1
|
Prince S, Munoz C, Filion-Bienvenue F, Rioux P, Sarrasin M, Lang BF. Refining Mitochondrial Intron Classification With ERPIN: Identification Based on Conservation of Sequence Plus Secondary Structure Motifs. Front Microbiol 2022; 13:866187. [PMID: 35369492 PMCID: PMC8971849 DOI: 10.3389/fmicb.2022.866187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial genomes—in particular those of fungi—often encode genes with a large number of Group I and Group II introns that are conserved at both the sequence and the RNA structure level. They provide a rich resource for the investigation of intron and gene structure, self- and protein-guided splicing mechanisms, and intron evolution. Yet, the degree of sequence conservation of introns is limited, and the primary sequence differs considerably among the distinct intron sub-groups. It makes intron identification, classification, structural modeling, and the inference of gene models a most challenging and error-prone task—frequently passed on to an “expert” for manual intervention. To reduce the need for manual curation of intron structures and mitochondrial gene models, computational methods using ERPIN sequence profiles were initially developed in 2007. Here we present a refinement of search models and alignments using the now abundant publicly available fungal mtDNA sequences. In addition, we have tested in how far members of the originally proposed sub-groups are clearly distinguished and validated by our computational approach. We confirm clearly distinct mitochondrial Group I sub-groups IA1, IA3, IB3, IC1, IC2, and ID. Yet, IB1, IB2, and IB4 ERPIN models are overlapping substantially in predictions, and are therefore combined and reported as IB. We have further explored the conversion of our ERPIN profiles into covariance models (CM). Current limitations and prospects of the CM approach will be discussed.
Collapse
|
2
|
Schuster A, Lopez JV, Becking LE, Kelly M, Pomponi SA, Wörheide G, Erpenbeck D, Cárdenas P. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding. BMC Evol Biol 2017; 17:82. [PMID: 28320321 PMCID: PMC5360047 DOI: 10.1186/s12862-017-0928-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. RESULTS For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. CONCLUSION This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004 USA
| | - Leontine E. Becking
- Marine Animal Ecology, Wageningen University & Research Centre, P.O. Box 3700, AH, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Marine Zoology Department, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - Michelle Kelly
- National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, P.O. Box 109–695, Newmarket, Auckland, New Zealand
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute-Florida Atlantic University, 5600 U.S. 1 North, Ft Pierce, FL 34946 USA
| | - Gert Wörheide
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- SNSB - Bavarian State Collections of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Paco Cárdenas
- Department of Medicinal Chemistry, Division of Pharmacognosy, BioMedical Center, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
3
|
Hrdá Š, Hroudová M, Vlček Č, Hampl V. Mitochondrial Genome of Prasinophyte Alga Pyramimonas parkeae. J Eukaryot Microbiol 2016; 64:360-369. [PMID: 27678215 DOI: 10.1111/jeu.12371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 01/18/2023]
Abstract
Prasinophytes are a paraphyletic assemblage of nine heterogeneous lineages in the Chlorophyta clade of Archaeplastida. Until now, seven complete mitochondrial genomes have been sequenced from four prasinophyte lineages. Here, we report the mitochondrial genome of Pyramimonas parkeae, the first representative of the prasinophyte clade I. The circular-mapping molecule is 43,294 bp long, AT rich (68.8%), very compact and it comprises two 6,671 bp long inverted repeat regions. The gene content is slightly smaller than the gene-richest prasinophyte mitochondrial genomes. The single identified intron is located in the cytochrome c oxidase subunit 1 gene (cox1). Interestingly, two exons of cox1 are encoded on the same strand of DNA in the reverse order and the mature mRNA is formed by trans-splicing. The phylogenetic analysis using the data set of 6,037 positions assembled from 34 mtDNA-encoded proteins of 48 green algae and plants is not in compliance with the branching order of prasinophyte clades revealed on the basis of 18S rRNA genes and cpDNA-encoded proteins. However, the phylogenetic analyses based on all three genomic elements support the sister position of prasinophyte clades Pyramimonadales and Mamiellales.
Collapse
Affiliation(s)
- Štěpánka Hrdá
- Department of Parasitology, Faculty of Science, Charles University, Prague, 128 43, Czech Republic
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, Prague, 128 43, Czech Republic
| |
Collapse
|
4
|
Kelly M, Cárdenas P. An unprecedented new genus and family of Tetractinellida (Porifera, Demospongiae) from New Zealand's Colville Ridge, with a new type of mitochondrial group I intron. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle Kelly
- Coasts and Oceans National Centre; National Institute of Water & Atmospheric Research Ltd; Private Bag 99940 Newmarket Auckland New Zealand
| | - Paco Cárdenas
- Department of Medicinal Chemistry; Division of Pharmacognosy; BioMedical Centre; Husargatan 3; Uppsala University; 751 23 Uppsala Sweden
- Department of Systematic Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
| |
Collapse
|
5
|
Bégu D, Castandet B, Araya A. RNA editing restores critical domains of a group I intron in fern mitochondria. Curr Genet 2011; 57:317-25. [DOI: 10.1007/s00294-011-0349-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/28/2022]
|
6
|
Volkmar U, Knoop V. Introducing intron locus cox1i624 for phylogenetic analyses in Bryophytes: on the issue of Takakia as sister genus to all other extant mosses. J Mol Evol 2010; 70:506-18. [PMID: 20473660 DOI: 10.1007/s00239-010-9348-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 04/13/2010] [Indexed: 11/30/2022]
Abstract
Liverworts are well supported as the sister group to all other land plants (embryophytes) by molecular data. Observations strongly supporting this earliest dichotomy in embryophyte evolution are the strikingly different introns occurring in the mitochondrial DNAs of liverworts versus non-liverwort embryophytes (NLE), including the mosses. A final conclusion on the most basal lineages of mosses, for which genera such as Sphagnum and Takakia are the most likely candidates, is lacking. We have now investigated cox1i624, a mitochondrial group I intron conserved between the moss Physcomitrella patens and the liverwort Marchantia polymorpha. Focusing on a sampling of liverwort and moss genera, which had previously been identified as early branching taxa in their respective clades, we find that group I intron cox1i624 is universally conserved in all 33 mosses and 11 liverworts investigated. The group I intron core secondary structure is well conserved between the two ancient land plant clades. However, whereas dramatic size reductions are seen in the moss phylogeny, exactly the opposite is observed for liverworts. The cox1i624g1 locus was used for phylogenetic tree reconstruction also in combination with data sets of nad5i753g1 as well as chloroplast loci rbcL and rps4. The phylogenetic analyses revealed (i) very good support for the Treubiopsida as sister clade to all other liverworts, (ii) a sister group relationship of the nematodontous Tetraphidopsida and Polytrichopsida and (iii) two rivalling hypotheses about the basal-most moss genus with mitochondrial loci suggesting an isolated Takakia as sister to all other mosses and chloroplast loci indicating a Takakia-Sphagnum clade.
Collapse
Affiliation(s)
- Ute Volkmar
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, Universität Bonn, Kirschallee 1, Bonn, Germany.
| | | |
Collapse
|
7
|
Grewe F, Viehoever P, Weisshaar B, Knoop V. A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 2009; 37:5093-104. [PMID: 19553190 PMCID: PMC2731911 DOI: 10.1093/nar/gkp532] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/05/2009] [Accepted: 06/06/2009] [Indexed: 11/27/2022] Open
Abstract
Plant mitochondrial genomes show much more evolutionary plasticity than those of animals. We analysed the first mitochondrial DNA (mtDNA) of a lycophyte, the quillwort Isoetes engelmannii, which is separated from seed plants by more than 350 million years of evolution. The Isoetes mtDNA is particularly rich in recombination events, and chloroplast as well as nuclear DNA inserts document the incorporation of foreign sequences already in this most ancestral vascular plant lineage. On the other hand, particularly small group II introns and short intergenic regions reveal a tendency of evolution towards a compact mitochondrial genome. RNA editing reaches extreme levels exceeding 100 pyrimidine exchanges in individual mRNAs and, hitherto unobserved in such frequency, also in tRNAs with 18 C-to-U conversions in the tRNA for proline. In total, some 1500 sites of RNA editing can be expected for the Isoetes mitochondrial transcriptome. As a unique molecular novelty, the Isoetes cox1 gene requires trans-splicing via a discontinuous group I intron demonstrating disrupted, but functional, RNAs for yet another class of natural ribozymes.
Collapse
Affiliation(s)
- Felix Grewe
- Institut für Zelluläre und Molekulare Botanik (IZMB), Universität Bonn, Kirschallee 1, 53115 Bonn and Institut für Genomforschung und Systembiologie (IGS), Universität Bielefeld, Universitätsstraße 25, 33594 Bielefeld, Germany
| | - Prisca Viehoever
- Institut für Zelluläre und Molekulare Botanik (IZMB), Universität Bonn, Kirschallee 1, 53115 Bonn and Institut für Genomforschung und Systembiologie (IGS), Universität Bielefeld, Universitätsstraße 25, 33594 Bielefeld, Germany
| | - Bernd Weisshaar
- Institut für Zelluläre und Molekulare Botanik (IZMB), Universität Bonn, Kirschallee 1, 53115 Bonn and Institut für Genomforschung und Systembiologie (IGS), Universität Bielefeld, Universitätsstraße 25, 33594 Bielefeld, Germany
| | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik (IZMB), Universität Bonn, Kirschallee 1, 53115 Bonn and Institut für Genomforschung und Systembiologie (IGS), Universität Bielefeld, Universitätsstraße 25, 33594 Bielefeld, Germany
| |
Collapse
|
8
|
The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Curr Genet 2008; 55:69-79. [PMID: 19112563 DOI: 10.1007/s00294-008-0225-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 12/16/2022]
Abstract
We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.
Collapse
|
9
|
Ohyama K, Takemura M. Molecular evolution of mitochondrial introns in the liverwort Marchantia polymorpha. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2008; 84:17-23. [PMID: 18941284 PMCID: PMC2805501 DOI: 10.2183/pjab.84.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We here describe in detail the characterization and molecular evolution of group II introns in the mitochondrial genome of the liverwort Marchantia polymorpha. We find that 18 introns of the 25 group II introns can be assigned by their similarities to six clusters, indicating an intra-genomic propagation of one ancestral intron each into the respective clusters in the liverwort mitochondrial genome. Interestingly, the intra-genomic propagation of some of these introns occurred only after the evolutionary separation of the bryophytes from the other clades of plants. Finally we report that the maturase-like sequences in the liverwort group II introns have further evolved by horizontal and independent transposition and substitution by analogous sequences from other fungal introns.
Collapse
Affiliation(s)
- Kanji Ohyama
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan.
| | | |
Collapse
|
10
|
Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 2004; 46:123-39. [PMID: 15300404 DOI: 10.1007/s00294-004-0522-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 11/25/2022]
Abstract
Land plants exhibit a significant evolutionary plasticity in their mitochondrial DNA (mtDNA), which contrasts with the more conservative evolution of their chloroplast genomes. Frequent genomic rearrangements, the incorporation of foreign DNA from the nuclear and chloroplast genomes, an ongoing transfer of genes to the nucleus in recent evolutionary times and the disruption of gene continuity in introns or exons are the hallmarks of plant mtDNA, at least in flowering plants. Peculiarities of gene expression, most notably RNA editing and trans-splicing, are significantly more pronounced in land plant mitochondria than in chloroplasts. At the same time, mtDNA is generally the most slowly evolving of the three plant cell genomes on the sequence level, with unique exceptions in only some plant lineages. The slow sequence evolution and a variable occurrence of introns in plant mtDNA provide an attractive reservoir of phylogenetic information to trace the phylogeny of older land plant clades, which is as yet not fully resolved. This review attempts to summarize the unique aspects of land plant mitochondrial evolution from a phylogenetic perspective.
Collapse
Affiliation(s)
- Volker Knoop
- IZMB--Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, Bonn, Germany.
| |
Collapse
|
11
|
Turmel M, Otis C, Lemieux C. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. THE PLANT CELL 2003; 15:1888-903. [PMID: 12897260 PMCID: PMC167177 DOI: 10.1105/tpc.013169] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 06/04/2003] [Indexed: 05/20/2023]
Abstract
Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec G1K 7P4, Canada.
| | | | | |
Collapse
|
12
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
13
|
Lehman N, Joyce GF. Evolution in vitro: analysis of a lineage of ribozymes. Curr Biol 2001; 3:723-34. [PMID: 11539560 DOI: 10.1016/0960-9822(93)90019-k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1993] [Revised: 10/01/1993] [Accepted: 10/07/1993] [Indexed: 11/30/2022]
Abstract
BACKGROUND Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. RESULTS Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. CONCLUSIONS In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.
Collapse
Affiliation(s)
- N Lehman
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Paquin B, Kathe SD, Nierzwicki-Bauer SA, Shub DA. Origin and evolution of group I introns in cyanobacterial tRNA genes. J Bacteriol 1997; 179:6798-806. [PMID: 9352932 PMCID: PMC179611 DOI: 10.1128/jb.179.21.6798-6806.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many tRNA(Leu)UAA genes from plastids contain a group I intron. An intron is also inserted in the same gene at the same position in cyanobacteria, the bacterial progenitors of plastids, suggesting an ancient bacterial origin for this intron. A group I intron has also been found in the tRNA(fMet) gene of some cyanobacteria but not in plastids, suggesting a more recent origin for this intron. In this study, we investigate the phylogenetic distributions of the two introns among cyanobacteria, from the earliest branching to the more derived species. The phylogenetic distribution of the tRNA(Leu)UAA intron follows the clustering of rRNA sequences, being either absent or present in clades of closely related species, with only one exception in the Pseudanabaena group. Our data support the notion that the tRNA(Leu)UAA intron was inherited by cyanobacteria and plastids through a common ancestor. Conversely, the tRNA(fMet) intron has a sporadic distribution, implying that many gains and losses occurred during cyanobacterial evolution. Interestingly, a phylogenetic tree inferred from intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history.
Collapse
Affiliation(s)
- B Paquin
- Department of Biological Sciences and Center for Molecular Genetics, University at Albany-SUNY, New York 12222, USA
| | | | | | | |
Collapse
|
15
|
Pellizzari R, Anjard C, Bisson R. Subunits I and II of Dictyostelium cytochrome c oxidase are specified by a single open reading frame transcribed into a large polycistronic RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:1-7. [PMID: 9186775 DOI: 10.1016/s0005-2728(97)00010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A single open reading frame (ORF) encoding cytochrome c oxidase subunit I and II (cox1/2) was identified in the mitochondrial genome of the slime mold Dictyostelium discoideum. The cox1 coding region shares intron positions with its counterparts in fungi and algae. Northern blot analysis, using exon and intron-specific probes, suggests that the cox1/2 gene is transcribed as part of a large, efficiently processed, polycistronic RNA.
Collapse
|
16
|
Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 1997; 15:57-61. [PMID: 8988169 DOI: 10.1038/ng0197-57] [Citation(s) in RCA: 584] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have determined the complete sequence of the mitochondrial DNA in the model plant species Arabidopsis thaliana, affording access to the first of its three genomes. The 366,924 nucleotides code for 57 identified genes, which cover only 10% of the genome. Introns in these genes add about 8%, open reading frames larger than 100 amino acids represent 10% of the genome, duplications account for 7%, remnants of retrotransposons of nuclear origin contribute 4% and integrated plastid sequences amount to 1%-leaving 60% of the genome unaccounted for. With the significant contribution of duplications, imported foreign DNA and the extensive background of apparently functionless sequences, the mosaic structure of the Arabidopsis thaliana mitochondrial genome features many aspects of size-relaxed nuclear genomes.
Collapse
Affiliation(s)
- M Unseld
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Sper-Whitis GL, Moody JL, Vaughn JC. Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxI) among the land plants. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:301-8. [PMID: 8688465 DOI: 10.1016/0167-4781(96)00041-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant mitochondrial pre-mRNAs often undergo C-to-U conversions, a phenomenon termed RNA editing. The molecular source of specificity and phylogenetic depth of the editing machinery remain to be determined. We amplified coxI gene fragments via the polymerase chain reaction from a diversity of taxa within the land plants, and sequenced each. Alignment and comparison of 25 homologous coxI gene sequences with those from plant species having known RNA editing sites which restore amino acid sequence consensus was used to infer sites of C-to-U conversions. Our results, derived using the comparative approach, imply that the plant mitochondrial editing machinery extends throughout vascular plant phylogeny, and also that this phenomenon is present in every major branch of the (non-vascular) Bryophyta: liverworts (Hepaticae), hornworts (Anthocerotae), and mosses (Musci). These results have important consequences for our thoughts on the evolutionary history of the plant RNA editing process, as they imply that editing is older than was previously believed.
Collapse
Affiliation(s)
- G L Sper-Whitis
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
18
|
Wolff G, Kück U. Transcript mapping and processing of mitochondrial RNA in the chlorophyte alga Prototheca wickerhamii. PLANT MOLECULAR BIOLOGY 1996; 30:577-595. [PMID: 8605307 DOI: 10.1007/bf00049333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The detailed transcript map of the circular 55328 bp mitochondrial (mt) genome from the colourless chlorophycean alga Prototheca wickerhamii has been determined. On each half of this genome the genes are encoded only on one DNA strand, forming transcriptional units comprising variable numbers of genes. With the exception of four genes coding for ribosomal proteins, transcripts of the three rRNA genes and all protein-coding genes have been detected by both northern analysis and primer extension experiments. Polycistronic transcripts of protein coding and tRNA genes were verified by northern analyses, primer extension and RNAse mapping experiments. The 5' and 3' ends of different RNA species are often located in close proximity to putative stem-loop structures and some 5' termini of mRNAs coincide with the 3' end of tRNAs located immediately upstream. Transcript mapping in a putative promoter region revealed two different possible transcription initiation sites; no significant sequence homology to putative mt promoters from higher plants could be found. In addition, two out of three group I introns residing in the cox1 gene were found to be self-splicing in vitro under reaction conditions developed for related mt introns from a filamentous fungus. Mitochondrial gene expression of P. wickerhamii and of filamentous fungi has several features in common, such as intron splicing and the processing of longer polycistronic transcripts. The similarities in RNA maturation between higher-plant and P. wickerhamii mitochondria are less pronounced, since plants rarely use tRNAs as processing signals for their relatively short mitochondrial co-transcripts.
Collapse
Affiliation(s)
- G Wolff
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
19
|
Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. J Mol Evol 1995; 41:563-72. [PMID: 7490770 DOI: 10.1007/bf00175814] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.
Collapse
Affiliation(s)
- J C Vaughn
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
20
|
Zanlungo S, Quiñones V, Moenne A, Holuigue L, Jordana X. Splicing and editing of rps10 transcripts in potato mitochondria. Curr Genet 1995; 27:565-71. [PMID: 7553943 DOI: 10.1007/bf00314449] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure and expression of the potato mitochondrial gene rps10, encoding ribosomal protein S10, has been characterized. The RPS10 polypeptide of 129 amino acids is encoded by two exons of 307 bp and 80 bp respectively, which are separated by a 774-bp class-II intron. Editing of the complete rps10 coding region was studied by sequence analysis of spliced cDNAs. Four C residues are edited into U, resulting in the creation of a putative translational initiation codon, a new stop codon which eliminated ten carboxy-terminal residues, and two additional amino-acid alterations. All these changes increase the similarity between the potato and liverwort polypeptides. One additional C-to-U RNA editing event, observed in the intron sequence of unspliced cDNAs, improves the stability of the secondary structure in stem I (i) of domain I and may thus be required for the splicing reaction. All spliced cDNAs, and most unspliced cDNAs, were completely edited, suggesting that editing is an early step of rps10 mRNA processing and precedes splicing. Earlier work on potato rps10 (Zanlungo et al. 1994) is now known to comprise only a partial analysis of the gene, since the short downstream exon was not identified.
Collapse
Affiliation(s)
- S Zanlungo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago
| | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Lippok B, Brennicke A, Wissinger B. Differential RNA editing in closely related introns in Oenothera mitochondria. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:39-46. [PMID: 7514712 DOI: 10.1007/bf00283874] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introns a/b of the nad2 gene and b/c of the nad1 gene in Oenothera mitochondria were found to be closely related. Within a scaffold of conserved sequence regions, a 48 bp sequence element covering intron domain V and flanking nucleotides is identical in both group II introns. The third nucleotide of this element is edited in the nad2, but not in the nad1 intervening sequence. The C to U editing event compensates an nad2-specific nucleotide mismatch in the stem domain IV and thus improves secondary structure stability. This differential editing event indicates that the identical upstream 2 and downstream 45 nucleotides are not sufficient to specify this editing site. Comparison of adjacent exon editing patterns in spliced and unspliced transcripts shows a higher degree of editing in processed sequences, confirming that RNA editing is a posttranscriptional process in plant mitochondria.
Collapse
Affiliation(s)
- B Lippok
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | |
Collapse
|
24
|
Abstract
Molecular data (particularly sequence analyses) have established that two eukaryotic organelles, the mitochondrion and the plastid, are the descendants of endosymbiotic (eu)bacteria whose closest living relatives are the alpha-Proteobacteria (mitochondrion) and Cyanobacteria (plastid). This review describes recent data that favor the view that each organelle arose via this primary endosymbiotic pathway only once (monophyletic origin), such as the discovery of group I introns that appear to be structurally homologous and have identical insertion sites in metaphyte, chlorophyte and fungal mitochondrial genomes. However, it is also evident that the plastids in certain algal groups were acquired secondarily through a eukaryotic rather than a prokaryotic endosymbiont.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
25
|
Brennicke A, Grohmann L, Hiesel R, Knoop V, Schuster W. The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEBS Lett 1993; 325:140-5. [PMID: 7685713 DOI: 10.1016/0014-5793(93)81430-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The vast majority of mitochondrial proteins are in all eukaryotes encoded in the nuclear genomes by genes which have been transferred from the original endosymbiont. DNA as well as RNA was and is exchanged between organelles. A functionally successful information transfer, however, requires complex structural and regulatory alterations of the concerned gene. The recently identified variations of the information content in mitochondrial genomes of different plant species represent different stages of the transfer process. These evolutionary intermediates allow a definition of requirements and chances of successful gene transfers.
Collapse
Affiliation(s)
- A Brennicke
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | | | |
Collapse
|