1
|
Deletion of the non-essential Rpb9 subunit of RNA polymerase II results in pleiotropic phenotypes in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140654. [PMID: 33775921 DOI: 10.1016/j.bbapap.2021.140654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Schizosaccharomyces pombe RNA polymerase II comprises twelve different subunits. Its Rpb9 subunit comprises 113 amino acids, and is the only non-essential subunit of S. pombe RNA polymerase II. However, its functions have not been studied in S. pombe. The results presented in this study demonstrate that Rpb9 is involved in regulating growth under optimum and certain stress conditions in S. pombe. To further address the role (s) of various domains of this subunit in regulating these phenotypes, deletion mutant analysis was done. We observed that the region spanning 1-74 amino acids, encompassing the amino-terminal zinc finger domain and the linker region of Rpb9 was able to rescue the phenotypes associated with rpb9+deletion. We also demonstrate that the functions of this subunit are only partially conserved among yeast and humans. Our computational biology approaches provide a structural basis for the differential role of various Rpb9 domains in S. pombe. Furthermore, using these tools we show that there has been a co-evolution of the interaction residues between the Rpb9 subunit and the two largest subunits of RNA polymerase II, allowing for a more stringent organism-specific packing. Taken together, our results have provided functional and structural insights into the Rpb9 subunit of S. pombe.
Collapse
|
2
|
Kaster BC, Knippa KC, Kaplan CD, Peterson DO. RNA Polymerase II Trigger Loop Mobility: INDIRECT EFFECTS OF Rpb9. J Biol Chem 2016; 291:14883-95. [PMID: 27226557 DOI: 10.1074/jbc.m116.714394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Rpb9 is a conserved RNA polymerase II (pol II) subunit, the absence of which confers alterations to pol II enzymatic properties and transcription fidelity. It has been suggested previously that Rpb9 affects mobility of the trigger loop (TL), a structural element of Rpb1 that moves in and out of the active site with each elongation cycle. However, a biochemical mechanism for this effect has not been defined. We find that the mushroom toxin α-amanitin, which inhibits TL mobility, suppresses the effect of Rpb9 on NTP misincorporation, consistent with a role for Rpb9 in this process. Furthermore, we have identified missense alleles of RPB9 in yeast that suppress the severe growth defect caused by rpb1-G730D, a substitution within Rpb1 α-helix 21 (α21). These alleles suggest a model in which Rpb9 indirectly affects TL mobility by anchoring the position of α21, with which the TL directly interacts during opening and closing. Amino acid substitutions in Rpb9 or Rpb1 that disrupt proposed anchoring interactions resulted in phenotypes shared by rpb9Δ strains, including increased elongation rate in vitro Combinations of rpb9Δ with the fast rpb1 alleles that we identified did not result in significantly faster in vitro misincorporation rates than those resulting from rpb9Δ alone, and this epistasis is consistent with the idea that defects caused by the rpb1 alleles are related mechanistically to the defects caused by rpb9Δ. We conclude that Rpb9 supports intra-pol II interactions that modulate TL function and thus pol II enzymatic properties.
Collapse
Affiliation(s)
- Benjamin C Kaster
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Kevin C Knippa
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Craig D Kaplan
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - David O Peterson
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
3
|
Knippa K, Peterson DO. Fidelity of RNA Polymerase II Transcription: Role of Rbp9 in Error Detection and Proofreading. Biochemistry 2013; 52:7807-17. [DOI: 10.1021/bi4009566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kevin Knippa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - David O. Peterson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| |
Collapse
|
4
|
Khavinson VK, Solov’ev AY, Zhilinskii DV, Shataeva LK, Vanyushin BF. Epigenetic aspects of peptide-mediated regulation of aging. ADVANCES IN GERONTOLOGY 2012. [DOI: 10.1134/s2079057012040091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Grandemange S, Schaller S, Yamano S, Du Manoir S, Shpakovski GV, Mattei MG, Kedinger C, Vigneron M. A human RNA polymerase II subunit is encoded by a recently generated multigene family. BMC Mol Biol 2001; 2:14. [PMID: 11747469 PMCID: PMC61041 DOI: 10.1186/1471-2199-2-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Accepted: 11/30/2001] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The sequences encoding the yeast RNA polymerase II (RPB) subunits are single copy genes. RESULTS While those characterized so far for the human (h) RPB are also unique, we show that hRPB subunit 11 (hRPB11) is encoded by a multigene family, mapping on chromosome 7 at loci p12, q11.23 and q22. We focused on two members of this family, hRPB11a and hRPB11b: the first encodes subunit hRPB11a, which represents the major RPB11 component of the mammalian RPB complex; the second generates polypeptides hRPB11balpha and hRPB11bbeta through differential splicing of its transcript and shares homologies with components of the hPMS2L multigene family related to genes involved in mismatch-repair functions (MMR). Both hRPB11a and b genes are transcribed in all human tissues tested. Using an inter-species complementation assay, we show that only hRPB11balpha is functional in yeast. In marked contrast, we found that the unique murine homolog of RPB11 gene maps on chromosome 5 (band G), and encodes a single polypeptide which is identical to subunit hRPB11a. CONCLUSIONS The type hRPB11b gene appears to result from recent genomic recombination events in the evolution of primates, involving sequence elements related to the MMR apparatus.
Collapse
Affiliation(s)
- Sylvie Grandemange
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Sophie Schaller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Shigeru Yamano
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Stanislas Du Manoir
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, GSP-7, 117997 Moscow, Russia
| | - Marie-Geneviève Mattei
- U.491/INSERM, Faculté de médecine Timone, 27 bd Jean Moulin, F-13385 Marseille Cedex 5, France
| | - Claude Kedinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Marc Vigneron
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| |
Collapse
|
6
|
Abstract
Cajal bodies (coiled bodies) are nuclear organelles that contain a variety of components required for transcription and processing of RNA. Cajal bodies in amphibian oocytes are stained by mAb H14, which recognizes the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II when the heptapeptide repeat is phosphorylated on serine-5. Oocytes were treated with the transcription inhibitor 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), which prevents phosphorylation of the CTD. Cajal bodies from oocytes that had been treated for 2-3 h with DRB no longer stained with mAb H14, but staining reappeared when the inhibitor was washed out. Epitope-tagged transcripts of two small subunits of polymerase II, RPB6 and RPB9, were injected into the cytoplasm of Xenopus and Triturus oocytes. Newly translated RPB6 and RPB9 were specifically targeted to Cajal bodies within 4 h, and Cajal bodies remained the site of highest concentration of tagged protein during the next 2 days. These data suggest that polymerase subunits pass through the Cajal bodies with a transit time no greater than a few hours. We discuss the possibility that Cajal bodies are sites of assembly or modification of the transcription machinery of the nucleus.
Collapse
Affiliation(s)
- G T Morgan
- Institute of Genetics, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
7
|
Hemming SA, Edwards AM. Yeast RNA polymerase II subunit RPB9. Mapping of domains required for transcription elongation. J Biol Chem 2000; 275:2288-94. [PMID: 10644677 DOI: 10.1074/jbc.275.4.2288] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RPB9 subunit of RNA polymerase II regulates transcription elongation activity and is required for the action of the transcription elongation factor, TFIIS. RPB9 comprises two zinc ribbon domains joined by a conserved linker region. The C-terminal zinc ribbon is similar in sequence to that found in TFIIS. To elucidate the relationship between the structure and transcription elongation function of RPB9, we initiated a mutagenesis study on the Saccharomyces cerevisiae homologue. The individual zinc ribbon domains, in isolation or in combination, could not stimulate transcription by a polymerase lacking RPB9, pol IIDelta9. Mutations in the N-terminal zinc ribbon had little effect on transcription activity. By contrast, mutations in the acidic loop that connects the second and third beta-strands of the C-terminal zinc ribbon were completely inactive for transcription. Interestingly, the analogous residues in TFIIS are also critical for elongation activity. A conserved charged stretch in the linker region (residues 89-95, DPTLPR) mediated the interaction with RNA polymerase II.
Collapse
Affiliation(s)
- S A Hemming
- Banting and Best Department of Medical Research, C.H. Best Institute, Toronto, Ontario M5G 1L6, Canada
| | | |
Collapse
|
8
|
Williams LA, Kane CM. Isolation and characterization of the Schizosaccharomyces pombe gene encoding transcript elongation factor TFIIS. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(19960315)12:3<227::aid-yea905>3.0.co;2-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Sakurai H, Kimura M, Ishihama A. Identification of the gene and the protein of RNA polymerase II subunit 9 (Rpb9) from the fission yeast Schizosacharomyces pombe. Gene 1998; 221:11-6. [PMID: 9852944 DOI: 10.1016/s0378-1119(98)00449-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13,175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.
Collapse
Affiliation(s)
- H Sakurai
- National Institute of Genetics, Department of Molecular Genetics, Shizuoka, Japan
| | | | | |
Collapse
|
10
|
Wu SY, Chiang CM. Properties of PC4 and an RNA polymerase II complex in directing activated and basal transcription in vitro. J Biol Chem 1998; 273:12492-8. [PMID: 9575207 DOI: 10.1074/jbc.273.20.12492] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human RNA polymerase II (pol II) complex was isolated from a HeLa-derived cell line that conditionally expresses an epitope-tagged RPB9 subunit of human pol II. The isolated FLAG-tagged pol II complex (f:pol II) contains a subset of general transcription factors but is devoid of TFIID and TFIIA. In conjunction with TATA-binding protein (TBP) or TFIID, f:pol II is able to mediate both basal and activated transcription by Gal4-VP16 when a transcriptional coactivator PC4 is also provided. Interestingly, PC4, in the absence of a transcriptional activator, actually functions as a repressor to inhibit basal transcription. Remarkably, TBP is able to mediate activator function in this transcription system. The presence of TBP-associated factors, however, helps overcome PC4 repression and further enhance the level of activation mediated by TBP. Alleviation of PC4 repression can also be achieved by preincubation of the transcriptional components with the DNA template. Sarkosyl disruption of preinitiation complex formation further illustrates that PC4 can only inhibit transcription prior to the assembly of a functional preinitiation complex. These results suggest that PC4 represses basal transcription by preventing the assembly of a functional preinitiation complex, but it has no effect on the later steps of the transcriptional process.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
11
|
Khazak V, Estojak J, Cho H, Majors J, Sonoda G, Testa JR, Golemis EA. Analysis of the interaction of the novel RNA polymerase II (pol II) subunit hsRPB4 with its partner hsRPB7 and with pol II. Mol Cell Biol 1998; 18:1935-45. [PMID: 9528765 PMCID: PMC121423 DOI: 10.1128/mcb.18.4.1935] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1997] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
Under conditions of environmental stress, prokaryotes and lower eukaryotes such as the yeast Saccharomyces cerevisiae selectively utilize particular subunits of RNA polymerase II (pol II) to alter transcription to patterns favoring survival. In S. cerevisiae, a complex of two such subunits, RPB4 and RPB7, preferentially associates with pol II during stationary phase; of these two subunits, RPB4 is specifically required for survival under nonoptimal growth conditions. Previously, we have shown that RPB7 possesses an evolutionarily conserved human homolog, hsRPB7, which was capable of partially interacting with RPB4 and the yeast transcriptional apparatus. Using this as a probe in a two-hybrid screen, we have now established that hsRPB4 is also conserved in higher eukaryotes. In contrast to hsRPB7, hsRPB4 has diverged so that it no longer interacts with yeast RPB7, although it partially complements rpb4- phenotypes in yeast. However, hsRPB4 associates strongly and specifically with hsRPB7 when expressed in yeast or in mammalian cells and copurifies with intact pol II. hsRPB4 expression in humans parallels that of hsRPB7, supporting the idea that the two proteins may possess associated functions. Structure-function studies of hsRPB4-hsRPB7 are used to establish the interaction interface between the two proteins. This identification completes the set of human homologs for RNA pol II subunits defined in yeast and should provide the basis for subsequent structural and functional characterization of the pol II holoenzyme.
Collapse
Affiliation(s)
- V Khazak
- Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Acker J, de Graaff M, Cheynel I, Khazak V, Kedinger C, Vigneron M. Interactions between the human RNA polymerase II subunits. J Biol Chem 1997; 272:16815-21. [PMID: 9201987 DOI: 10.1074/jbc.272.27.16815] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.
Collapse
Affiliation(s)
- J Acker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), F-67404 Illkirch Cedex C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
A gene designated tfs1 has been isolated from Schizosaccharomyces pombe based on its similarity to genes encoding transcription elongation factor TFIIS. The nucleotide sequence of the tfs1 gene predicts a polypeptide with similarity to mammalian. Drosophila and Saccharomyces cerevisiae TFIIS. A haploid Sz. pombe strain with tfs1 deleted from the genome is viable. Thus, tfs1 is not essential for viability. However, deletion of tfs1 results in slow growth and increased sensitivity to the drug 6-azauracil, a phenotype similar to that of a S. cerevisiae strain deleted for the gene encoding TFIIS. The DNA sequence of tfs1 has been deposited in GenBank under Accession Number U20526.
Collapse
Affiliation(s)
- L A Williams
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
14
|
Umehara T, Kida S, Yamamoto T, Horikoshi M. Isolation and characterization of a cDNA encoding a new type of human transcription elongation factor S-II. Gene X 1995; 167:297-302. [PMID: 8566795 DOI: 10.1016/0378-1119(95)00634-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the isolation of a cDNA encoding a new type of transcription factor S-II, termed h-SII-T1, from a human library. The mRNA corresponding to the clone is highly expressed in testis and ovary. Comparison of the deduced amino acid (aa) sequence with those of other S-II molecules shows that (i) the C-terminal zinc finger (Zf) domain is highly conserved, and (ii) the central segment is most similar to that of the rat testis-specific S-II. Further analyses of the hS-II-T1 aa sequence indicate that its N-terminal sequence exhibits similarity to eubacterial sigma 54. The significance of tissue-specific S-II molecules for the regulation of transcription elongation is discussed.
Collapse
Affiliation(s)
- T Umehara
- Department of Cellular Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Gómez-Cuadrado A, Martín M, Noël M, Ruiz-Carrillo A. Initiation binding repressor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell growth regulators [corrected]. Mol Cell Biol 1995; 15:6670-85. [PMID: 8524232 PMCID: PMC230920 DOI: 10.1128/mcb.15.12.6670] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Initiation binding repressor [corrected] (IBR) is a chicken erythrocyte factor (apparent molecular mass, 70 to 73 kDa) that binds to the sequences spanning the transcription initiation site of the histone h5 gene, repressing its transcription. A variety of other cells, including transformed erythroid precursors, do not have IBR but a factor referred to as IBF (68 to 70 kDa) that recognizes the same IBR sites. We have cloned the IBR cDNA and studied the relationship of IBR and IBF. IBR is a 503-amino-acid-long acidic protein which is 99.0% identical to the recently reported human NRF-1/alpha-Pal factor and highly related to the invertebrate transcription factors P3A2 and erected wing gene product (EWG). We present evidence that IBR and IBF are most likely identical proteins, differing in their degree of glycosylation. We have analyzed several molecular aspects of IBR/F and shown that the factor associates as stable homodimers and that the dimer is the relevant DNA-binding species. The evolutionarily conserved N-terminal half of IBR/F harbors the DNA-binding/dimerization domain (outer limits, 127 to 283), one or several casein kinase II sites (37 to 67), and a bipartite nuclear localization signal (89 to 106) which appears to be necessary for nuclear targeting. Binding site selection revealed that the alternating RCGCRYGCGY consensus constitutes high-affinity IBR/F binding sites and that the direct-repeat palindrome TGCGCATGCGCA is the optimal site. A survey of genes potentially regulated by this family of factors primarily revealed genes involved in growth-related metabolism.
Collapse
Affiliation(s)
- A Gómez-Cuadrado
- Cancer Research Center, Medical School of Laval University, L'Hôtel-Dieu de Québec, Canada
| | | | | | | |
Collapse
|
16
|
McKune K, Moore PA, Hull MW, Woychik NA. Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol Cell Biol 1995; 15:6895-900. [PMID: 8524256 PMCID: PMC230944 DOI: 10.1128/mcb.15.12.6895] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To assess functional relatedness of individual components of the eukaryotic transcription apparatus, three human subunits (hsRPB5, hsRPB8, and hsRPB10) were tested for their ability to support yeast cell growth in the absence of their essential yeast homologs. Two of the three subunits, hsRPB8 and hsRPB10, supported normal yeast cell growth at moderate temperatures. A fourth human subunit, hsRPB9, is a homolog of the nonessential yeast subunit RPB9. Yeast cells lacking RPB9 are unable to grow at high and low temperatures and are defective in mRNA start site selection. We tested the ability of hsRPB9 to correct the growth and start site selection defect seen in the absence of RPB9. Expression of hsRPB9 on a high-copy-number plasmid, but not a low-copy-number plasmid, restored growth at high temperatures. Recombinant human hsRPB9 was also able to completely correct the start site selection defect seen at the CYC1 promoter in vitro as effectively as the yeast RPB9 subunit. Immunoprecipitation of the cell extracts from yeast cells containing either of the human subunits that function in place of their yeast counterparts in vivo suggested that they assemble with the complete set of yeast RNA polymerase II subunits. Overall, a total of six of the seven human subunits tested previously or in this study are able to substitute for their yeast counterparts in vivo, underscoring the remarkable similarities between the transcriptional machineries of lower and higher eukaryotes.
Collapse
Affiliation(s)
- K McKune
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110, USA
| | | | | | | |
Collapse
|
17
|
Shpakovski GV, Acker J, Wintzerith M, Lacroix JF, Thuriaux P, Vigneron M. Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:4702-10. [PMID: 7651387 PMCID: PMC230713 DOI: 10.1128/mcb.15.9.4702] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit.
Collapse
Affiliation(s)
- G V Shpakovski
- Département de Biologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique (Saclay), Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
18
|
Khazak V, Sadhale PP, Woychik NA, Brent R, Golemis EA. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol Biol Cell 1995; 6:759-75. [PMID: 7579693 PMCID: PMC301239 DOI: 10.1091/mbc.6.7.759] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strongly conserved with its yeast counterpart because its expression can rescue deletion of the essential RPB7 gene at moderate temperatures. Further, immuno-precipitation of RNA polymerase II from yeast cells containing hsRPB7 revealed that the hsRPB7 assembles the complete set of 11 other yeast subunits. However, at temperature extremes and during maintenance at stationary phase, hsRPB7-containing yeast cells lose viability rapidly, stress-sensitive phenotypes reminiscent of those associated with deletion of the RPB4 subunit with which RPB7 normally complexes. Two-hybrid analysis revealed that although hsRPB7 and RPB4 interact, the association is of lower affinity than the RPB4-RPB7 interaction, providing a probable mechanism for the failure of hsRPB7 to fully function in yeast cells at high and low temperatures. Finally, surprisingly, hsRPB7 RNA in human cells is expressed in a tissue-specific pattern that differs from that of the RNA polymerase II largest subunit, implying a potential regulatory role for hsRPB7. Taken together, these results suggest that some RPB7 functions may be analogous to those possessed by the stress-specific prokaryotic sigma factor rpoS.
Collapse
Affiliation(s)
- V Khazak
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
19
|
Hull MW, McKune K, Woychik NA. RNA polymerase II subunit RPB9 is required for accurate start site selection. Genes Dev 1995; 9:481-90. [PMID: 7883169 DOI: 10.1101/gad.9.4.481] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The diverse functions of Saccharomyces cerevisiae RNA polymerase II are partitioned among its 12 subunits, designated RPB1-RPB12. Although multiple functions have been assigned to the three largest subunits, RPB1, RPB2, and RPB3, the functions of the remaining smaller subunits are unknown. We have determined the function of one of the smaller subunits, RPB9, by demonstrating that it is necessary for accurate start site selection. Transcription in the absence of RPB9 initiates farther upstream at new and previously minor start sites both at the CYC1 promoter in vitro and at the CYC1, ADH1, HIS4, H2B-1, and RPB6 promoters in vivo. Immunoprecipitation of RNA polymerase II from cells lacking the RPB9 gene revealed that all of the remaining 11 subunits are assembled into the enzyme, suggesting that the start site defect is attributable solely to the absence of RPB9. In support of this hypothesis, we have shown that addition of wild-type recombinant RPB9 completely corrects for the start site defect seen in vitro. A mutated recombinant RPB9 protein, with an alteration in a metal-binding domain required for high temperature growth and accurate start site selection in vivo, was at least 10-fold less effective at correcting the start site defect in vitro. RPB9 appears to play a unique role in transcription initiation, as the defects revealed in its absence are distinct from those seen with mutants in RNA polymerase subunit RPB1 and factor e (TFIIB), two other yeast proteins also involved in start site selection.
Collapse
Affiliation(s)
- M W Hull
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | | | |
Collapse
|
20
|
Functional substitution of an essential yeast RNA polymerase subunit by a highly conserved mammalian counterpart. Mol Cell Biol 1994. [PMID: 8196653 DOI: 10.1128/mcb.14.6.4155] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated the cDNA encoding the homolog of the Saccharomyces cerevisiae nuclear RNA polymerase common subunit RPB6 from hamster CHO cells. Alignment of yeast RPB6 with its mammalian counterpart revealed that the subunits have nearly identical carboxy-terminal halves and a short acidic region at the amino terminus. Remarkably, the length and amino acid sequence of the hamster RPB6 are identical to those of the human RPB6 subunit. The conservation in sequence from lower to higher eukaryotes also reflects conservation of function in vivo, since hamster RPB6 supports normal wild-type yeast cell growth in the absence of the essential gene encoding RPB6.
Collapse
|
21
|
McKune K, Woychik NA. Functional substitution of an essential yeast RNA polymerase subunit by a highly conserved mammalian counterpart. Mol Cell Biol 1994; 14:4155-9. [PMID: 8196653 PMCID: PMC358781 DOI: 10.1128/mcb.14.6.4155-4159.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We isolated the cDNA encoding the homolog of the Saccharomyces cerevisiae nuclear RNA polymerase common subunit RPB6 from hamster CHO cells. Alignment of yeast RPB6 with its mammalian counterpart revealed that the subunits have nearly identical carboxy-terminal halves and a short acidic region at the amino terminus. Remarkably, the length and amino acid sequence of the hamster RPB6 are identical to those of the human RPB6 subunit. The conservation in sequence from lower to higher eukaryotes also reflects conservation of function in vivo, since hamster RPB6 supports normal wild-type yeast cell growth in the absence of the essential gene encoding RPB6.
Collapse
Affiliation(s)
- K McKune
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | |
Collapse
|
22
|
Kaine BP, Mehr IJ, Woese CR. The sequence, and its evolutionary implications, of a Thermococcus celer protein associated with transcription. Proc Natl Acad Sci U S A 1994; 91:3854-6. [PMID: 8171001 PMCID: PMC43680 DOI: 10.1073/pnas.91.9.3854] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Through random search, a gene from Thermococcus celer has been identified and sequenced that appears to encode a transcription-associated protein (110 amino acid residues). The sequence has clear homology to approximately the last half of an open reading frame reported previously for Sulfolobus acidocaldarius [Langer, D. & Zillig, W. (1993) Nucleic Acids Res. 21, 2251]. The protein translations of these two archaeal genes in turn are homologs of a small subunit found in eukaryotic RNA polymerase I (A12.2) and the counterpart of this from RNA polymerase II (B12.6). Homology is also seen with the eukaryotic transcription factor TFIIS, but it involves only the terminal 45 amino acids of the archaeal proteins. Evolutionary implications of these homologies are discussed.
Collapse
Affiliation(s)
- B P Kaine
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|