1
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Abstract
Fever-associated seizures or epilepsy (FASE) is primarily characterised by the occurrence of a seizure or epilepsy usually accompanied by a fever. It is common in infants and children, and generally includes febrile seizures (FS), febrile seizures plus (FS+), Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFSP). The aetiology of FASE is unclear. Genetic factors may play crucial roles in FASE. Mutations in certain genes may cause a wide spectrum of phenotypical overlap ranging from isolated FS, FS+ and GEFSP to DS. Synapse-associated proteins, postsynaptic GABAA receptor, and sodium channels play important roles in synaptic transmission. Mutations in these genes may involve in the pathogenesis of FASE. Elevated temperature promotes synaptic vesicle (SV) recycling and enlarges SV size, which may enhance synaptic transmission and contribute to FASE occurring. This review provides an overview of the loci, genes, underlying pathogenesis and the fever-inducing effect of FASE. It may provide a more comprehensive understanding of pathogenesis and contribute to the clinical diagnosis of FASE.
Collapse
|
3
|
Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K. Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res 2014; 42:11203-17. [PMID: 25200073 PMCID: PMC4176187 DOI: 10.1093/nar/gku822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stress granules (SGs) are formed in response to stress, contain mRNAs, 40S ribosomal subunits, initiation factors, RNA-binding and signaling proteins, and promote cell survival. Our study describes a novel function of the protein heterodimer SRP9/14 and Alu RNA in SG formation and disassembly. In human cells, SRP9/14 exists assembled into SRP, bound to Alu RNA and as a free protein. SRP9/14, but not SRP, localizes to SGs following arsenite or hippuristanol treatment. Depletion of the protein decreases SG size and the number of SG-positive cells. Localization and function of SRP9/14 in SGs depend primarily on its ability to bind directly to the 40S subunit. Binding of SRP9/14 to 40S and Alu RNA is mutually exclusive indicating that the protein alone is bound to 40S in SGs and that Alu RNA might competitively regulate 40S binding. Indeed, by changing the effective Alu RNA concentration in the cell or by expressing an Alu RNA binding-defective protein we were able to influence SG formation and disassembly. Our findings suggest a model in which SRP9/14 binding to 40S promotes SG formation whereas the increase in cytoplasmic Alu RNA following stress promotes disassembly of SGs by disengaging SRP9/14 from 40S.
Collapse
Affiliation(s)
- A Berger
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - E Ivanova
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - C Gareau
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - A Scherrer
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - R Mazroui
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - K Strub
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Hessel EVS, de Wit M, Wolterink-Donselaar IG, Karst H, de Graaff E, van Lith HA, de Bruijn E, de Sonnaville S, Verbeek NE, Lindhout D, de Kovel CGF, Koeleman BPC, van Kempen M, Brilstra E, Cuppen E, Loos M, Spijker SS, Kan AA, Baars SE, van Rijen PC, Gosselaar PH, Groot Koerkamp MJA, Holstege FCP, van Duijn C, Vergeer J, Moll HA, Taubøll E, Heuser K, Ramakers GMJ, Pasterkamp RJ, van Nieuwenhuizen O, Hoogenraad CC, Kas MJH, de Graan PNE. Identification of Srp9 as a febrile seizure susceptibility gene. Ann Clin Transl Neurol 2014; 1:239-50. [PMID: 25590037 PMCID: PMC4292741 DOI: 10.1002/acn3.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Febrile seizures (FS) are the most common seizure type in young children. Complex FS are a risk factor for mesial temporal lobe epilepsy (mTLE). To identify new FS susceptibility genes we used a forward genetic strategy in mice and subsequently analyzed candidate genes in humans. METHODS We mapped a quantitative trait locus (QTL1) for hyperthermia-induced FS on mouse chromosome 1, containing the signal recognition particle 9 (Srp9) gene. Effects of differential Srp9 expression were assessed in vivo and in vitro. Hippocampal SRP9 expression and genetic association were analyzed in FS and mTLE patients. RESULTS Srp9 was differentially expressed between parental strains C57BL/6J and A/J. Chromosome substitution strain 1 (CSS1) mice exhibited lower FS susceptibility and Srp9 expression than C57BL/6J mice. In vivo knockdown of brain Srp9 reduced FS susceptibility. Mice with reduced Srp9 expression and FS susceptibility, exhibited reduced hippocampal AMPA and NMDA currents. Downregulation of neuronal Srp9 reduced surface expression of AMPA receptor subunit GluA1. mTLE patients with antecedent FS had higher SRP9 expression than patients without. SRP9 promoter SNP rs12403575(G/A) was genetically associated with FS and mTLE. INTERPRETATION Our findings identify SRP9 as a novel FS susceptibility gene and indicate that SRP9 conveys its effects through endoplasmic reticulum (ER)-dependent synthesis and trafficking of membrane proteins, such as glutamate receptors. Discovery of this new FS gene and mechanism may provide new leads for early diagnosis and treatment of children with complex FS at risk for mTLE.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Inge G Wolterink-Donselaar
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Henk Karst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Esther de Graaff
- Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, The Netherlands
| | - Hein A van Lith
- Program Emotion and Cognition, Division of Animal Welfare and Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University and Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Ewart de Bruijn
- Hubrecht Institute-KNAW and University Medical Center UtrechtUtrecht, The Netherlands
| | - Sophietje de Sonnaville
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Nienke E Verbeek
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
| | - Dick Lindhout
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
- SEIN Epilepsy Institute in the NetherlandsHeemstede, The Netherlands
| | - Carolien G F de Kovel
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
| | - Marjan van Kempen
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
| | - Eva Brilstra
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW and University Medical Center UtrechtUtrecht, The Netherlands
- Department of Medical Genetics, University Medical Center UtrechtUtrecht, The Netherlands
| | - Maarten Loos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU UniversityAmsterdam, The Netherlands
| | - Sabine S Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU UniversityAmsterdam, The Netherlands
| | - Anne A Kan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Susanne E Baars
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
- Master program Neuroscience and Cognition, Utrecht UniversityUtrecht, The Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Peter H Gosselaar
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | | | - Frank C P Holstege
- Department of Molecular Cancer Research, University Medical Center UtrechtUtrecht, The Netherlands
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Jeanette Vergeer
- Department of Epidemiology, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Henriette A Moll
- Department of Pediatrics, Erasmus Medical CenterRotterdam, The Netherlands
| | - Erik Taubøll
- Department of Neurology, Oslo University HospitalOslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University HospitalOslo, Norway
| | - Geert M J Ramakers
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Onno van Nieuwenhuizen
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, The Netherlands
| | - Martien J H Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| | - Pierre N E de Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, The Netherlands
| |
Collapse
|
5
|
Mary C, Scherrer A, Huck L, Lakkaraju AKK, Thomas Y, Johnson AE, Strub K. Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein. RNA (NEW YORK, N.Y.) 2010; 16:969-79. [PMID: 20348448 PMCID: PMC2856890 DOI: 10.1261/rna.2040410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The signal recognition particle (SRP) is a ubiquitous cytoplasmic ribonucleoprotein complex required for the cotranslational targeting of proteins to the endoplasmic reticulum (ER). In eukaryotes, SRP has to arrest the elongation of the nascent chains during targeting to ensure efficient translocation of the preprotein, and this function of SRP is dependent on SRP9/14. Here we present the results of a mutational study on the human protein h9/14 that identified and characterized regions and single residues essential for elongation arrest activity. Effects of the mutations were assessed both in cell-free translation/translocation assays and in cultured mammalian cells. We identified two patches of basic amino acid residues that are essential for activity, whereas the internal loop of SRP14 was found to be dispensable. One patch of important basic residues comprises the previously identified basic pentapetide KRDKK, which can be substituted by four lysines without loss of function. The other patch includes three lysines in the solvent-accessible alpha2 of h9. All essential residues are located in proximity in SRP9/14 and their basic character suggests that they serve as a positively charged platform for interactions with ribosomal RNA. In addition, they can all be lysines consistent with the hypothesis that they recognize their target(s) via electrostatic contacts, most likely with the phosphate backbone, as opposed to contacts with specific bases.
Collapse
Affiliation(s)
- Camille Mary
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The signal recognition particle (SRP) and its membrane-associated receptor (SR) catalyze targeting of nascent secretory and membrane proteins to the protein translocation apparatus of the cell. Components of the SRP pathway and salient features of the molecular mechanism of SRP-dependent protein targeting are conserved in all three kingdoms of life. Recent advances in the structure determination of a number of key components in the eukaryotic and prokaryotic SRP pathway provide new insight into the molecular basis of SRP function, and they set the stage for future work toward an integrated picture that takes into account the dynamic and contextual properties of this remarkable cellular machine.
Collapse
Affiliation(s)
- R J Keenan
- Maxygen, 515 Galveston Drive, Redwood City, California 94063, USA.
| | | | | | | |
Collapse
|
7
|
Strub K, Fornallaz M, Bui N. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. RNA (NEW YORK, N.Y.) 1999; 5:1333-47. [PMID: 10573124 PMCID: PMC1369855 DOI: 10.1017/s1355838299991045] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mammalian Alu domain of the signal recognition particle (SRP) consists of a heterodimeric protein SRP9/14 and the Alu portion of 7SL RNA and comprises the elongation arrest function of the particle. To define the domain in Saccharomyces cerevisiae SRP that is homologous to the mammalian Alu domain [Alu domain homolog in yeast (Adhy)], we examined the assembly of a yeast protein homologous to mammalian SRP14 (Srp14p) and scR1 RNA. Srp14p binds as a homodimeric complex to the 5' sequences of scR1 RNA. Its minimal binding site consists of 99 nt. (Adhy RNA), comprising a short hairpin structure followed by an extended stem. As in mammalian SRP9/14, the motif UGUAAU present in most SRP RNAs is part of the Srp14p binding sites as shown by footprint and mutagenesis studies. In addition, certain basic amino acid residues conserved between mammalian SRP14 and Srp14p are essential for RNA binding in both proteins. These findings confirm the common ancestry of the yeast and the mammalian components and indicate that Srp14p together with Adhy RNA represents the Alu domain homolog in yeast SRP that may comprise its elongation arrest function. Despite the similarities, Srp14p selectively recognizes only scR1 RNA, revealing substantial changes in RNA-protein recognition as well as in the overall structure of the complex. The alignment of the three yeast SRP RNAs known to date suggests a common structure for the putative elongation arrest domain of all three organisms.
Collapse
Affiliation(s)
- K Strub
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Switzerland.
| | | | | |
Collapse
|
8
|
Kremerskothen J, Zopf D, Walter P, Cheng JG, Nettermann M, Niewerth U, Maraia RJ, Brosius J. Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neurosci Lett 1998; 245:123-6. [PMID: 9605471 DOI: 10.1016/s0304-3940(98)00215-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BC200 RNA is a brain-specific, small non-messenger RNA with a somatodendritic localization in primate neurons and a constituent of a ribonucleoprotein (RNP) complex. The primary and secondary structure of the 5' domain of BC200 RNA resembles that of the Alu domain of 7SL RNA, which is an integral part of the signal recognition particle (SRP). This would predict that similar proteins bind to this defined domain of both RNA species in vitro and in vivo. The data presented in this paper reveal that a protein that binds BC200 RNA in vivo is immunoreactive with antibodies against SRP9. This further supports the notion that the 5' domain of the BC200 RNA can fold into structures similar to the SRP Alu domain and, as a result, bind identical or similar proteins in vivo. The SRP9 protein binds only as dimer with SRP14 protein to the Alu domain of 7SL RNA to form a subdomain that, in SRP, is functional in translation arrest. Therefore, our data also indicate that the neuronal BC200 RNP is a candidate for regulating decentralized protein biosynthesis in dendrites, possibly with a mechanism that resembles translation arrest of the SRP.
Collapse
Affiliation(s)
- J Kremerskothen
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Birse DE, Kapp U, Strub K, Cusack S, Aberg A. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. EMBO J 1997; 16:3757-66. [PMID: 9233785 PMCID: PMC1169999 DOI: 10.1093/emboj/16.13.3757] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian signal recognition particle (SRP) is an 11S cytoplasmic ribonucleoprotein that plays an essential role in protein sorting. SRP recognizes the signal sequence of the nascent polypeptide chain emerging from the ribosome, and targets the ribosome-nascent chain-SRP complex to the rough endoplasmic reticulum. The SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide RNA molecule. SRP9 and SRP14 proteins form a heterodimer that binds to the Alu domain of SRP RNA which is responsible for translation arrest. We report the first crystal structure of a mammalian SRP protein, that of the mouse SRP9/14 heterodimer, determined at 2.5 A resolution. SRP9 and SRP14 are found to be structurally homologous, containing the same alpha-beta-beta-beta-alpha fold. This we designate the Alu binding module (Alu bm), an additional member of the family of small alpha/beta RNA binding domains. The heterodimer has pseudo 2-fold symmetry and is saddle like, comprising a strongly curved six-stranded amphipathic beta-sheet with the four helices packed on the convex side and the exposed concave surface being lined with positively charged residues.
Collapse
Affiliation(s)
- D E Birse
- European Molecular Biology Laboratory, Grenoble Outstation, France
| | | | | | | | | |
Collapse
|
10
|
Thomas Y, Bui N, Strub K. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Nucleic Acids Res 1997; 25:1920-9. [PMID: 9115358 PMCID: PMC146678 DOI: 10.1093/nar/25.10.1920] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.
Collapse
Affiliation(s)
- Y Thomas
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | | | |
Collapse
|
11
|
Bovia F, Wolff N, Ryser S, Strub K. The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Nucleic Acids Res 1997; 25:318-26. [PMID: 9016560 PMCID: PMC146433 DOI: 10.1093/nar/25.2.318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The heterodimeric subunit, SRP9/14, of the signal recognition particle (SRP) has previously been found to bind to scAlu and scB1 RNAs in vitro and to exist in large excess over SRP in anthropoid cells. Here we show that human and mouse SRP9/14 bind with high affinities to other Alu-like RNAs of different evolutionary ages including the neuron-specific BC200 RNA. The relative dissociation constants of the different RNA-protein complexes are inversely proportional to the evolutionary distance between the Alu RNA species and 7SL RNA. In addition, the human SRP9/14 binds with higher affinity than mouse SRP9/14 to all RNAs analyzed and this difference is not explained by the additional C-terminal domain present in the anthropoid SRP14. The conservation of high affinity interactions between SRP9/14 and Alu-like RNAs strongly indicates that these Alu-like RNPs exist in vivo and that they have cellular functions. The observation that human SRP9/14 binds better than its mouse counterpart to distantly related Alu RNAs, such as recently transposed elements, suggests that the anthropoid-specific excess of SRP9/14 may have a role in controlling Alu amplification rather than in compensating a defect in SRP assembly and functions.
Collapse
Affiliation(s)
- F Bovia
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
12
|
Bovia F, Strub K. The signal recognition particle and related small cytoplasmic ribonucleoprotein particles. J Cell Sci 1996; 109 ( Pt 11):2601-8. [PMID: 8937977 DOI: 10.1242/jcs.109.11.2601] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a number of novel small cytoplasmic ribonucleoprotein particles have been identified that comprise RNA and protein subunits related to the signal recognition particle (SRP). Here we discuss the latest results on the structure and functions of SRP together with the structures and putative functions of the novel SRP-related ribonucleoprotein particles.
Collapse
Affiliation(s)
- F Bovia
- Département de Biologie Cellulaire, Université de Genève, Switzerland
| | | |
Collapse
|
13
|
Doublié S, Kapp U, Aberg A, Brown K, Strub K, Cusack S. Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett 1996; 384:219-21. [PMID: 8617357 DOI: 10.1016/0014-5793(96)00316-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two different crystal forms of the 9 kDa protein of the signal recognition particle (SRP9) have been prepared by the hanging drop vapor diffusion technique using 28% (w/v) PEG8000 or 28% saturated ammonium sulphate as precipitant. The crystals are hexagonal bipyramids with average dimensions of 0.2 X 0.1 X 0.1 mm(3) and they diffract to a resolution of 2.3 Angstroms. They belong to the space groups P6(2)22/P6(4)22 or P3(1)21/P3(2)21 with cell dimensions a = b = 63.0 Angstroms, and c = 111.5 Angstroms. Crystals have also been grown from the selenomethionyl protein and multiwavelength data sets have been collected.
Collapse
Affiliation(s)
- S Doublié
- European Molecular Biology Laboratory, Grenoble Outstation, France
| | | | | | | | | | | |
Collapse
|
14
|
Birse DE, Doublié S, Kapp U, Strub K, Cusack S, Aberg A. Crystallization and preliminary crystallographic analysis of the signal recognition particle SRPphi14-9 fusion protein. FEBS Lett 1996; 384:215-8. [PMID: 8617356 DOI: 10.1016/0014-5793(96)00315-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The SRPphi14-9 fusion protein, which can functionally replace the SRP9/14 heterodimer in the mammalian signal recognition particle (SRP), has been crystallized using the vapor diffusion method. Four different crystal forms were grown. SRPphi14-9 form IV crystals belong to the space group P4(1)22/ P4(3)22 with cell parameters a = b = 69.7 Angstroms, c = 95.7 Angstroms, alpha = beta = gamma = 90 degrees. A complete data set to 2.8 Angstroms resolution with an Rsym on intensities of 7.0% was collected on a single flash-frozen crystal.
Collapse
Affiliation(s)
- D E Birse
- European Molecular Biology Laboratory, Grenoble Outstation, France
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The topology of alpha-helices and beta-sheets in folded proteins is largely specified by the connectivities of the loops and turns which join them. We have used the protein Rop to test the feasibility of using short glycine-rich linkers to reconnect the alpha-helices within a four-helix-bundle protein. In wild-type Rop the four-helix-bundle structure is formed by the association of two identical helix-turn-helix monomers. Our redesigns encode Rop as a single chain to create a monomeric, rather than a dimeric, form of the protein. Characterization of a series of such variants demonstrates that new connections of this type can be used to generate stable, native-like proteins. The length of the connections is of key importance; if the loops are too short, correct association of the helices is prevented, and misfolded, higher order oligomers occur. Designs with sufficiently long loop connections, however, generate exclusively the desired monomeric form of the protein. Moreover, the successful monomeric designs bind Rop's RNA substrate with affinities that are equal to that of the wild-type protein. This result provides strong confirmation that the positioning of the helices in the monomeric variants is closely similar to that in wild-type Rop.
Collapse
Affiliation(s)
- P F Predki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
16
|
Hsu K, Chang DY, Maraia RJ. Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J Biol Chem 1995; 270:10179-86. [PMID: 7730321 DOI: 10.1074/jbc.270.17.10179] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nearly 1 million interspersed Alu elements reside in the human genome. Alu retrotransposition is presumably mediated by full-length Alu transcripts synthesized by RNA polymerase III, while some polymerase III-synthesized Alu transcripts undergo 3'-processing and accumulate as small cytoplasmic (sc) RNAs of unknown function. Interspersed Alu sequences also reside in the untranslated regions of some mRNAs. The Alu sequence is related to a portion of the 7SL RNA component of signal recognition particle (SRP). This region of 7SL RNA together with 9- and 14-kDa polypeptides (SRP9/14) regulates translational elongation of ribosomes engaged by SRP. Here we characterize human (h) SRP9 and show that it, together with hSRP14 (SRP9/14), forms the activity previously identified as Alu RNA-binding protein (RBP). The primate-specific C-terminal tail of hSRP14 does not appreciably affect binding to scAlu RNA. Kd values for three Alu-homologous scRNAs were determined using Alu RBP (SRP9/14) purified from HeLa cells. The Alu region of 7SL, scAlu, and scB1 RNAs exhibited Kd values of 203 pM, 318 pM, and 1.8 nM, respectively. Finally, Alu RBP can bind with high affinity to synthetic mRNAs that contain interspersed Alus in their untranslated regions.
Collapse
Affiliation(s)
- K Hsu
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
17
|
Chang DY, Sasaki-Tozawa N, Green LK, Maraia RJ. A trinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol Cell Biol 1995; 15:2109-16. [PMID: 7534378 PMCID: PMC230438 DOI: 10.1128/mcb.15.4.2109] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.
Collapse
Affiliation(s)
- D Y Chang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753
| | | | | | | |
Collapse
|
18
|
Bovia F, Fornallaz M, Leffers H, Strub K. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Mol Biol Cell 1995; 6:471-84. [PMID: 7542942 PMCID: PMC301205 DOI: 10.1091/mbc.6.4.471] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The heterodimeric protein SRP9/14 bound to the Alu sequences of SRP RNA is essential for the translational control function of the signal recognition particle (SRP). The Alu RNAs of primate cells are believed to be derived from SRP RNA and have been shown to bind to an SRP14-related protein in vitro. We have used antibodies to characterize SRP9/14 and examine its association with small RNAs in vivo. Although SRP9 proteins are the same size in both rodent and primate cells, SRP14 subunits are generally larger in primate cells. An additional alanine-rich domain at the C-terminus accounts for the larger size of one human isoform. Although the other four SRP proteins are largely assembled into SRP in both rodent and primate cells, we found that the heterodimer SRP9/14 is present in 20-fold excess over SRP in primate cells. An increased synthesis rate of both proteins may contribute to their accumulation. The majority of the excess SRP9/14 is cytoplasmic and does not appear to be bound to any small RNAs; however, a significant fraction of a small cytoplasmic Alu RNA is complexed with SRP9/14 in a 8.5 S particle. Our findings that there is a large excess of SRP9/14 in primate cells and that Alu RNAs are bound to SRP9/14 in vivo suggest that this heterodimeric protein may play additional roles in the translational control of gene expression and/or Alu transcript metabolism.
Collapse
Affiliation(s)
- F Bovia
- Université de Genève, Département de Biologie Cellulaire, Switzerland
| | | | | | | |
Collapse
|
19
|
Lütcke H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:531-50. [PMID: 7737147 DOI: 10.1111/j.1432-1033.1995.tb20293.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In higher eukaryotes, most secretory and membrane proteins are synthesised by ribosomes which are attached to the membrane of the rough endoplasmic reticulum (RER). This allows the proteins to be translocated across that membrane already during their synthesis. The ribosomes are directed to the RER membrane by a cytoplasmic ribonucleoprotein particle, the signal recognition particle (SRP). SRP fulfills its task by virtue of three distinguishable activities: the binding of a signal sequence which, being part of the nascent polypeptide to be translocated, is exposed on the surface of a translating ribosome; the retardation of any further elongation; and the SRP-receptor-mediated binding of the complex of ribosome, nascent polypeptide and SRP to the RER membrane which results in the detachment of SRP from the signal sequence and the ribosome and the insertion of the nascent polypeptide into the membrane. Evidence is accumulating that SRP is not restricted to eukaryotes: SRP-related particles and SRP-receptor-related molecules are found ubiquitously and may function in protein translocation in every living organism. This review focuses on the mammalian SRP. A brief discussion of its overall structure is followed by a detailed description of the structures of its RNA and protein constituents and the requirements for their assembly into the particle. Homologues of SRP components from organisms other than mammals are mentioned to emphasize the components' conserved or less conserved features. Subsequently, the functions of each of the SRP constituents are discussed. This sets the stage for a presentation of a model for the mechanism by which SRP cyclically assembles and disassembles with translating ribosomes and the RER membrane. It may be expected that similar mechanisms are used by SRP homologues in organisms other than mammals. However, the mammalian SRP-mediated translocation mechanism may not be conserved in its entirety in organisms like Escherichia coli whose SRP lack components required for the function of the mammalian SRP. Possible translocation pathways involving the rudimentary SRP are discussed in view of the existence of alternative, chaperone-mediated translocation pathways with which they may intersect. The concluding two sections deal with open questions in two areas of SRP research. One formulates basic questions regarding the little-investigated biogenesis of SRP. The other gives an outlook over the insights into the mechanisms of each of the known activities of the SRP that are to be expected in the short and medium-term future.
Collapse
Affiliation(s)
- H Lütcke
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), Germany
| |
Collapse
|
20
|
Lutcke H. Signal Recognition Particle (SRP), a Ubiquitous Initiator of Protein Translocation. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0531m.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|