1
|
Chikhirzhina GI, Al-Shekhadat RI, Chikhirzhina EV. Transcription factors of the NF1 family: Role in chromatin remodeling. Mol Biol 2008. [DOI: 10.1134/s0026893308030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Prado F, Vicent G, Cardalda C, Beato M. Differential role of the proline-rich domain of nuclear factor 1-C splice variants in DNA binding and transactivation. J Biol Chem 2002; 277:16383-90. [PMID: 11861650 DOI: 10.1074/jbc.m200418200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have addressed the functional significance of the existence of several natural splice variants of NF1-C* differing in their COOH-terminal proline-rich transactivation domain (PRD) by studying their specific DNA binding and transactivation in the yeast Saccharomyces cerevisiae. These parameters yielded the intrinsic transactivation potential (ITP), defined as the activation observed with equal amounts of DNA bound protein. Exchange of 83 amino acids at the COOH-terminal end of the PRD by 16 unrelated amino acids, as found in NF1-C2, and splicing out the central region of the PRD, as found in NF1-C7, enhanced DNA binding in vivo and in vitro. However, the ITP of the splice variants NF1-C2 and NF1-C7 was found to be similar to that of the intact NF1-C1. Additional mutations showed that the ITP of NF1-C requires the synergistic action of the PRD and a novel domain encoded in exons 5 and 6. Intriguingly the carboxyl-terminal domain-like motif encoded in exons 9/10 is not essential for transactivation of a reporter with a single NF1 site but is required for activation of a reporter with six NF1 sites in tandem. Our results imply that differential splicing is used to regulate transcription by generating variants with different DNA binding affinities but similar ITPs.
Collapse
Affiliation(s)
- Felix Prado
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität, E.-Mannkopff-Str. 2, D-35033 Marburg, Germany
| | | | | | | |
Collapse
|
3
|
Nakazato M, Chung HK, Ulianich L, Grassadonia A, Suzuki K, Kohn LD. Thyroglobulin repression of thyroid transcription factor 1 (TTF-1) gene expression is mediated by decreased DNA binding of nuclear factor I proteins which control constitutive TTF-1 expression. Mol Cell Biol 2000; 20:8499-512. [PMID: 11046146 PMCID: PMC102156 DOI: 10.1128/mcb.20.22.8499-8512.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicular thyroglobulin (TG) selectively suppresses the expression of thyroid-restricted transcription factors, thereby altering the expression of thyroid-specific proteins. In this study, we investigated the molecular mechanism by which TG suppresses the prototypic thyroid-restricted transcription factor, thyroid transcription factor 1 (TTF-1), in rat FRTL-5 thyrocytes. We show that the region between bp -264 and -153 on the TTF-1 promoter contains two nuclear factor I (NFI) elements whose function is involved in TG-mediated suppression. Thus, NFI binding to these elements is critical for constitutive expression of TTF-1; TG decreases NFI binding to the NFI elements in association with TG repression. NFI is a family of transcription factors that is ubiquitously expressed and contributes to constitutive and cell-specific gene expression. In contrast to the contribution of NFI proteins to constitutive gene expression in other systems, we demonstrate that follicular TG transcriptionally represses all NFI RNAs (NFI-A, -B, -C, and -X) in association with decreased NFI binding and that the RNA levels decrease as early as 4 h after TG treatment. Although TG treatment for 48 h results in a decrease in NFI protein-DNA complexes measured in DNA mobility shift assays, NFI proteins are still detectable by Western analysis. We show, however, that the binding of all NFI proteins is redox regulated. Thus, diamide treatment of nuclear extracts strongly reduces the binding of NFI proteins, and the addition of higher concentrations of dithiothreitol to nuclear extracts from TG-treated cells restores NFI-DNA binding to levels in extracts from untreated cells. We conclude that NFI binding to two NFI elements, at bp -264 to -153, positively regulates TTF-1 expression and controls constitutive TTF-1 levels. TG mediates the repression of TTF-1 gene expression by decreasing NFI RNA and protein levels, as well as by altering the binding activity of NFI, which is redox controlled.
Collapse
Affiliation(s)
- M Nakazato
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
4
|
Kumar SN, Boss JM. Site A of the MCP-1 distal regulatory region functions as a transcriptional modulator through the transcription factor NF1. Mol Immunol 2000; 37:623-32. [PMID: 11164890 DOI: 10.1016/s0161-5890(00)00097-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The monocyte chemoattractant protein-1 (MCP-1) functions to recruit monocytes and macrophages to areas of inflammation and is a prototypic chemokine subjected to coordinate regulation by immunomodulatory agents. TNF mediated regulation of MCP-1 occurs through a distal regulatory region located 2.5 kb upstream of the transcriptional start site. Within this region are two NF-kB motifs that are each critical for function. Site A, located within the distal regulatory region and upstream of the kappaB elements is required for maximal induction by TNF. However, unlike the kappaB elements and other MCP-1 regulatory elements, Site A is constitutively occupied by factors in vivo. To better understand the nature of Site A function, this report identified a Site A binding protein and provides a functional analysis of the element in driving transcription. The results showed that the transcription factor NF1/CTF binds to Site A both in vitro and in vivo. While Site A has no transcriptional activity on its own, it was found to augment the transcriptional activity of a GAL4-VP16 reporter system in an orientation and position independent manner. Because NF1 is known to interact with factors that modify nucleosomes, these results suggest a unique role for Site A in regulating MCP-1 expression.
Collapse
Affiliation(s)
- S N Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
5
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
6
|
Morel Y, Barouki R. The repression of nuclear factor I/CCAAT transcription factor (NFI/CTF) transactivating domain by oxidative stress is mediated by a critical cysteine (Cys-427). Biochem J 2000; 348 Pt 1:235-40. [PMID: 10794737 PMCID: PMC1221059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The activity of the nuclear factor I/CCAAT transcription factor (NFI/CTF) is negatively regulated by oxidative stress. The addition of relatively high (millimolar) H(2)O(2) concentrations inactivates cellular NFI DNA-binding activity whereas lower concentrations can repress NFI/CTF transactivating function. We have investigated the mechanism of this regulation using Gal4 fusion proteins and transfection assays. We show that micromolar H(2)O(2) concentrations repress the transactivating domain of NFI/CTF in a dose-dependent manner and are less or not active on other transcription factors' transactivating domains. Studies using deletions and point mutations pointed to the critical role of Cys-427. Indeed, when this cysteine is mutated into a serine, the repression by H(2)O(2) is totally blunted. Mutation of other cysteine, serine and tyrosine residues within the transactivating domain had no clear effect on the repression by H(2)O(2). Finally, treatment of cells with the thiol-alkylating reagent N-ethylmaleimide leads to a decrease in the transactivating function, which is dependent on Cys-427. This study shows that transactivating domains of transcription factors can constitute very sensitive targets of oxidative stress and highlights the critical role of these domains.
Collapse
Affiliation(s)
- Y Morel
- INSERM U490, Université Paris V-René Descartes, Centre Universitaire des Saints-Pères, 45, rue des Saints-Pères, 75006 Paris, France
| | | |
Collapse
|
7
|
de Jong RN, van der Vliet PC. Mechanism of DNA replication in eukaryotic cells: cellular host factors stimulating adenovirus DNA replication. Gene 1999; 236:1-12. [PMID: 10433960 DOI: 10.1016/s0378-1119(99)00249-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Replication of adenovirus (Ad) DNA depends on interactions between three viral and three cellular proteins. Human transcription factors NFI and Oct-1 recruit the Ad DNA polymerase to the origin of DNA replication as a complex with the Ad protein primer pTP. High affinity and specificity DNA binding to recognition sites in this origin by the transcription factors stimulate and stabilize pre-initiation complex formation to compensate for the low binding specificity of the pTP/pol complex. In this review, we discuss the properties of NFI and Oct-1 and the mechanism by which they enhance initiation of DNA replication. We propose a model that describes the dynamics of initiation and elongation as well as the assembly and disassembly of the pre-initiation complex.
Collapse
Affiliation(s)
- R N de Jong
- Laboratory for Physiological Chemistry and Centre for Biomedical Genetics, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
8
|
Batchelder C, Dunn MA, Choy B, Suh Y, Cassie C, Shim EY, Shin TH, Mello C, Seydoux G, Blackwell TK. Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev 1999; 13:202-12. [PMID: 9925644 PMCID: PMC316391 DOI: 10.1101/gad.13.2.202] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 11/24/1998] [Indexed: 11/24/2022]
Abstract
In the early Caenorhabditis elegans embryo, maternally expressed PIE-1 protein is required in germ-line blastomeres to inhibit somatic differentiation, maintain an absence of mRNA transcription, and block phosphorylation of the RNA polymerase II large subunit (Pol II) carboxy-terminal domain (CTD). We have determined that PIE-1 can function as a transcriptional repressor in cell culture assays. By fusing PIE-1 sequences to the yeast GAL4 DNA-binding domain, we have identified a PIE-1 repression domain that appears to inhibit the transcriptional machinery directly. A sequence element that is required for this repressor activity is similar to the Pol II CTD heptapeptide repeat, suggesting that the PIE-1 repression domain might target a protein complex that can bind the CTD. An alteration of this sequence element that blocks repression also impairs the ability of a transgene to rescue a pie-1 mutation, suggesting that this repressor activity may be important for PIE-1 function in vivo.
Collapse
Affiliation(s)
- C Batchelder
- The Center for Blood Research and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gao B, Kunos G. Cell type-specific transcriptional activation and suppression of the alpha1B adrenergic receptor gene middle promoter by nuclear factor 1. J Biol Chem 1998; 273:31784-7. [PMID: 9822643 DOI: 10.1074/jbc.273.48.31784] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor 1 (NF1) has been reported to be a transcriptional activator for some genes and a transcriptional silencer for others. Here we report that in Hep3B cells, cotransfection of NF1/L, NF1/Red1, or NF1/X with the alpha1B adrenergic receptor (alpha1BAR) gene middle (P2) promoter increases P2 activity to more or less the same degree, whereas in DDT1 MF-2 cells cotransfection of NF1/L or NF1/Red1 causes a small but statistically significant decrease in the P2 promoter activity, and NF1/X causes a greater, 70% inhibition. Further experiments using truncated NF1/X mutants indicate that NF1/X contains both positive and negative regulatory domains. The positive domain, located between amino acids 416 and 505, is active in Hep3B cells, whereas the negative domain, located between amino acids 243 and 416, is active in DDT1 MF-2 cells. These functional domains are also capable of regulating transcription when isolated from their natural context and fused into the GAL4 binding domain. Furthermore, NF1 affinity purified from rat liver nuclear extracts copurified with a non-DNA binding protein, which can bind to the P2 promoter of the alpha1BAR gene via interacting with NF1. Taken together, these findings indicate that NF1/X contains both activation and suppression domains that may be recognized and modulated by cell type-specific cofactors. This may be one of the mechanisms whereby NF1 can activate or suppress the expression of different genes, and it may also underlie the tissue-specific regulation of the alpha1B AR gene.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular
- Chromatography, Affinity
- Cricetinae
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Humans
- Kinetics
- Liver/metabolism
- Liver Neoplasms
- Muscle, Smooth
- NFI Transcription Factors
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Rats
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Regulatory Sequences, Nucleic Acid
- Suppression, Genetic
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
10
|
Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J Biol Chem 1998; 273:18538-46. [PMID: 9660824 DOI: 10.1074/jbc.273.29.18538] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter-specific differences in the function of transcription factors play a central role in the regulation of gene expression. We have measured the maximal transcriptional activation potentials of nuclear factor I (NFI) proteins encoded by each of the four identified NFI genes (NFI-A, -B, -C, and -X) by transient transfection in JEG-3 cells using two model NFI-dependent promoters: 1) a simple chimeric promoter containing a single NFI-binding site upstream of the adenovirus major late promoter (NFI-Ad), and 2) the more complex mouse mammary tumor virus long terminal repeat promoter. The relative activation potentials for the NFI isoforms differed between the two promoters, with NFI-X being the strongest activator of NFI-Ad and NFI-B being the strongest activator of the MMTV promoter. To determine if these promoter-specific differences in activation potential were due to the presence of glucocorticoid response elements (GREs), we added GREs upstream of the NFI-binding site in NFI-Ad. NFI-X remains the strongest activator of the GRE containing simple promoter, indicating that differences in relative activation potential are not due solely to the presence of GREs. Since NFI proteins bind to DNA as dimers, we assessed the activation potentials of NFI heterodimers. Here, we show that NFI heterodimers have intermediate activation potentials compared with homodimers, demonstrating one potential mechanism by which different NFI proteins can regulate gene expression.
Collapse
Affiliation(s)
- A Z Chaudhry
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
11
|
Rieger R, Edenhofer F, Lasmézas CI, Weiss S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 1997; 3:1383-8. [PMID: 9396609 DOI: 10.1038/nm1297-1383] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prions are thought to consist of infectious proteins that cause transmissible spongiform encephalopathies. According to overwhelming evidence, the pathogenic prion protein PrPSc converts its host encoded isoform PrPC into insoluble aggregates of PrPSc, concomitant with pathological modifications (for review, see refs. 1-3). Although the physiological role of PrPC is poorly understood, studies with PrP knockout mice demonstrated that PrPC is required for the development of prion diseases. Using the yeast two-hybrid technology in Saccharomyces cerevisiae, we identified the 37-kDa laminin receptor precursor (LRP) as interacting with the cellular prion protein PrPC. Mapping analysis of the LRP-PrP interaction site in S. cerevisiae revealed that PrP and laminin share the same binding domain (amino acids 161 to 180) on LRP. The LRP-PrP interaction was confirmed in vivo in insect (Sf9) and mammalian cells (COS-7). The LRP level was increased in scrapie-infected murine N2a cells and in brain and spleen of scrapie-infected mice. In contrast, the LRP concentration was not significantly altered in these organs from mice infected with the bovine spongiform encephalopathic agent (BSE), which have a lower PrPSc accumulation. LRP levels, however, were dramatically increased in brain and pancreas, slightly increased in the spleen and not altered in the liver of crapie-infected hamsters. These data show that enhanced LRP concentrations are correlated with PrPSc accumulation in organs from mice and hamsters. The laminin receptor precursor, which is highly conserved among mammals and is located on the cell surface, may act as a receptor or co-receptor for the prion protein on mammalian cells.
Collapse
Affiliation(s)
- R Rieger
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Munich, Germany
| | | | | | | |
Collapse
|
12
|
Liu Y, Bernard HU, Apt D. NFI-B3, a novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing. J Biol Chem 1997; 272:10739-45. [PMID: 9099724 DOI: 10.1074/jbc.272.16.10739] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear factor I (NFI) proteins constitute a family of sequence-specific transcription factors whose functional diversity is generated through transcription from four different genes (NFI-A, NFI-B, NFI-C, and NFI-X), alternative RNA splicing, and protein heterodimerization. Here we describe a naturally truncated isoform, NFI-B3, which is derived from the human NFI-B gene, in addition to characterizing further human NFI-B1 and NFI-B2, two differentially spliced variants previously isolated from hamster and chicken. Although NFI-B1 and NFI-B2 proteins are translated from an 8. 7-kilobase message, the mRNA for NFI-B3 has a size of only 1.8 kilobases. The NFI-B3 message originates from the failure to excise the first intron downstream of the exons encoding the DNA binding domain and subsequent processing of this transcript at an intron-internal polyadenylation signal. The translation product includes the proposed DNA binding and dimerization domain and terminates after translation of two additional "intron" encoded codons. In SL-2 cells, which are void of endogenous NFI, NFI-B3 by itself had no effect on transcriptional regulation and failed to bind DNA. Coexpression of NFI-B3 with other isoforms of the NFI-B, -C, and -X family, however, led to a strong reduction of transcriptional activation compared with the expression of these factors alone. Gel shift analysis indicated that NFI-B3 disrupts the function of other NFI proteins by reducing their DNA binding activity by heterodimer formation. The efficiency of NFI-B3 heterodimers to bind to DNA correlated with the degree of transcriptional repression. The abundance of NFI-B transcripts varied significantly between different human cell lines and tissues, suggesting a potential involvement of these factors in the complex mechanisms that generate cell type specificity.
Collapse
Affiliation(s)
- Y Liu
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 119260, USA
| | | | | |
Collapse
|
13
|
Wendler WM, Kremmer E, Förster R, Winnacker EL. Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 1997; 272:8482-9. [PMID: 9079676 DOI: 10.1074/jbc.272.13.8482] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this article we describe the molecular cloning of Pirin, a novel highly conserved 32-kDa protein consisting of 290 amino acids. Pirin was isolated by a yeast two-hybrid screen as an interactor of nuclear factor I/CCAAT box transcription factor (NFI/CTF1), which is known to stimulate adenovirus DNA replication and RNA polymerase II-driven transcription. Pirin mRNA is expressed weakly in all human tissues tested. About 15% of all Pirin cDNAs contain a short 34-base pair insertion in their 5'-untranslated regions, indicative of alternative splicing processes. Multiple Pirin transcripts are expressed in skeletal muscle and heart. Western blots and immunoprecipitations employing monoclonal anti-Pirin antibodies reveal that Pirin is a nuclear protein. Moreover, confocal immunofluorescence experiments demonstrate a predominant localization of Pirin within dot-like subnuclear structures. Homology searches using the BLAST algorithm indicate the existence of Pirin homologues in mouse and rat. The N-terminal half of Pirin is significantly conserved between mammals, plants, fungi, and even prokaryotic organisms. Genomic Southern and Western blots demonstrate the presence of Pirin genes and their expression, respectively, in all mammalian cell lines tested. The expression pattern, the concentrated localization in subnuclear structures, and its interaction with NFI/CTF1 in the two-hybrid system classify Pirin as a putative NFI/CTF1 cofactor, which might help to gain new insights in NFI/CTF1 functions.
Collapse
Affiliation(s)
- W M Wendler
- Institut für Biochemie der Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Strasse 25, D-81377 München, Germany
| | | | | | | |
Collapse
|
14
|
Edenhofer F, Rieger R, Famulok M, Wendler W, Weiss S, Winnacker EL. Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 1996; 70:4724-8. [PMID: 8676499 PMCID: PMC190409 DOI: 10.1128/jvi.70.7.4724-4728.1996] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prions mediate the pathogenesis of certain neurodegenerative diseases, including bovine spongiform encephalopathy in cattle and Creutzfeldt-Jakob disease in humans. The prion particle consists mainly, if not entirely, of PrPSc, a posttranslationally modified isoform of the cellular host-encoded prion protein (PrPc). It has been suggested that additional cellular factors might be involved in the physiological function of PrPc and in the propagation of PrPSc. Here we employ a Saccharomyces cerevisiae two-hybrid screen to search for proteins which interact specifically with the Syrian golden hamster prion protein. Screening of a HeLa cDNA library identified heat shock protein 60 (Hsp60), a cellular chaperone as a major interactor for PrPc. The specificity of the interaction was confirmed in vitro for the recombinant proteins PrPc23-231 and rPrP27-30 fused to glutathione S-transferase with recombinant human Hsp60 as well as the bacterial GroEL. The interaction site for recombinant Hsp60 and GroEL proteins was mapped between amino acids 180 and 210 of the prion protein by screening with a set of recombinant PrPc fragments. The binding of Hsp60 and GroEL occurs within a region which contains parts of the putative alpha-helical domains H3 and H4 of the prion protein.
Collapse
Affiliation(s)
- F Edenhofer
- Laboratorium Für Molekulare Biologie-Genzentrum-Institute Für Biochemie der Ludwig-Maximilians-Universität Munchen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Wenzelides S, Altmann H, Wendler W, Winnacker EL. CTF5--a new transcriptional activator of the NFI/CTF family. Nucleic Acids Res 1996; 24:2416-21. [PMID: 8710515 PMCID: PMC145930 DOI: 10.1093/nar/24.12.2416] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NFI/CTF is a family of polypeptides involved in stimulating the initiation of adenovirus DNA replication and the activation of transcription driven by RNA polymerase II. Several naturally occurring NFI/CTF variants display distinctive transactivation activities in vivo. To define more precisely the role of the NFI/CTF family in regulating gene expression, we cloned the splice variant CTF5, analyzed transcriptional activation patterns in a yeast transcription assay, and compared it with other CTF proteins. CTF5, which lacks exons 9 and 10 including a CTD-like motif essential for transcriptional activation by full-length CTF1, enhances transcription to a greater extent than CTF1. In addition, CTF5 is even more active than CTF7, which lacks exons 7-9. These findings indicate that CTF proteins formed by differential splicing display a much broader range of transcriptional activities as observed previously.
Collapse
Affiliation(s)
- S Wenzelides
- Institut für Biochemie der Ludwig-Maximilians-Universität München, Germany
| | | | | | | |
Collapse
|
16
|
Chávez S, Candau R, Truss M, Beato M. Constitutive repression and nuclear factor I-dependent hormone activation of the mouse mammary tumor virus promoter in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:6987-98. [PMID: 8524266 PMCID: PMC230954 DOI: 10.1128/mcb.15.12.6987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To study the influence of various transactivators and the role of nucleosomal structure in gene regulation by steroid hormones, we have introduced mouse mammary tumor virus (MMTV) promoter sequences along with expression vectors for the glucocorticoid receptor (GR) and nuclear factor I (NFI) in Saccharomyces cerevisiae, an organism amenable to genetic manipulation. Both in the context of an episomal multicopy vector and in a centromeric single-copy plasmid, the MMTV promoter was virtually silent in the absence of inducer, even in yeast strains expressing GR and NFI. Induction was optimal with deacylcortivazol and required both GR and NFI. The transactivation function AF1 in the N-terminal half of GR is required for ligand-dependent induction and acts constitutively in truncated GR lacking the ligand binding domain. A piece of the MMTV long terminal repeat extending from -236 to +111 is sufficient to position a nucleosome, B, over the regulatory region of the promoter from -45 to -190 and another nucleosome over the transcription start region. The rotational orientation of the DNA on the surface of nucleosome B is the same as that previously found in animal cells and in reconstitution experiments. This orientation is compatible with binding of GR to two sites, while it should preclude binding of NFI and hence be responsible for constitutive repression. Upon ligand induction, there is no major chromatin rearrangement, but the proximal linker DNA, including the TATA box, becomes hypersensitive to nucleases. The transcriptional behavior of the MMTV promoter was unaffected by deletions of the genes for zuotin or SIN1/SPT2, two proteins which have been claimed to assume some of the functions of linker histones. Thus, despite the lack of histone H1, yeast cells could be a suitable system to study the contribution of nucleosomal organization to the regulated expression of the MMTV promoter.
Collapse
Affiliation(s)
- S Chávez
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität, Marburg, Germany
| | | | | | | |
Collapse
|
17
|
Monaci P, Nuzzo M, Stampfli S, Tollervey D, De Simone V, Nicosia A. A complex interplay of positive and negative elements is responsible for the different transcriptional activity of liver NF1 variants. Mol Biol Rep 1995; 21:147-58. [PMID: 8832903 DOI: 10.1007/bf00997237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A full-length cDNA of the rat liver Nuclear Factor 1 (NF1L21) has been cloned and expressed in S. cerevisiae to analyse the architecture of its activation domain. NF1L21 displays a specific DNA-binding activity, as well as the ability to activate transcription from an artificial NF 1-responsive promoter in yeast. Interaction of two or more NF1L21 molecules with multiple sites on the same promoter activated transcription in a synergistic fashion. Functional analysis of the activation domain of NF1L21 reveals a tripartite structure. Two distinct positive elements are required for NF1L21 -mediated transcription activation. A proline-rich element sandwiched between these two positive domains attenuates their transactivation potential. A shorter NF1L variant (NFlL4) in which the distal positive element is replaced by a different sequence was also isolated. NF1L4 displays the same DNA-binding activity and dimerisation properties as NF1L21, but is unable to activate transcription in yeast.
Collapse
Affiliation(s)
- P Monaci
- Istituto di Ricerche di Biologia Molecolare P Angeletti, (Roma), Italy
| | | | | | | | | | | |
Collapse
|