 A, c = 89 A. The results of initial X-ray diffraction experiments indicate that the asymmetric unit contains an enzyme homodimer and one duplex DNA molecule, and that the unit cell has a specific volume of 3.4 A3/dalton. These experiments also provide strong evidence that I-PpoI contains several bound zinc ions as part of its structure.
Collapse
Affiliation(s)
- K E Flick
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Homing endonucleases are rare-cutting enzymes encoded by introns and inteins. They have striking structural and functional properties that distinguish them from restriction enzymes. Nomenclature conventions analogous to those for restriction enzymes have been developed for the homing endonucleases. Recent progress in understanding the structure and function of the four families of homing enzymes is reviewed. Of particular interest are the first reported structures of homing endonucleases of the LAGLIDADG family. The exploitation of the homing enzymes in genome analysis and recombination research is also summarized. Finally, the evolution of homing endonucleases is considered, both at the structure-function level and in terms of their persistence in widely divergent biological systems.
Collapse
Affiliation(s)
- M Belfort
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, PO Box 22002, Albany, New York 12201-2002, USA.
| | | |
Collapse
|
38
|
Lykke-Andersen J, Garrett RA, Kjems J. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res 1996; 24:3982-9. [PMID: 8918801 PMCID: PMC146195 DOI: 10.1093/nar/24.20.3982] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The archaeal intron-encoded homing enzymes I-PorI and I-DmoI belong to a family of endonucleases that contain two copies of a characteristic LAGLIDADG motif. These endonucleases cleave their intron- or intein- alleles site-specifically, and thereby facilitate homing of the introns or inteins which encode them. The protein structure and the mechanism of DNA recognition of these homing enzymes is largely unknown. Therefore, we examined these properties of I-PorI and I-DmoI by protein footprinting. Both proteins were susceptible to proteolytic cleavage within regions that are equidistant from each of the two LAGLIDADG motifs. When complexed with their DNA substrates, a characteristic subset of the exposed sites, located in regions immediately after and 40-60 amino acids after each of the LAGLIDADG motifs, were protected. Our data suggest that the enzymes are structured into two, tandemly repeated, domains, each containing both the LAGLIDADG motif and two putative DNA binding regions. The latter contains a potentially novel DNA binding motif conserved in archaeal homing enzymes. The results are consistent with a model where the LAGLIDADG endonucleases bind to their non-palindromic substrates as monomeric enzymes, with each of the two domains recognizing one half of the DNA substrate.
Collapse
|
39
|
Affiliation(s)
- M Belfort
- Molecular Genetics Program, Wadsworth Center, State University of New York, New York State Department of Health, Albany 12201-2002, USA
| | | |
Collapse
|
40
|
Turmel M, Mercier JP, Côté V, Otis C, Lemieux C. The site-specific DNA endonuclease encoded by a group I intron in the Chlamydomonas pallidostigmatica chloroplast small subunit rRNA gene introduces a single-strand break at low concentrations of Mg2+. Nucleic Acids Res 1995; 23:2519-25. [PMID: 7630730 PMCID: PMC307060 DOI: 10.1093/nar/23.13.2519] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two group I introns (CpSSU.1 and CpSSU.2) that each potentially encode a protein with two copies of the LAGLI-DADG motif were identified in the Chlamydomonas pallidostigmatica chloroplast small subunit rRNA gene. They both belong to subgroup IA3 and represent novel insertion positions in this gene (sites 508 and 793 in the Escherichia coli 16S rRNA). The proteins encoded by the two introns were synthesized in vitro and tested for their ability to cleave the homing site of their respective introns. Only the CpSSU.1-encoded protein (I-CpaII) was found to display specific DNA endonuclease activity. At 0.1 mM MgCl2, I-CpaII nicks only the bottom (transcribed) DNA strand, but at concentrations ranging from 0.5 to 5.0 mM, it cleaves both DNA strands (leaving a 4 nucleotide single-stranded extension with 3'-OH overhangs) while preferentially nicking the bottom strand. The rate of cleavage of the top strand increases with increasing concentration of MgCl2. The preliminary data derived from these endonuclease assays suggest that the mode of DNA cleavage by I-CpaII is directed by the availability of Mg2+ and the affinity of different binding sites for this cation.
Collapse
Affiliation(s)
- M Turmel
- Canadian Institute for Advanced Research, Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
41
|
Vader A, Naess J, Haugli K, Haugli F, Johansen S. Nucleolar introns from Physarum flavicomum contain insertion elements that may explain how mobile group I introns gained their open reading frames. Nucleic Acids Res 1994; 22:4553-9. [PMID: 7984404 PMCID: PMC308500 DOI: 10.1093/nar/22.22.4553] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Comparison of two group I intron sequences in the nucleolar genome of the myxomycete Physarum flavicomum to their homologs in the closely related Physarum polycephalum revealed insertion-like elements. One of the insertion-like elements consists of two repetitive sequence motifs of 11 and 101 bp in five and three copies, respectively. The smaller motif, which flanks the larger, resembles a target duplication and indicates a relationship to transposons or retroelements. The insertion-like elements are found in the peripheral loops of the RNA structure; the positions occupied by the ORFs of mobile nucleolar group I introns. The P. flavicomum introns are 1184 and 637 bp in size, located in the large subunit ribosomal RNA gene, and can be folded into group I intron structures at the RNA level. However, the intron 2s from both P. flavicomum and P. polycephalum contain an unusual core region that lacks the P8 segment. None of the introns are able to self-splice in vitro. Southern analysis of different isolates indicates that the introns are not optional in myxomycetes.
Collapse
Affiliation(s)
- A Vader
- Department of Cell Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
42
|
De Jonckheere JF, Brown S. Loss of the ORF in the SSUrDNA group I intron of one Naegleria lineage. Nucleic Acids Res 1994; 22:3925-7. [PMID: 7937113 PMCID: PMC308390 DOI: 10.1093/nar/22.19.3925] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have found a Naegleria lineage in which the SSUrDNA contains a group I intron with a length of 375 nucleotides. This is a unique finding because all group I introns detected until now in Naegleria are 1.3 kilobases long and contain an open reading frame coding for 245 amino acids. Sequence data show that the 375 nucleotide-long intron is at the same place in the SSUrDNA as, and is descendant from, the 1.3 kilobase group I intron present in other species of Naegleria. Our data indicate that in one lineage of Naegleria the group I intron lost part of its DNA that is not contributing to the secondary structure but that carries the open reading frame. The amoeboflagellate genus Naegleria contains strains without the intron and strains with the intron, with or without an open reading frame. Therefore, this genus provides a unique opportunity to study the function and evolution of both the group I intron and the open reading frame.
Collapse
Affiliation(s)
- J F De Jonckheere
- Department of Microbiology, Institute of Hygiene and Epidemiology, Brussels, Belgium
| | | |
Collapse
|
43
|
De Jonckheere JF. Evidence for the ancestral origin of group I introns in the SSUrDNA of Naegleria spp. J Eukaryot Microbiol 1994; 41:457-63. [PMID: 7804245 DOI: 10.1111/j.1550-7408.1994.tb06042.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sequence variation within the group I intron in five Naegleria spp. was studied and compared with the sequence variation within the flanking small subunit ribosomal DNA. Considerable sequence divergence was observed in the introns as well as in the rDNA. In the intron deletions and insertions are only detected in the sequence contributing to the secondary structure, not in the open reading frame. Most of the sequence variation is detected in the unpaired loops. In the case of nucleotide substitution in helices, compensating base pair changes were observed. The sequence variation does not induce variation in the secondary structure model. The phylogenetic tree based on the intron sequences is similar to the tree based on the flanking rDNA sequences. This observation indicates that the intron might have been acquired at an early stage in evolution, and lost in the majority of Naegleria spp.
Collapse
Affiliation(s)
- J F De Jonckheere
- Department of Microbiology, Institute of Hygiene and Epidemiology, Brussel, Belgium
| |
Collapse
|
44
|
Johansen S, Vogt VM. An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. Cell 1994; 76:725-34. [PMID: 8124711 DOI: 10.1016/0092-8674(94)90511-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have discovered a unique group I intron-like insertion (DiSSU) in the nuclear small subunit ribosomal RNA gene of the myxomycete Didymium iridis. By sequence, DiSSU consists of a group I ribozyme at the 5' end, an open reading frame (ORF) in the middle, and a novel element at the 3' end. Intron RNA self-splices in vitro to yield ten major processed RNAs, including a full-length circle. The group I ribozyme can efficiently cleave at an internal processing site, which separates the group I ribozyme from the ORF. Surprisingly, deletion that remove the entire group I ribozyme do not impair cleavage at the 3' splice site, implying that the 3' element itself is a catalytic RNA. Deletions that remove portions of the 3' element prevent utilization of the 5' splice site, suggesting that this element cooperates with the upstream group I ribozyme in splicing. DiSSU appears to be the first example for the cooperative interaction of distinct ribozymes in RNA splicing.
Collapse
Affiliation(s)
- S Johansen
- Department of Cell Biology, University of Tromsø, Norway
| | | |
Collapse
|