1
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
2
|
Ribosome Biogenesis Modulates Ty1 Copy Number Control in Saccharomyces cerevisiae. Genetics 2017; 207:1441-1456. [PMID: 29046400 PMCID: PMC5714458 DOI: 10.1534/genetics.117.300388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022] Open
Abstract
Transposons can impact the host genome by altering gene expression and participating in chromosome rearrangements. Therefore, organisms evolved different ways to minimize the level of transposition. In Saccharomyces cerevisiae and its close relative S. paradoxus, Ty1 copy number control (CNC) is mediated by the self-encoded restriction factor p22, which is derived from the GAG capsid gene and inhibits virus-like particle (VLP) assembly and function. Based on secondary screens of Ty1 cofactors, we identified LOC1, a RNA localization/ribosome biogenesis gene that affects Ty1 mobility predominantly in strains harboring Ty1 elements. Ribosomal protein mutants rps0bΔ and rpl7aΔ displayed similar CNC-specific phenotypes as loc1Δ, suggesting that ribosome biogenesis is critical for CNC. The level of Ty1 mRNA and Ty1 internal (Ty1i) transcripts encoding p22 was altered in these mutants, and displayed a trend where the level of Ty1i RNA increased relative to full-length Ty1 mRNA. The level of p22 increased in these mutants, and the half-life of p22 also increased in a loc1Δ mutant. Transcriptomic analyses revealed small changes in the level of Ty1 transcripts or efficiency of translation initiation in a loc1Δ mutant. Importantly, a loc1Δ mutant had defects in assembly of Gag complexes and packaging Ty1 RNA. Our results indicate that defective ribosome biogenesis enhances CNC by increasing the level of p22, and raise the possibility for versatile links between VLP assembly, its cytoplasmic environment, and a novel stress response.
Collapse
|
3
|
Gamache ER, Doh JH, Ritz J, Laederach A, Bellaousov S, Mathews DH, Curcio MJ. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA. Viruses 2017; 9:E93. [PMID: 28445416 PMCID: PMC5454406 DOI: 10.3390/v9050093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022] Open
Abstract
The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5' terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.
Collapse
Affiliation(s)
- Eric R Gamache
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Jung H Doh
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Justin Ritz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - M Joan Curcio
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, University at Albany-SUNY, Albany, NY 12201, USA.
| |
Collapse
|
4
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
5
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
6
|
Huang Q, Purzycka KJ, Lusvarghi S, Li D, LeGrice SF, Boeke JD. Retrotransposon Ty1 RNA contains a 5'-terminal long-range pseudoknot required for efficient reverse transcription. RNA (NEW YORK, N.Y.) 2013; 19:320-32. [PMID: 23329695 PMCID: PMC3677243 DOI: 10.1261/rna.035535.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/26/2012] [Indexed: 05/04/2023]
Abstract
Ty1 retrotransposon RNA has the potential to fold into a variety of distinct structures, mutation of which affects retrotransposition frequencies. We show here that one potential functional structure is located at the 5' end of the genome and can assume a pseudoknot conformation. Chemoenzymatic probing of wild-type and mutant mini-Ty1 RNAs supports the existence of such a structure, while molecular genetic analyses show that mutations disrupting pseudoknot formation interfere with retrotransposition, indicating that it provides a critical biological function. These defects are enhanced at higher temperatures. When these mutants are combined with compensatory changes, retrotransposition is restored, consistent with pseudoknot architecture. Analyses of mutants suggest a defect in Ty1 reverse transcription. Collectively, our data allow modeling of a three-dimensional structure for this novel critical cis-acting signal of the Ty1 genome.
Collapse
Affiliation(s)
- Qing Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Katarzyna J. Purzycka
- National Cancer Institute, Frederick, Maryland 21702, USA
- Laboratory of Structural Chemistry of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | | | - Donghui Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Jef D. Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Purzycka KJ, Legiewicz M, Matsuda E, Eizentstat LD, Lusvarghi S, Saha A, Le Grice SFJ, Garfinkel DJ. Exploring Ty1 retrotransposon RNA structure within virus-like particles. Nucleic Acids Res 2012; 41:463-73. [PMID: 23093595 PMCID: PMC3592414 DOI: 10.1093/nar/gks983] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ty1, a long terminal repeat retrotransposon of Saccharomyces, is structurally and functionally related to retroviruses. However, a differentiating aspect between these retroelements is the diversity of the replication strategies used by long terminal repeat retrotransposons. To understand the structural organization of cis-acting elements present on Ty1 genomic RNA from the GAG region that control reverse transcription, we applied chemoenzymatic probing to RNA/tRNA complexes assembled in vitro and to the RNA in virus-like particles. By comparing different RNA states, our analyses provide a comprehensive structure of the primer-binding site, a novel pseudoknot adjacent to the primer-binding sites, three regions containing palindromic sequences that may be involved in RNA dimerization or packaging and candidate protein interaction sites. In addition, we determined the impact of a novel form of transposon control based on Ty1 antisense transcripts that associate with virus-like particles. Our results support the idea that antisense RNAs inhibit retrotransposition by targeting Ty1 protein function rather than annealing with the RNA genome.
Collapse
Affiliation(s)
- Katarzyna J Purzycka
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Song M, Balakrishnan M, Gorelick RJ, Bambara RA. A succession of mechanisms stimulate efficient reconstituted HIV-1 minus strand strong stop DNA transfer. Biochemistry 2010; 48:1810-9. [PMID: 19192967 DOI: 10.1021/bi802149j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Donor-acceptor template systems in vitro were designed to test mechanisms of minus strand transfer of human immunodeficiency virus 1 (HIV-1). Donor RNA D199, extending from the 5' end of the HIV-1 genome to the primer binding site (PBS), promoted transfer to only 35% with an acceptor RNA representing the 3' terminal 97 nucleotides, whereas donor RNA D520, including an additional 321 nucleotides 3' of PBS, exhibited 75% transfer. Both donors transferred through an invasion-driven pathway, but transfer was stimulated by the folding structure resulting from the extra segment in D520. In this study, the significance of interaction between the tRNA(lys3) primer and U3 was examined. Measurements utilizing acceptors having or lacking the U3 region complementary with tRNA(lys3) indicated that a tRNA(lys3)-U3 interaction compensated for inefficient acceptor invasion observed with D199. Stimulation presumably occurred because binding to tRNA(lys3) increased the proximity of the acceptor to elongated cDNA, improving transfer to 78% efficiency with D199, and even higher to 85% with D520. The stimulation did not require natural viral sequences but could be achieved by substituting the original U3 sequence with an equal length sequence that binds a different region of tRNA(lys3). Comparison between acceptors sharing the natural region for tRNA(lys3)-U3 interaction but having or lacking the acceptor invasion site demonstrated that tRNA(lys3)-U3 interaction and acceptor invasion cooperate for maximal stimulation. Overall, observations suggest that both proximity and invasion mechanisms are applied successively by HIV-1 for efficient minus strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
9
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
10
|
Goldschmidt V, Rigourd M, Ehresmann C, Le Grice SFJ, Ehresmann B, Marquet R. Direct and indirect contributions of RNA secondary structure elements to the initiation of HIV-1 reverse transcription. J Biol Chem 2002; 277:43233-42. [PMID: 12194974 DOI: 10.1074/jbc.m205295200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription requires specific recognition between the viral RNA (vRNA), tRNA(3)(Lys), which acts as primer, and reverse transcriptase (RT). The specificity of this ternary complex is mediated by intricate interactions between the HIV-1 RNA and tRNA(3)(Lys). Here, we compared the relative importance of the secondary structure elements of this complex in the initiation process. To this aim, we used the previously published three-dimensional model of the initiation complex to rationally introduce a series of deletions and substitutions in the vRNA. When necessary, we used chemical probing to check the structure of the tRNA(3)(Lys)-mutant vRNA complexes. For each of them, we measured the binding affinity of RT and the kinetics of initial extension of tRNA(3)(Lys) and of synthesis of the (-) strand strong stop DNA. Our results were overall in keeping with the three-dimensional model of the initiation complex. Surprisingly, we found that disruption of the intermolecular template-primer interactions, which are not directly recognized by RT, more severely affected reverse transcription than deletions or disruption of one of the intramolecular helices to which RT directly binds. Perturbations of the highly constrained junction between the intermolecular helix formed by the primer binding site and the 3' end of tRNA(3)(Lys) and the helix immediately upstream also had dramatic effects on the initiation of reverse transcription. Taken together, our results demonstrate the overwhelming importance of the overall three-dimensional structure of the initiation complex and identify structural elements that constitute promising targets for anti-initiation-specific drugs.
Collapse
Affiliation(s)
- Valerie Goldschmidt
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This report describes the identification and characterization of a retrotransposon, termed Tca5, from the pathogenic yeast Candida albicans. Tca5 has identical 685 bp LTRs flanking 4218 bp of internal sequence within which lies a single long ORF. Immediately internal to the left LTR is a primer binding site complementary to an internal portion of the initiator methionine tRNA and upstream of the right LTR is a polypurine tract. The ORF predicts a protein containing all the conserved motifs characteristic of Gag, protease, integrase, reverse transcriptase and RNaseH. Genomic Southern blots probed with Tca5 sequences show that it is a low copy number element and is present at different loci in different strains. This, together with the apparently intact structure of Tca5, suggests that it has transposed very recently. Potentially full-length Tca5 transcripts were detected in some strains raising the possibility that some copies of Tca5 may still be active. Phylogenetic analyses and other sequence comparisons suggest that Tca5 is most closely related to the Ty5 element of Saccharomyces cerevisiae and S. paradoxus. The nucleotide sequence of Tca5 has been submitted to GenBank under Accession No. AF093417.
Collapse
Affiliation(s)
- E P Plant
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
12
|
Abstract
Virus-like particle (VLP) assembly is a crucial step of the life cycle of retrotransposons. The S. cerevisiae Ty elements represent an interesting model for the analysis of these particles and thus have been studied extensively. Our current knowledge of the organisation and assembly of Ty1 and Ty3 VLPs is reviewed here. This includes the mechanism of assembly, the role of the Tya core protein during VLP formation and the RNA packaging process. The physical properties of Ty1 VLPs are also described and the latest three-dimensional Ty1 VLP reconstructions are shown. In addition, the relevance of these studies is discussed in the context of retro-element biology.
Collapse
Affiliation(s)
- J F Roth
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Cristofari G, Ficheux D, Darlix JL. The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J Biol Chem 2000; 275:19210-7. [PMID: 10766747 DOI: 10.1074/jbc.m001371200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reverse transcription process for retroviruses and retrotransposons takes place in a nucleocore structure in the virus or virus-like particle. In retroviruses the major protein of the nucleocore is the nucleocapsid protein (NC protein), which derives from the C-terminal region of GAG. Retroviral NC proteins are formed of either one or two CCHC zinc finger(s) flanked by basic residues and have nucleic acid chaperone and match-maker properties essential for virus replication. Interestingly, the GAG protein of a number of retroelements including Spumaviruses does not possess the hallmarks of retroviral GAGs and in particular lacks a canonical NC protein. In an attempt to search for a nucleic acid chaperone activity in this class of retroelements we used the yeast Ty1 retrotransposon as a model system. Results shows that the C-terminal region of Ty1 GAG contains a nucleic acid chaperone domain capable of promoting the annealing of primer tRNA(i)(Met) to the multipartite primer binding site, Ty1 RNA dimerization and initiation of reverse transcription. Moreover Ty1 RNA dimerization, in a manner similar to Ty3 but unlike retroviral RNAs, appears to be mediated by tRNA(i)(Met). These findings suggest that nucleic acid chaperone proteins probably are general co-factors for reverse transcriptases.
Collapse
Affiliation(s)
- G Cristofari
- LaboRetro, Unité de Virologie Humaine, INSERM (412), France
| | | | | |
Collapse
|
14
|
Liang C, Rong L, Götte M, Li X, Quan Y, Kleiman L, Wainberg MA. Mechanistic studies of early pausing events during initiation of HIV-1 reverse transcription. J Biol Chem 1998; 273:21309-15. [PMID: 9694891 DOI: 10.1074/jbc.273.33.21309] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the role of sequences that surround the primer binding site (PBS) in the reverse transcriptase-mediated initiation of (-) strand DNA synthesis in human immunodeficiency virus type 1. In comparisons of reverse transcription initiated from either the cognate primer tRNALys.3 or a DNA primer D-Lys.3, bound to PBS sequences, we observed that a +3 pausing site occurred in both circumstances. However, the initiation reaction with tRNALys.3 was also characterized by a pausing event after incorporation of the first nucleotide. Alteration of sequences at the 5'-end instead of the 3'-end of the PBS resulted in elimination of the +3 pausing site, suggesting that this site was template sequence-dependent. In contrast, the pausing event at the +1 nucleotide position was still present in experiments that employed either of these mutated RNA templates. The mutations at the 5'-end of the PBS also caused a severely diminished rate of initiation and the strong arrest of reactions at the +1 stage when tRNALys.3 was used as primer. Therefore, we propose that the +1 pausing event is an initiation-specific event in regard to reactions primed by tRNALys.3 and that sequences at the 5'-end of the PBS may facilitate the release of reverse transcription from initiation to elongation.
Collapse
Affiliation(s)
- C Liang
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Mules EH, Uzun O, Gabriel A. In vivo Ty1 reverse transcription can generate replication intermediates with untidy ends. J Virol 1998; 72:6490-503. [PMID: 9658092 PMCID: PMC109815 DOI: 10.1128/jvi.72.8.6490-6503.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 05/11/1998] [Indexed: 02/08/2023] Open
Abstract
Ty1 retrotransposition, like retroviral replication, is a complex series of events requiring reverse transcription of an RNA intermediate, RNA-primed minus- and plus-strand DNA synthesis, multiple strand transfers, and precise cleavages of the template and primers by RNase H. In this report, we examine the structure of in vivo Ty1 replication intermediates, specifically with regard to the behavior of reverse transcriptase upon reaching template ends and to the precision with which RNase H might generate these ends. While the expected 3' termini were always identified, terminal nontemplated bases were also observed at all of the RNA and DNA template ends examined. Nontemplated A residues were most common at all 3' ends, although C residues were preferentially added to minus-strand termini paused at the 5' end of capped Ty1 RNA. In addition, we observed that RNase H removal of the tRNA primer and of the polypurine tract was not always precise or efficient. Finally, we noted numerous instances of Ty1 reverse transcriptase transferring from normal Ty1 template ends to various tRNA templates, with continued synthesis to specific modified bases. A similar pattern was obtained for Ty2, indicating that template ends offer unique opportunities for these two related reverse transcriptases to generate errors.
Collapse
Affiliation(s)
- E H Mules
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | |
Collapse
|
16
|
Isel C, Keith G, Ehresmann B, Ehresmann C, Marquet R. Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex. Nucleic Acids Res 1998; 26:1198-204. [PMID: 9469827 PMCID: PMC147409 DOI: 10.1093/nar/26.5.1198] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviruses use a specific tRNA, whose 3' end is complementary to the 18 nucleotides of the primer binding site (PBS), to prime reverse transcription. Previous work has shown that initiation of HIV-1 reverse transcription is a specific process, in contrast with the subsequent elongation phase. HIV-1 reverse transcriptase (RT) specifically recognizes the complex formed by the viral RNA and tRNA3Lys. We previously proposed a secondary structure model of this complex based on chemical and enzymatic probing. In this model, tRNA3Lysextensively interacts with the genomic RNA. Here, we have combined site-directed mutagenesis and structural probing to test crucial aspects of this model. We found that the complex interactions between tRNA3Lysand HIV-1 RNA, and the intra-molecular rearrangements did not depend on the presence of upstream and downstream viral sequences. Indeed, a short RNA template, encompassing nucleotides 123-217 of the HIV-1 Mal genome, was able, together with the primer tRNA, to adopt the same structure as longer viral RNA fragments. This model primer/template is thus amenable to detailed structural and functional studies. The probing data obtained on the tRNA3Lys/mutant viral RNA complexes support the previously proposed model. Furthermore, they indicate that destroying the complementarity between the anticodon of tRNA3Lysand the so-called viral 'A-rich loop' destabilizes all four helices of the extended tRNA3Lys/HIV-1 RNA interactions.
Collapse
Affiliation(s)
- C Isel
- Unité Propre de Recherche No. 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
17
|
Friant S, Heyman T, Byström AS, Wilhelm M, Wilhelm FX. Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo. Mol Cell Biol 1998; 18:799-806. [PMID: 9447976 PMCID: PMC108791 DOI: 10.1128/mcb.18.2.799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reverse transcription of the Saccharomyces cerevisiae Ty1 retrotransposon is primed by tRNA(iMet) base paired to the primer binding site (PBS) near the 5' end of Ty1 genomic RNA. The 10-nucleotide PBS is complementary to the last 10 nucleotides of the acceptor stem of tRNA(iMet). A structural probing study of the interactions between the Ty1 RNA template and the tRNA(iMet) primer showed that besides interactions between the PBS and the 3' end of tRNA(iMet), three short regions of Ty1 RNA, named boxes 0, 1, and 2.1, interact with the T and D stems and loops of tRNA(iMet). To determine if these sequences are important for the reverse transcription pathway of the Ty1 retrotransposon, mutant Ty1 elements and tRNA(iMet) were tested for the ability to support transposition. We show that the Ty1 boxes and the complementary sequences in the T and D stems and loops of tRNA(iMet) contain bases that are critical for Ty1 retrotransposition. Disruption of 1 or 2 bp between tRNA(iMet) and box 0, 1, or 2.1 dramatically decreases the level of transposition. Compensatory mutations which restore base pairing between the primer and the template restore transposition. Analysis of the reverse transcription intermediates generated inside Ty1 virus-like particles indicates that initiation of minus-strand strong-stop DNA synthesis is affected by mutations disrupting complementarity between Ty1 RNA and primer tRNA(iMet).
Collapse
Affiliation(s)
- S Friant
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
18
|
Matthews GD, Goodwin TJ, Butler MI, Berryman TA, Poulter RT. pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans. J Bacteriol 1997; 179:7118-28. [PMID: 9371461 PMCID: PMC179655 DOI: 10.1128/jb.179.22.7118-7128.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retrotransposons are mobile genetic elements. They can transpose via the reverse transcription of mRNA into double-stranded DNA (dsDNA) followed by the insertion of this dsDNA into new sites within the host genome. The unintegrated, linear, dsDNA form of retrotransposons is usually very rare. We report here the isolation of a retrotransposon from Candida albicans which is unusual in this respect. This element, which we have named pCal, was first identified as a distinct band when uncut C. albicans DNA was examined on an agarose gel. Sequence analysis of the cloned element revealed that it is a retrotransposon belonging to the Ty1/copia group. It is estimated that pCal produces 50 to 100 free, linear, dsDNA copies of itself per cell. This is a much higher level of expression than even that of the system in which Ty1 is expressed behind the highly active GAL1 promoter on a high-copy-number plasmid (about 10 copies per cell). Another unusual feature of pCal is that its Pol enzymes are likely to be expressed via the pseudoknot-assisted suppression of an upstream, in-phase stop codon, as has been shown for Moloney murine leukemia virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Candida albicans/genetics
- Chromosome Mapping
- Cloning, Molecular
- Codon, Terminator
- DNA Transposable Elements/genetics
- DNA, Fungal/analysis
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Endopeptidases/genetics
- Gene Expression Regulation, Fungal
- Gene Products, pol/genetics
- Gene Products, pol/metabolism
- Integrases/genetics
- Molecular Sequence Data
- Molecular Structure
- Open Reading Frames
- Phylogeny
- Plasmids
- Promoter Regions, Genetic
- RNA-Directed DNA Polymerase/genetics
- Retroelements
- Ribonucleases/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- G D Matthews
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- J Mak
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | |
Collapse
|
20
|
Arts EJ, Le Grice SF. Interaction of retroviral reverse transcriptase with template-primer duplexes during replication. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:339-93. [PMID: 9308371 DOI: 10.1016/s0079-6603(08)60041-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conversion of the single-stranded RNA of an invading retrovirus into double-stranded proviral DNA is catalyzed in a multi-step process by a single virus-coded enzyme, reverse transcriptase (RT). Achieving this requires a combination of DNA polymerase abd ribonuclease H (RNase H) activities, which are located at the amino and carboxy terminus of the enzyme, respectively. Moreover, proviral DNA synthesis requires that three structurally-distinct nucleic acid duplexes are accommodated by this enzyme, namely (a) A-form RNA (initiation of minus strand synthesis), non-A, non-B RNA/DNA hybrid (minus strand synthesis and initiation of plus strand synthesis) and B-form duplex DNA (plus strand synthesis). This review summarizes our current understanding of the manner in which retroviral RT interacts with this diverse array of nucleic acid duplexes, exploiting in many cases mutants unable to catalyze a specific event. These studies illustrate that seemingly 'simple' events such as tRNA-primed initiation of minus strand synthesis are considerably more complex, involving intermolecular tRNA-viral RNA interactions outside the primer binding site. Moreover, RNase H activity, generally thought to catalyze non-specific degradation of the RNA-DNA replicative intermediate, is required for highly specialized events including DNA strand transfer and polypurine selection. Finally, a unique structure near the center of HIV proviral DNA, the central termination sequence, serves to halt the replication machinery in a manner analogous to termination of transcription. As these highly specialized events are better understood at the molecular level, they may open new avenues of therapeutic intervention in the continuing effort to stem the progression of HIV infection and AIDS.
Collapse
Affiliation(s)
- E J Arts
- Center for AIDS Research and Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4984, USA
| | | |
Collapse
|
21
|
Liang C, Li X, Rong L, Inouye P, Quan Y, Kleiman L, Wainberg MA. The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity. J Virol 1997; 71:5750-7. [PMID: 9223461 PMCID: PMC191827 DOI: 10.1128/jvi.71.8.5750-5757.1997] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nucleotide segment (+169)AAAA(+172) constitutes an A-rich loop within human immunodeficiency virus type 1 (HIV-1) (HXB2D) RNA and is able to interact with the anticodon loop (33)/USUU(36) of primer tRNA3(Lys). We have shown that the deletion of this A-rich loop resulted in diminished levels of infectivity and reduced synthesis of viral DNA in MT-2 cells and cord blood mononuclear cells. Endogenous reverse transcriptase (RT) assays revealed that the mutated viruses, termed HIV/del-A, generated fewer cDNA products than did wild-type virus, designated HIV/WT. We also employed in vitro RT assays with in vitro-synthesized viral RNA templates, recombinant HIV-1 RT(p66/51), and natural tRNA3(Lys) as primers to show that the mutated RNA templates, designated PBS/del-A, generated less minus-strand strong-stop DNA product than did the wild-type RNA template, designated PBS/WT. The initiation efficiency of reverse transcription from the mutated RNA template was significantly impaired compared with that from the wild-type RNA template when a single-base extension assay from the tRNA3(Lys) primer was employed. However, RT reactions performed with DNA oligonucleotides complementary to the primer binding site (PBS) as primers did not yield differences between the mutated PBS/del-A and wild-type RNA templates. Long-term culture of HIV/del-A in MT-2 cells resulted in the replacement of two G's at nucleotide positions 167 and 168 by two A's that possessed the same relationship to the 5' end of the PBS as did the wild-type A's at positions 171 and 172. In vitro RT assays performed with recombinant enzyme with tRNA3(Lys) as the primer showed that the RNA template thus generated, termed PBS/A2, yielded levels of minus-strand strong-stop DNA product similar to those yielded by the wild-type RNA template. Coincidentally, viruses containing A's at positions 167 and 168 were able to replicate with efficiencies similar to those of the wild-type viruses. Thus, the (+169)AAAA(+172) A-rich loop plays a key role in the synthesis of viral DNA.
Collapse
Affiliation(s)
- C Liang
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Friant S, Heyman T, Poch O, Wilhelm M, Wilhelm FX. Sequence comparison of the Ty1 and Ty2 elements of the yeast genome supports the structural model of the tRNAiMet-Ty1 RNA reverse transcription initiation complex. Yeast 1997; 13:639-45. [PMID: 9200813 DOI: 10.1002/(sici)1097-0061(19970615)13:7<639::aid-yea143>3.0.co;2-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the reverse transcription initiation complex of the yeast Ty1 retrotransposon, interaction between the template RNA and primer tRNAiMet is not limited to base pairing of the primer binding site (PBS) with ten nucleotides at the 3' end of tRNAiMet, but three regions named boxes O, 1 and 2.1 interact with the T and D stems and loops of tRNAiMet. Sequence comparison of 33 Ty1 elements and 13 closely related Ty2 elements found in the yeast genome shows that the nucleotide sequence of all elements is highly conserved in the region spanning the PBS and the three boxes. Since the domain of the template RNA encodes a portion of protein TyA, we have calculated its amino acid profile and its nucleotide profile to evaluate the role played by nucleotide sequence conservation in the selection for TyA function and in the maintenance of base pairing interactions for the priming function of Ty1 RNA. Our results show that the nucleotide sequence conservation of Ty1 RNA is constrained not only by selection for Ty1 function but also by maintenance of a given nucleotide sequence able to base pair with the tRNAiMet in the primer-template initiation complex.
Collapse
Affiliation(s)
- S Friant
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
23
|
Isel C, Ehresmann C, Keith G, Ehresmann B, Marquet R. Two step synthesis of (-) strong-stop DNA by avian and murine reverse transcriptases in vitro. Nucleic Acids Res 1997; 25:545-52. [PMID: 9016594 PMCID: PMC146480 DOI: 10.1093/nar/25.3.545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Retroviral reverses transcriptases (RTs) are RNA- and DNA-dependent DNA polymerases that use a tRNA bound at the so-called primer binding site (PBS) located near the 5'end of the genomic RNA as primer. Thus, RTs must be able to accommodate both RNA and DNA in the primer strand. To test whether the natural primer confers some advantages to the priming process, we compared initiation of reverse transcription of avian and murine retroviral RNAs, using either their natural tRNA primer, tRNATrp and tRNAPro, respectively, or synthetic 18mer oligodeoxyribonucleotides (ODNs) and oligoribonucleotides (ORNs) complementary to their PBS. In both retroviral systems, the initial extension of ODNs was fast and processive. The initial extension of ORNs, tRNATrp and tRNAPro was much slower and distributive, giving rise to the transient accumulation of short pausing products. Synthesis of (-) strong-stop DNA was delayed when using ORNs and tRNAs, compared to ODNs. Even though ORNs and tRNAs were initially extended at the same rate, the short pausing products were more rapidly extended when using the tRNA primers. As a consequence, synthesis of (-) strong-stop DNA was much more efficient with tRNA primers, compared to ORNs. Taken together, these results suggest that the tRNA-primed synthesis of (-) strong-stop DNA is a two-step process, as already observed for HIV-1. The initiation mode corresponds to the initial non-processive nucleotide addition and extension of the short pausing products. It is more efficient with the natural primers than with ORNs. Initiation is followed by a more processive and unspecific elongation mode. Elongation is observed when the primer strand is DNA, i.e. when using the ODNs as primers or when the ORN and tRNA primers have been extended by a sufficient number (depending on the retroviral system) of deoxyribonucleotides.
Collapse
Affiliation(s)
- C Isel
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue R. Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
24
|
Lin JH, Levin HL. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription. Genes Dev 1997; 11:270-85. [PMID: 9009208 DOI: 10.1101/gad.11.2.270] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.
Collapse
Affiliation(s)
- J H Lin
- Laboratory of Eukaryotic Gene Regulation, National Institutes of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
25
|
Lanchy JM, Ehresmann C, Le Grice SF, Ehresmann B, Marquet R. Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. EMBO J 1996; 15:7178-87. [PMID: 9003793 PMCID: PMC452545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently showed that primer tRNA3Lys, human immunodeficiency virus type 1 (HIV-1) RNA and HIV-1 reverse transcriptase (RT) form a specific complex of initiation of reverse transcription that can be functionally distinguished from the elongation complex, which can be obtained by substituting an 18mer oligodeoxyribonucleotide (ODN) for the natural primer (Isel et al., 1996). Here, we compared the binding properties and the single and multiple turnover kinetics of HIV-1 RT in the initiation and elongation complexes. Even though the equilibrium dissociation constants of HIV-1 RT are not very different for the two complexes, RT dissociates approximately 200-fold faster from the initiation complex. Furthermore, nucleotide incorporation by the pre-formed primer-template-RT complexes is reduced by a approximately 50-fold factor during initiation of reverse transcription, compared with elongation. As a consequence, processivity of HIV-1 RT in the initiation complex is close to unity, while it increases by four orders of magnitude during elongation, as expected for a replication enzyme. This processivity change is reminiscent of the transition from initiation to elongation of transcription. Furthermore, our results indicate that the post-transcriptional modifications of tRNA3Lys play a role similar to that of the sigma factor in transcription by the Escherichia coli RNA polymerase: they favour the formation of the specific initiation complex but do not affect the polymerization rate of the bound enzyme.
Collapse
Affiliation(s)
- J M Lanchy
- Unité Propre de Recherche No. 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
Arts EJ, Stetor SR, Li X, Rausch JW, Howard KJ, Ehresmann B, North TW, Wöhrl BM, Goody RS, Wainberg MA, Grice SF. Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases. Proc Natl Acad Sci U S A 1996; 93:10063-8. [PMID: 8816751 PMCID: PMC38336 DOI: 10.1073/pnas.93.19.10063] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cats
- DNA, Viral/biosynthesis
- Genome, Viral
- HIV-1/genetics
- HIV-1/metabolism
- Horses
- Humans
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/metabolism
- Kinetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA-Directed DNA Polymerase/metabolism
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/metabolism
- Templates, Genetic
Collapse
Affiliation(s)
- E J Arts
- Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Arts EJ, Ghosh M, Jacques PS, Ehresmann B, Le Grice SF. Restoration of tRNA3Lys-primed(-)-strand DNA synthesis to an HIV-1 reverse transcriptase mutant with extended tRNAs. Implications for retroviral replication. J Biol Chem 1996; 271:9054-61. [PMID: 8621554 DOI: 10.1074/jbc.271.15.9054] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mechanism for the initiation of reverse transcription in human immunodeficiency virus type 1 (HIV-1) was studied utilizing a unique reverse transcriptase (RT) mutant altered in its noncatalytic p51 subunit. This mutant (p66/p51Delta13) retains full DNA- and RNA-dependent DNA polymerase activity but has reduced affinity for tRNA3Lys, the cognate HIV primer. When the ability to support(-)-strand DNA synthesis on a viral RNA template was evaluated, this mutant initiated from an 18-nucleotide (nt) oligoribo- or oligodeoxyribonucleotide primer complementary to the primer binding site (pbs). However, it failed to do so from natural and synthetic versions of tRNA3Lys. tRNA-primed(-)-strand synthesis could, however, be rescued by substituting the 76-nt tRNA3Lys with 81- and 107-nt tRNA-DNA chimeras, i.e. tRNA3Lys extended by 5 and 31 deoxyribonucleotides complementary to the viral genome upstream of the pbs. These findings imply that through interactions involving its p51 subunit, RT may be required to disrupt additional tRNA-viral RNA duplexes outside the pbs to proceed into productive(-)-strand DNA synthesis. Alternatively, specific interactions between tRNA3Lys and HIV-1 RT may be necessary for efficient initiation of(-)-strand DNA synthesis.
Collapse
Affiliation(s)
- E J Arts
- Center for AIDS Research and Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
28
|
Friant S, Heyman T, Wilhelm ML, Wilhelm FX. Extended interactions between the primer tRNAi(Met) and genomic RNA of the yeast Ty1 retrotransposon. Nucleic Acids Res 1996; 24:441-9. [PMID: 8602356 PMCID: PMC145666 DOI: 10.1093/nar/24.3.441] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reverse transcription of the yeast Ty1 retrotransposon is primed by tRNAi(Met) base paired to the primer binding site near the 5'-end of Ty1 genomic RNA. To understand the molecular basis of the tRNAi(Met)-Ty1 RNA interaction the secondary structure of the binary complex was analysed. Enzymatic probes were used to test the conformation of tRNAi(Met) and of Ty1 RNA in the free form and in the complex. A secondary structure model of the tRNAi(Met) Ty1 RNA complex consistent with the probing data was constructed with the help of a computer program. The model shows that besides interactions between the primer binding site and the last 10 nt at the 3'-end of tRNAi(Met), three short regions of Ty1 RNA named boxes 0, 1 and 2.1 interact with the T and D stems and loops of tRNAiMet. Mutations were made in the boxes or in the complementary sequences of tRNAi(Met) to study the contribution of these sequences to formation of the complex. We find that interaction with at least one of the two boxes 0 or 1 is absolutely required for efficient annealing of the two RNAs. Sequence comparison showing that the primary sequence of the boxes is strictly conserved in Ty1 and Ty2 elements and previously published in vivo results underline the functional importance of the primary sequence of the boxes and suggest that extended interactions between genomic Ty1 RNA and the primary tRNAi(Met) play a role in the reverse transcription pathway.
Collapse
Affiliation(s)
- S Friant
- Unité Propre de Recherche, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Lanchy JM, Isel C, Ehresmann C, Marquet R, Ehresmann B. Structural and functional evidence that initiation and elongation of HIV-1 reverse transcription are distinct processes. Biochimie 1996; 78:1087-96. [PMID: 9150889 DOI: 10.1016/s0300-9084(97)86734-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Retroviral reverse transcription starts with the extension of a cellular tRNA primer bound near the 5' end of the viral genomic RNA at a site called the primer binding site (PBS). Formation of the HIV-1 initiation complex between tRNA3(Lys), viral RNA and reverse transcriptase probably occurs during encapsidation of these components. tRNA3(Lys) is thought to be selectively packaged by interaction with the reverse transcriptase domain of the Pr160Gag-Pol precursor protein, then annealed to the PBS of viral RNA with the help of the nucleocapsid protein. tRNA3(Lys) and HIV-1 viral RNA form a highly-structured complex, with extended interactions between the two molecules. Two different modes of reverse transcription have been distinguished: initiation, a tRNA3(Lys)-specific and distributive mode of polymerization corresponding to the addition of the first five nucleotides, followed by elongation, a non-specific and processive mode of DNA synthesis. These two modes are reminiscent of the initiation and elongation processes previously observed with DNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- J M Lanchy
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
30
|
Friant S, Heyman T, Wilhelm FX, Wilhelm M. Role of RNA primers in initiation of minus-strand and plus-strand DNA synthesis of the yeast retrotransposon Ty1. Biochimie 1996; 78:674-80. [PMID: 8955910 DOI: 10.1016/s0300-9084(96)80013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae is a long terminal repeat mobile genetic element that transposes through an RNA intermediate. Initiation of minus-strand and plus-strand DNA synthesis are two critical steps during reverse transcription of the retrotransposon genome. Initiation of minus-strand DNA synthesis of the Ty1 element is primed by the cytoplasmic initiator methionine tRNA base paired to the primer binding site near the 5' end of the genomic RNA. A structural probing study of the primer tRNA-Ty1 RNA binary complex reveals that besides interactions between the primer binding site and the last 10 nucleotides at the 3' end of the primer tRNA, three short regions of Ty1 RNA named box 0, box 1 and box 2.1 interact with the T and D stems and loops of the primer tRNA. Some in vivo results underline the functional importance of the nucleotide sequence of the boxes and suggest that extended interactions between genomic Ty1 RNA and the primer tRNA play a role in the reverse transcription pathway. Plus-strand DNA synthesis is initiated from an RNase H resistant oligoribonucleotide spanning a purine-rich sequence, the polypurine tract (PPT). Two sites of initiation located at the 5' boundary of the 3' long terminal repeat (PPT1) and near the middle of the TyB (pol) gene in the integrase coding sequence (PPT2) have been identified in the genome of Ty1. The two PPTs have an identical sequence, TGGGTGGTA. Mutations replacing purines by pyrimidines in this sequence significantly diminish or abolish initiation of plus-strand DNA synthesis. Ty1 elements bearing a mutated PPT2 sequence are not defective for transposition whereas mutations in PPT1 abolish transposition.
Collapse
Affiliation(s)
- S Friant
- UPR 9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
31
|
Abstract
Genetic elements coding for proteins that present amino acid identity with the conserved motifs of retroviral reverse transcriptases constitute the retroid family. With the exception of reverse transcriptases encoded by mitochondrial plasmids of Neurospora, all reverse transcriptases have an absolute requirement for a primer to initiate DNA synthesis. In retroviruses, plant pararetroviruses, and retrotransposons (transposons containing long terminal repeats), DNA synthesis is primed by specific tRNAs. All these retroelements contain a primer binding site presenting a Watson-Crick complementarity with the primer tRNA. The tRNAs most widely used as primers are tRNA(Trp), tRNA(Pro), tRNA(1,2Lys), tRNA(3Lys), tRNA(iMet). Other tRNAs such as tRNA(Gln), tRNA(Leu), tRNA(Ser), tRNA(Asn) and tRNA(Arg) are also occasionally used as primers. In the retroviruses and plant pararetroviruses, the primer binding site is complementary to the 3' end of the primer tRNA. In the case of retrotransposons, the primer binding site is either complementary to the 3' end or to an internal region of the primer tRNA. Additional interactions taking place between the primer tRNA and the retro-RNA outside of the primer binding site have been evidenced in the case of Rous sarcoma virus, human immunodeficiency virus type I, and yeast retrotransposon Ty1. A selective encapsidation of the primer tRNA, probably promoted by interactions with reverse transcriptase, occurs during the formation of virus or virus-like particles. Annealing of the primer tRNA to the primer binding site appears to be mediated by reverse transcriptase and/or the nucleocapsid protein. Modified nucleosides of the primer tRNA have been shown to be important for replication of the primer binding site, encapsidation of the primer (in the case of Rous sarcoma virus), and interaction with the genomic RNA (in the case of human immunodeficiency virus type I).
Collapse
Affiliation(s)
- R Marquet
- UPR no 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|