1
|
Lavilla-Puerta M, Giuntoli B. Designed to breathe: synthetic biology applications in plant hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae623. [PMID: 39673416 DOI: 10.1093/plphys/kiae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/16/2024]
Abstract
Over the past years, plant hypoxia research has produced a considerable number of new resources to monitor low oxygen responses in model species, mainly Arabidopsis thaliana. Climate change urges the development of effective genetic strategies aimed at improving plant resilience during flooding events. This need pushes forward the search for optimized tools that can reveal the actual oxygen available to plant cells, in different organs or under various conditions, and elucidate the mechanisms underlying plant hypoxic responses, complementing the existing transcriptomics, proteomics, and metabolic analysis methods. Oxygen-responsive reporters, dyes, and nanoprobes are under continuous development, as well as novel synthetic strategies that make precision control of plant hypoxic responses realistic. In this review, we summarize the recent progress made in the definition of tools for oxygen response monitoring in plants, either adapted from bacterial and animal research or peculiar to plants. Moreover, we highlight how adoption of a synthetic biology perspective has enabled the design of novel genetic circuits for the control of oxygen-dependent responses in plants. Finally, we discuss the current limitations and challenges toward the implementation of synbio solutions in the plant low-oxygen biology field.
Collapse
Affiliation(s)
- Mikel Lavilla-Puerta
- Plant Molecular Biology Section, Department of Biology, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
2
|
Martinez KP, Gasmi N, Jeronimo C, Klimova N, Robert F, Turcotte B. Yeast zinc cluster transcription factors involved in the switch from fermentation to respiration show interdependency for DNA binding revealing a novel type of DNA recognition. Nucleic Acids Res 2024; 52:2242-2259. [PMID: 38109318 PMCID: PMC10954478 DOI: 10.1093/nar/gkad1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
In budding yeast, fermentation is the most important pathway for energy production. Under low-glucose conditions, ethanol is used for synthesis of this sugar requiring a shift to respiration. This process is controlled by the transcriptional regulators Cat8, Sip4, Rds2 and Ert1. We characterized Gsm1 (glucose starvation modulator 1), a paralog of Rds2 and Ert1. Genome-wide analysis showed that Gsm1 has a DNA binding profile highly similar to Rds2. Binding of Gsm1 and Rds2 is interdependent at the gluconeogenic gene FBP1. However, Rds2 is required for Gsm1 to bind at other promoters but not the reverse. Gsm1 and Rds2 also bind to DNA independently of each other. Western blot analysis revealed that Rds2 controls expression of Gsm1. In addition, we showed that the DNA binding domains of Gsm1 and Rds2 bind cooperatively in vitro to the FBP1 promoter. In contrast, at the HAP4 gene, Ert1 cooperates with Rds2 for DNA binding. Mutational analysis suggests that Gsm1/Rds2 and Ert1/Rds2 bind to short common DNA stretches, revealing a novel mode of binding for this class of factors. Two-point mutations in a HAP4 site convert it to a Gsm1 binding site. Thus, Rds2 controls binding of Gsm1 at many promoters by two different mechanisms: regulation of Gsm1 levels and increased DNA binding by formation of heterodimers.
Collapse
Affiliation(s)
- Karla Páez Martinez
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Najla Gasmi
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Natalia Klimova
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Bernard Turcotte
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Emri E, Kortvely E, Dammeier S, Klose F, Simpson D, EYE-RISK Consortium, den Hollander AI, Ueffing M, Lengyel I. A Multi-Omics Approach Identifies Key Regulatory Pathways Induced by Long-Term Zinc Supplementation in Human Primary Retinal Pigment Epithelium. Nutrients 2020; 12:E3051. [PMID: 33036197 PMCID: PMC7601425 DOI: 10.3390/nu12103051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Sascha Dammeier
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - David Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| | | | - Anneke I. den Hollander
- Departments of Ophthalmology and Genetics, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands;
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Imre Lengyel
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| |
Collapse
|
4
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
5
|
Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2014; 6:189-200. [DOI: 10.1039/c3mt00291h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Swapna LS, Srikeerthana K, Srinivasan N. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance. PLoS One 2012; 7:e36688. [PMID: 22629324 PMCID: PMC3358323 DOI: 10.1371/journal.pone.0036688] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/11/2012] [Indexed: 11/21/2022] Open
Abstract
Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2∶1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.
Collapse
|
7
|
Rintala E, Jouhten P, Toivari M, Wiebe MG, Maaheimo H, Penttilä M, Ruohonen L. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:461-76. [PMID: 21348598 DOI: 10.1089/omi.2010.0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behavior of cells during these changes. Glucose-limited chemostat cultivations were used to study the time-dependent effect of sudden oxygen depletion on the transcriptome of S. cerevisiae cells initially in fully aerobic or oxygen-limited conditions. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilization of respiratory carbon sources was observed.
Collapse
Affiliation(s)
- Eija Rintala
- VTT Technical Research Centre of Finland, Finland.
| | | | | | | | | | | | | |
Collapse
|
8
|
Netzer NC, Breitenbach M. Metabolic changes through hypoxia in humans and in yeast as a comparable cell model. Sleep Breath 2010; 14:221-5. [PMID: 20535573 DOI: 10.1007/s11325-010-0342-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND In several investigations on mountaineers under moderate hypoxia, at altitudes between 2,500 m and 4,500 m, weight loss occurs, fat levels in the serum and insulin resistance (in diabetic mountaineers) are reduced. Animal studies with different time dosage regimens of hypoxia in animal cages revealed different and partly confusing results regarding fat metabolism under hypoxia. HYPOTHESES Hypothesis for the change in glucose and fat metabolism include a HIF promoted higher leptin rate under hypoxia and an increased glucose transport in peripheral organs. DISCUSSION This short review discusses some of the different investigations in this topic. In a second part it is shown how studies of metabolism in yeast cells with an upregulated glycolysis in the cell itself under hypoxic conditions could help to better understand metabolic changes under hypoxia.
Collapse
Affiliation(s)
- Nikolaus C Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, Paracelsus Medical University, Salzburg, Austria.
| | | |
Collapse
|
9
|
Simicevic J, Deplancke B. DNA-centered approaches to characterize regulatory protein-DNA interaction complexes. MOLECULAR BIOSYSTEMS 2009; 6:462-8. [PMID: 20174675 DOI: 10.1039/b916137f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene regulation is mediated by site-specific DNA-binding proteins or transcription factors (TFs), which form protein complexes at regulatory loci either to activate or repress the expression of a target gene. The study of the dynamic properties of these regulatory DNA-binding complexes has so far been dominated by protein-centered methodologies, aiming to characterize the DNA-binding behavior of one specific protein at a time. With the emerging evidence for a role of DNA in allosterically influencing DNA-binding protein complex formation, there is renewed interest in DNA-centered approaches to capture protein complexes on defined regulatory loci and to correlate changes in their composition with alterations in target gene expression. In this review, we present the current state-of-the-art in such DNA-centered approaches and evaluate recent technological improvements in the purification as well as in the identification of regulatory DNA-binding protein complexes within or outside their biological context. Finally, we suggest possible areas of improvement and assess the putative impact of DNA-centered methodologies on the gene regulation field for the forthcoming years.
Collapse
Affiliation(s)
- Jovan Simicevic
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Station 15, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
10
|
Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 2009; 5:245. [PMID: 19225458 PMCID: PMC2657534 DOI: 10.1038/msb.2009.2] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/07/2009] [Indexed: 11/08/2022] Open
Abstract
Addition of glucose to yeast cells increases their growth rate and results in a massive restructuring of their transcriptional output. We have used microarray analysis in conjunction with conditional mutations to obtain a systems view of the signaling network responsible for glucose-induced transcriptional changes. We found that several well-studied signaling pathways—such as Snf1 and Rgt—are responsible for specialized but limited responses to glucose. However, 90% of the glucose-induced changes can be recapitulated by the activation of protein kinase A (PKA) or by the induction of PKB (Sch9). Blocking signaling through Sch9 does not interfere with the glucose response, whereas blocking signaling through PKA does. We conclude that both Sch9 and PKA regulate a massive, nutrient-responsive transcriptional program promoting growth, but that they do so in response to different nutritional inputs. Moreover, activating PKA completely recapitulates the transcriptional growth program in the absence of any increase in growth or metabolism, demonstrating that activation of the growth program results solely from the cell's perception of its nutritional status.
Collapse
|
11
|
Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. EUKARYOTIC CELL 2008; 7:1895-905. [PMID: 18806211 DOI: 10.1128/ec.00018-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28 degrees C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The DeltaKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis.
Collapse
|
12
|
Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. Biochem J 2008; 414:177-87. [PMID: 18687061 DOI: 10.1042/bj20080923] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The comparatively simple eukaryote Saccharomyces cerevisiae is composed of some 6000 individual genes. Specific sets of these genes can be transcribed co-ordinately in response to particular metabolic signals. The resultant integrated response to nutrient challenge allows the organism to survive and flourish in a variety of environmental conditions while minimal energy is expended upon the production of unnecessary proteins. The Zn(II)2Cys6 family of transcriptional regulators is composed of some 46 members in S. cerevisiae and many of these have been implicated in mediating transcriptional responses to specific nutrients. Gal4p, the archetypical member of this family, is responsible for the expression of the GAL genes when galactose is utilized as a carbon source. The regulation of Gal4p activity has been studied for many years, but we are still uncovering both nuances and fundamental control mechanisms that impinge on its function. In the present review, we describe the latest developments in the regulation of GAL gene expression and compare the mechanisms employed here with the molecular control of other Zn(II)2Cys6 transcriptional regulators. This reveals a wide array of protein-protein, protein-DNA and protein-nutrient interactions that are employed by this family of regulators.
Collapse
|
13
|
Hickman MJ, Winston F. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 2007; 27:7414-24. [PMID: 17785431 PMCID: PMC2169065 DOI: 10.1128/mcb.00887-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/25/2007] [Accepted: 08/27/2007] [Indexed: 12/17/2022] Open
Abstract
Changes in oxygen levels cause widespread changes in gene expression in organisms ranging from bacteria to humans. In Saccharomyces cerevisiae, this response is mediated in part by Hap1, originally identified as a heme-dependent transcriptional activator that functions during aerobic growth. We show here that Hap1 also plays a significant and direct role under hypoxic conditions, not as an activator, but as a repressor. The repressive activity of Hap1 controls several genes, including three ERG genes required for ergosterol biosynthesis. Chromatin immunoprecipitation experiments showed that Hap1 binds to the ERG gene promoters, while additional experiments showed that the corepressor Tup1/Ssn6 is recruited by Hap1 and is also required for repression. Furthermore, mutational analysis demonstrated that conserved Hap1 binding sites in the ERG5 5' regulatory region are required for repression. The switch of Hap1 from acting as a hypoxic repressor to an aerobic activator is determined by heme, which is synthesized only in the presence of oxygen. The ability of Hap1 to function as a ligand-dependent repressor and activator is a property shared with mammalian nuclear hormone receptors and likely allows greater transcriptional control by Hap1 in response to changing oxygen levels.
Collapse
Affiliation(s)
- Mark J Hickman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B. Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 2007; 27:7895-905. [PMID: 17875938 PMCID: PMC2169140 DOI: 10.1128/mcb.01055-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, RDS2 encodes a zinc cluster transcription factor with unknown function. Here, we unravel a key function of Rds2 in gluconeogenesis using chromatin immunoprecipitation-chip technology. While we observed that Rds2 binds to only a few promoters in glucose-containing medium, it binds many additional genes when the medium is shifted to ethanol, a nonfermentable carbon source. Interestingly, many of these genes are involved in gluconeogenesis, the tricarboxylic acid cycle, and the glyoxylate cycle. Importantly, we show that Rds2 has a dual function: it directly activates the expression of gluconeogenic structural genes while it represses the expression of negative regulators of this pathway. We also show that the purified DNA binding domain of Rds2 binds in vitro to carbon source response elements found in the promoters of target genes. Finally, we show that upon a shift to ethanol, Rds2 activation is correlated with its hyperphosphorylation by the Snf1 kinase. In summary, we have characterized Rds2 as a novel major regulator of gluconeogenesis.
Collapse
Affiliation(s)
- Nitnipa Soontorngun
- Department of Medicine, Royal Victoria Hospital, McGill University,Montréal, Québec, Canada H3A 1A1
| | | | | | | | | |
Collapse
|
15
|
Seong KM, Park H, Kim SJ, Ha HN, Lee JY, Kim J. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution. J Microbiol Methods 2007; 69:442-50. [PMID: 17428560 DOI: 10.1016/j.mimet.2007.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 11/24/2022]
Abstract
A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.
Collapse
Affiliation(s)
- Ki Moon Seong
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 439] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
17
|
Weider M, Machnik A, Klebl F, Sauer N. Vhr1p, a New Transcription Factor from Budding Yeast, Regulates Biotin-dependent Expression of VHT1 and BIO5. J Biol Chem 2006; 281:13513-13524. [PMID: 16533810 DOI: 10.1074/jbc.m512158200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the Saccharomyces cerevisiae vitamin H transporter gene VHT1 is enhanced by low extracellular biotin. Here we present the identification and characterization of Vhr1p as a transcriptional regulator of VHT1 (VHR1 (YIL056w); VHT1 regulator 1) and the identification of the cis-regulatory target sequences for Vhr1p in two yeast promoters. VHR1 was identified in a complementation screening of mutagenized yeast cells that had lost the capacity to express the gene of the green fluorescent protein (GFP) from the VHT1 promoter. Deltavhr1 deletion mutants fail to induce VHT1 on low biotin concentrations. In yeast one-hybrid analyses performed with fusions of Vhr1p N-terminal and C-terminal fragments to the Gal4p activation domain or to the Gal4p DNA-binding domain, the Vhr1p N terminus mediated biotin-dependent DNA binding, and the Vhr1p C terminus triggered biotin-dependent transcriptional activation. The analyzed Vhr1p N-terminal fragment has previously been described as a domain of unknown function (DUF352). Deletion and linker scanning analyses of the VHT1 promoter revealed the palindromic 18-nucleotide sequence AATCA-N8-TGAYT as the vitamin H-responsive element. This sequence was identified also in the BIO5 promoter that is also transcriptionally activated on low biotin concentrations. Bio5p mediates the transport of 7-keto-8-aminopelargonic acid across the yeast plasma membrane, a compound that is used as a precursor in biotin biosynthesis. Deltavhr1 deletion mutants fail to induce BIO5 on low biotin concentrations. The presented data characterize Vhr1p as an essential component of the biotin-dependent signal transduction cascade in yeast.
Collapse
Affiliation(s)
- Matthias Weider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Agnes Machnik
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Franz Klebl
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany.
| |
Collapse
|
18
|
Tamura KI, Gu Y, Wang Q, Yamada T, Ito K, Shimoi H. A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J Biosci Bioeng 2004; 98:159-66. [PMID: 16233684 DOI: 10.1016/s1389-1723(04)00260-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 05/31/2004] [Indexed: 11/20/2022]
Abstract
DNA microarray and Northern blot analysis revealed that a sake yeast strain Kyokai no. 7 (K7) showed higher expression of genes encoding proteins involved in ergosterol biosynthesis than a laboratory yeast strain X2180. We hypothesized that these differences in expression levels were caused by a defect of a transcriptional factor Hap1, because strain X2180 contained a Ty1 insertion mutation in the HAP1 gene. To confirm this, we constructed a strain X2180 derivative (strain HX) that contained the wild-type HAP1 genes originating from strain K7. The expression levels of ergosterol-related genes and cellular ergosterol content in strain HX were higher than those in strain X2180 and were almost comparable to those in strain K7. These results suggest that the differences in the expression levels of ergosterol-related genes and ergosterol content between strains K7 and X2180 were largely caused by the hap1 mutation in strain X2180. Involvement of the mutated Hap1 in the differential gene expression between strain K7 and strain X2180 was further confirmed by a lacZ reporter assay of HMG1, one of the Hap1-regulated genes. We also revealed that the HMG1 promoter region between -500 and -376 was important in the transcriptional activation by Hap1.
Collapse
Affiliation(s)
- Ken-Ichi Tamura
- Takara Shuzo Co. Ltd., 3-4-1 Seta, Otsu, Shiga 520-2193, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Piña B, Fernández-Larrea J, García-Reyero N, Idrissi FZ. The different (sur)faces of Rap1p. Mol Genet Genomics 2003; 268:791-8. [PMID: 12655405 DOI: 10.1007/s00438-002-0801-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Accepted: 12/02/2002] [Indexed: 10/25/2022]
Abstract
The DNA-binding protein Rap1p fulfills many different functions in the yeast cell. It targets 5% of the promoters, acting both as a transcriptional activator and as a repressor, depending on the DNA sequence context. In addition, Rap1p is an essential structural component of yeast telomeres, where it contributes to telomeric silencing. Here we review the evidence indicating that Rap1p function is modulated by the precise architecture of the its binding site and its surroundings: long tracts of telomeric repeats for telomeric functions, specific sequences and orientation for maximal transcriptional activation, and specific DNA recognition sequences for complementary factors in other cases. Many of these functions are probably related to chromatin organization around Rap1p DNA binding sites, resulting from the very tight binding of Rap1p to DNA. We propose that Rap1p alters its structure to bind to different versions of its DNA binding sequence. These structural changes may modulate the function of Rap1p domains, providing different interacting surfaces for binding to specific co-operating factors, and thus contributing to the diversity of Rap1p function.
Collapse
Affiliation(s)
- B Piña
- Molecular and Cellular Biology Department, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona 18, Spain.
| | | | | | | |
Collapse
|
20
|
Ter Linde JJM, Steensma HY. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 2002; 19:825-40. [PMID: 12112237 DOI: 10.1002/yea.879] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Saccharomyces cerevisiae adapts to altered oxygen availability by differentially expressing a number of genes. Under aerobic conditions oxygen control of gene expression is exerted through the activator Hap1 and the repressor Rox1. The Hap1 transcription factor senses cellular heme status and increases expression of aerobic genes in response to oxygen. The repression of hypoxic genes under normoxic conditions results from Hap1-mediated activation of ROX1 transcription. To allow the identification of additional Hap1 and Rox1 target genes, genome-wide expression was analysed in aerobically, chemostat-cultivated hap1 and rox1 null mutants. The microarray results show that deletion of HAP1 causes a lower transcript level of 51 genes. Transcription of 40 genes was increased in rox1 mutant cells compared to wild-type cells. Combining these results with our previously described transcriptome data of aerobically and anaerobically grown cells and with computational analysis of the promoters identified 24 genes that are potentially regulated by Hap1, and 38 genes satisfied the criteria of being direct targets of Rox1. In addition, this work provides further evidence that Rox1 controls transcription of anaerobic genes through repression under normoxic conditions.
Collapse
Affiliation(s)
- José J M Ter Linde
- Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
21
|
Becerra M, Lombardía-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B, Cerdán ME. The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 2002; 43:545-55. [PMID: 11929514 DOI: 10.1046/j.1365-2958.2002.02724.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptome of Saccharomyces cerevisiae was screened using the high-density membrane hybridization method, under aerobic and hypoxic conditions, in wild-type and mutant backgrounds obtained by the disruption of the genes encoding the regulatory proteins Hap1, Rox1 and the Srb10 and Rox3 subunits of RNA polymerase II holoenzyme. None of the mutations studied was able to fully overcome the wild-type hypoxic response. Deletion of the hap1 gene changed the expression profiles of individual open reading frames (ORFs) under both aerobic and hypoxic conditions. Major changes associated with rox3 deletion were related to the hypoxic activation. Rox3 also caused a repressor effect (oxygen-independent) on a subset of genes related to subtelomeric proteins. With regard to the effect brought about by the deletion of rox1 and srb10, correspondence cluster analysis revealed that the transcriptome profile in aerobic conditions is very similar in the wild-type and both deletion strains. In contrast, however, differences were found during hypoxia between the subgroup formed by wild-type and the Deltarox1 deletant compared with the Deltasrb10 deletant. An analysis of selected ORFs responding to hypoxia, in association with a dependence on the regulatory factors studied, made it possible to identify the clusters that are related to different regulatory circuits.
Collapse
Affiliation(s)
- Manuel Becerra
- Dpto. Biología Celular y Molecular, Universidad de La Coruña, F. Ciencias, Campus de La Zapateira s/n 15075, La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Idrissi FZ, Garcia-Reyero N, Fernandez-Larrea JB, Piña B. Alternative Mechanisms of Transcriptional Activation by Rap1p. J Biol Chem 2001; 276:26090-8. [PMID: 11358963 DOI: 10.1074/jbc.m101746200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single Rap1p DNA-binding sites are poor activators of transcription of yeast minimal promoters, even when fully occupied in vivo. This low efficiency is due to two independent repression mechanisms as follows: one that requires the presence of histones, and one that requires Hrs1p, a component of the RNA polymerase II mediator complex. Both repression mechanisms were greatly reduced for constructs with tandemly arranged sites. In these constructs, UASrpg sequences (ACACCCATACATTT) activated better than telomere-like sequences (ACACCCACACACCC) in an orientation-dependent manner. Both mutations in the SWI/SNF complex and a deletion of amino acids 597--629 of Rap1p (Tox domain) decreased synergistic effects of contiguous telomeric sites. Conversely, deletion of amino acids 700--798 of Rap1p (Sil domain) made UASrpg and telomeric sites functionally indistinguishable. We propose that the Sil domain masks the main transactivation domain of Rap1p in Rap1p-telomere complexes, where the Tox domain behaves as a secondary activation domain, probably by interacting with chromatin-remodeling complexes. Rap1p DNA-binding sites in ribosomal protein gene promoters are mainly UASrpg-like; their replacement by telomeric sequences in one of these promoters (RPS17B) decreased transcription by two-thirds. The functional differences between UASrpgs and telomeric sequences may thus contribute to the differential expression of Rap1p-regulated promoters in vivo.
Collapse
Affiliation(s)
- F Z Idrissi
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, Jordi Girona, 18.08034 Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Akache B, Wu K, Turcotte B. Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 2001; 29:2181-90. [PMID: 11353088 PMCID: PMC55459 DOI: 10.1093/nar/29.10.2181] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc cluster proteins (or binuclear cluster proteins) possess zinc fingers of the Zn(II)2Cys6-type involved in DNA recognition as exemplified by the well-characterized protein Gal4p. These fungal proteins are transcriptional regulators of genes involved in a wide variety of cellular processes including metabolism of compounds such as amino acids and sugars, as well as control of meiosis, multi-drug resistance etc. The yeast (Saccharomyces cerevisiae) sequencing project has allowed the identification of additional zinc cluster proteins for a total of 54. However, the role of many of these putative zinc cluster proteins is unknown. We have performed phenotypic analysis of 33 genes encoding (putative) zinc cluster proteins. Only two members of the GAL4 family are essential genes. Our results show that deletion of eight different zinc cluster genes impairs growth on non-fermentable carbon sources. The same strains are also hypersensitive to the antifungal calcofluor white suggesting a role for these genes in cell wall integrity. In addition, one of these strains (YFL052W) is also heat sensitive on rich (but not minimal) plates. Thus, deletion of YFL052W results in sensitivity to a combination of low osmolarity and high temperature. In addition, six strains are hypersensitive to caffeine, an inhibitor of the MAP kinase pathway and phosphodiesterase of the cAMP pathway. In conclusion, our analysis assigns phenotypes to a number of genes and provides a basis to better understand the role of these transcriptional regulators.
Collapse
Affiliation(s)
- B Akache
- Department of Medicine, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montréal, Québec H3A 1A1, Canada
| | | | | |
Collapse
|
24
|
Hellauer K, Sirard E, Turcotte B. Decreased expression of specific genes in yeast cells lacking histone H1. J Biol Chem 2001; 276:13587-92. [PMID: 11278859 DOI: 10.1074/jbc.m011196200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin plays an important role in regulating eukaryotic gene expression. Chromatin is composed of DNA wrapped around a nucleosome core (consisting of two copies of the well conserved histones H2A, H2B, H3, and H4) and a more variable linker histone H1. Various in vitro and in vivo studies have implicated histone H1 as a repressor of gene expression or as an activator, but its exact role is still unclear. Sequencing of the yeast genome has led to the identification of a putative histone H1 gene. Biochemical studies demonstrated that yeast does indeed possess a bona fide histone H1. However, deletion of the unique yeast H1 gene is not associated with any phenotypes, and it was questioned whether it plays any role. To address this issue, we performed whole-genome microarray analysis to identify genes that are affected by H1 removal. Surprisingly, deletion of the gene encoding histone H1 does not result in increased gene expression but rather in a modest reduction. Northern blot analysis of selected genes confirmed the results obtained with the microarray analysis. A similar effect was observed with an integrated lacZ reporter. Thus, our data demonstrate that removal of yeast histone H1 only results in decreased gene expression.
Collapse
Affiliation(s)
- K Hellauer
- Department of Medicine, Royal Victoria Hospital, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | |
Collapse
|
25
|
Lukens AK, King DA, Marmorstein R. Structure of HAP1-PC7 bound to DNA: implications for DNA recognition and allosteric effects of DNA-binding on transcriptional activation. Nucleic Acids Res 2000; 28:3853-63. [PMID: 11024163 PMCID: PMC110793 DOI: 10.1093/nar/28.20.3853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HAP1 is a transcription factor in yeast whose DNA-binding domain has been implicated in directly affecting transcriptional activation. Two separate mutations in the DNA-binding domain, S63G (HAP1-PC7) and S63R (HAP1-18), retain wild-type binding affinity. However, HAP1-PC7 is transcriptionally silent while HAP1-18 shows highly elevated levels of transcription. We have determined the X-ray crystal structure of the DNA-binding domain of HAP1-PC7 bound to its DNA target, UAS(CYC7), and compared it to the previously solved HAP1-wt and HAP1-18 complexes to UAS(CYC7). Additionally, we have quantitatively compared the DNA-binding affinity and specificity of the HAP1-PC7, HAP1-18 and HAP1-wt DNA-binding domains. We show that, although the DNA-binding domains of these three proteins bind UAS(CYC7) with comparable affinity and specificity, the protein-DNA interactions are dramatically different between the three complexes. Conserved protein-DNA interactions are largely restricted to an internal DNA sequence that excludes one of the two conserved DNA half-sites of UAS(CYC7) suggesting a mode of recognition distinct from other HAP1 family members. Alternative protein-DNA interactions result in divergent DNA configurations between the three complexes. These results suggest that the differential transcriptional activities of the HAP1, HAP1-18 and HAP1-PC7 proteins are due, at least in part, to alternative protein-DNA contacts, and implies that HAP1-DNA interactions have direct allosteric effects on transcriptional activation.
Collapse
Affiliation(s)
- A K Lukens
- The Wistar Institute and The Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
26
|
Lombardía LJ, Cadahía-Rodríguez JL, Freire-Picos MA, González-Siso MI, Rodríguez-Torres AM, Cerdán ME. Transcript analysis of 203 novel genes from Saccharomyces cerevisiae in hap1 and rox1 mutant backgrounds. Genome 2000; 43:881-6. [PMID: 11081979 DOI: 10.1139/g00-049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hap1 and Rox1 are transcriptional regulators that bind regulatory sites in the promoters of oxygen-regulated genes in Saccharomyces cerevisiae. Hap1 is a heme-responsive activator of genes induced in aerobic conditions and Rox1 is a repressor of hypoxic genes in aerobic conditions. We have studied transcriptional regulation of a pool of 203 open reading frames (ORFs) from chromosomes IV, VII, and XIV in wild-type, hap1, and rox1 mutant genetic backgrounds in an attempt to extend the family of oxygen and heme regulated genes. Only three ORFs are significantly repressed by Rox1 but they cannot be considered as typical hypoxic genes because they are not overexpressed during hypoxia.
Collapse
Affiliation(s)
- L J Lombardía
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Ramil E, Agrimonti C, Shechter E, Gervais M, Guiard B. Regulation of the CYB2 gene expression: transcriptional co-ordination by the Hap1p, Hap2/3/4/5p and Adr1p transcription factors. Mol Microbiol 2000; 37:1116-32. [PMID: 10972830 DOI: 10.1046/j.1365-2958.2000.02065.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Saccharomyces cerevisiae nuclear gene CYB2 encoding the mitochondrial enzyme L-(+)-lactate-cytochrome c oxidoreductase (EC 1.2.2.3) is subject to several strict metabolic controls at the transcriptional level: repression due to glucose fermentation, derepression by ethanol, induction by lactate and inhibition under anaerobic conditions or in response to deficiency of haem biosynthesis. In this respect, the data obtained from the transcriptional analysis of the CYB2 gene contribute to a better understanding of the control of mitochondrial biogenesis. In this study, we show that Hap1p is the main transcriptional activator involved in the control of CYB2 transcription. We found that Hap1p activity, known to be oxygen dependent, is effected by DNA-protein interaction with two binding sites present in the CYB2 promoter. Control is moreover dependent on carbon sources. This regulation by the carbon substrates is subordinate to the activity of the complex Hap2/3/4/5p, which counteracts the negative effect of the URS1 element. Finally, our results suggest that the Adr1p transcriptional activator is also required in CYB2 transcription control. This work provides new data which allows a better understanding of the molecular mechanisms implicated in the co-regulation at the transcriptional level of the genes encoding proteins involved in various aspects of oxidative metabolism.
Collapse
Affiliation(s)
- E Ramil
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université Pierre et Marie Curie, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
28
|
Ha N, Hellauer K, Turcotte B. Fusions with histone H3 result in highly specific alteration of gene expression. Nucleic Acids Res 2000; 28:1026-35. [PMID: 10648797 PMCID: PMC102566 DOI: 10.1093/nar/28.4.1026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hap1 is a yeast transcriptional activator which controls expression of genes such as CYC1 and CYC7. Our results show that Hap1 activity is dependent on a functional chromatin remodeling complex SWI/SNF. Using a modified two-hybrid screen with Hap1 as bait, we recovered expression vectors encoding the Gal4 activation domain fused to histone H3 [Gal4(AD)-H3]. Hap1 activity at CYC1 or CYC7 was increased by Gal4(AD)-H3 and the effect was dependent on the presence of the activation domain of Hap1 and a functional SWI complex. Importantly, overexpression of H3 alone had no effect on Hap1 activity. Analysis of Gal4(AD)-H3 revealed that the fusion is not incorporated into the nucleosome while a functional Gal4 activation domain is dispensable. Activity of many other transcriptional activators was unchanged or slightly affected in the presence of Gal4(AD)-H3. Thus, our results identify a new class of histone H3 variants that cause highly specific alteration of gene expression. Hap1 may interact directly with H3 favoring chromatin remodeling by the SWI/SNF complex.
Collapse
Affiliation(s)
- N Ha
- Department of Medicine, Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | |
Collapse
|
29
|
Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 1999; 15:1021-30. [PMID: 10455226 DOI: 10.1002/(sici)1097-0061(199908)15:11<1021::aid-yea429>3.0.co;2-v] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The xylose-utilizing yeast, Pichia stipitis, has a complex respiratory system that contains cytochrome and non-cytochrome alternative electron transport chains in its mitochondria. To gain primary insights into the alternative respiratory pathway, a cytochrome c gene (PsCYC1, Accession No. AF030426) was cloned from wild-type P. stipitis CBS 6054 by cross-hybridization to CYC1 from Saccharomyces cerevisiae. The 333 bp open reading frame of PsCYC1 showed 74% and 69% identity to ScCYC1 and ScCYC7, respectively, at the DNA level. Disruption of PsCYC1 resulted in a mutant that uses the salicylhydroxamic acid (SHAM)-sensitive respiratory pathway for aerobic energy production. Cytochrome spectra revealed that cytochromes c and a.a(3) both disappeared in the cyc1-Delta mutant, so no electron flow through the cytochrome c oxidase was possible. The cyc1-Delta mutant showed 50% lower growth rates than the parent when grown on fermentable sugars. The cyc1-Delta mutant was also found to be unable to grow on glycerol. Interestingly, the mutant produced 0.46 g/g ethanol from 8% xylose, which was 21% higher in yield than the parental strain (0.38 g/g). These results suggested that the alternative pathway might play an important role in supporting xylose conversion to ethanol under oxygen-limiting conditions.
Collapse
Affiliation(s)
- N Q Shi
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Idrissi FZ, Fernández-Larrea JB, Piña B. Structural and functional heterogeneity of Rap1p complexes with telomeric and UASrpg-like DNA sequences. J Mol Biol 1998; 284:925-35. [PMID: 9837716 DOI: 10.1006/jmbi.1998.2215] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rap1p binds to a variety of related DNA sequences. We studied complexes of Rap1p and its DNA-binding domain with two of these sequences, the UASrpg sequence (5'-ACACCCATACATTT-3') and the Saccharomyces cerevisiae telomeric consensus (5'-ACACCCACACACCC-3'). When cloned in front of a minimal CYC1 promoter, the two sequences differed in their transcriptional potential. Whereas UASrpg or telomeric single binding sites activated transcription with approximately the same strength, adjacent UASrpg sequences showed higher synergistic activity and orientation-dependence than telomeric sequences. We also found different sequence requirements for Rap1p binding in vitro to both sequences, since a single base-pair that severely reduced binding of Rap1p to UASrpg sequences had very little effect on the telomeric sequence. The Rap1p binding domain distorted DNA molecules encompassing the UASrpg sequence or the telomeric-like sequence, as revealed by both KMnO4 hypersensitivity and by hydroxyl radical foot-printing analysis. We propose that Rap1p is able to form structurally and functionally different complexes, depending on the type of DNA sequence the complex is assembled from. This functional and structural heterogeneity may be responsible for the multiple functions that Rap1p binding sites appear to have in vivo.
Collapse
Affiliation(s)
- F Z Idrissi
- Centre d'Investigació i Desenvolupament, Consejo Superior de Investigaciones Científicas, Jordi Girona 18, Barcelona, 08034, Spain
| | | | | |
Collapse
|
31
|
Mamane Y, Hellauer K, Rochon MH, Turcotte B. A linker region of the yeast zinc cluster protein leu3p specifies binding to everted repeat DNA. J Biol Chem 1998; 273:18556-61. [PMID: 9660826 DOI: 10.1074/jbc.273.29.18556] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast zinc cluster proteins form a major class of yeast transcriptional regulators. They usually bind as homodimers to target DNA sequences, with each monomer recognizing a CGG triplet. Orientation and spacing between the CGG triplet specifies the recognition sequence for a given zinc cluster protein. For instance, Gal4p binds to inverted CGG triplets spaced by 11 base pairs whereas Ppr1p recognizes a similar motif but with a spacing of 6 base pairs. Hap1p, another member of this family, binds to a direct repeat consisting of two CGG triplets. Other members of this family, such as Leu3p, also recognize CGG triplets but when oriented in opposite directions, an everted repeat. This implies that the two zinc clusters of Leu3p bound to an everted repeat must be oriented in opposite directions to those of Gal4p or Ppr1p bound to inverted repeats. In order to map the domain responsible for proper orientation of the zinc clusters of Leu3p, we constructed chimeric proteins between Leu3p and Ppr1p and tested their binding to a Leu3p and a Ppr1p site. Our results show that the linker region, which bridges the zinc cluster to the dimerization domain, specifies binding of Leu3p to an everted repeat. We propose that the Leu3p linker projects the two zinc clusters of a Leu3p homodimer in opposite directions allowing binding to everted repeats.
Collapse
Affiliation(s)
- Y Mamane
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 1A1
| | | | | | | |
Collapse
|
32
|
Noël J, Turcotte B. Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets. J Biol Chem 1998; 273:17463-8. [PMID: 9651335 DOI: 10.1074/jbc.273.28.17463] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the family of fungal zinc cluster DNA-binding proteins possess 6 highly conserved cysteines that bind to two zinc atoms forming a structure (Zn2Cys6) that is required for recognition of specific DNA sequences. Many zinc cluster proteins have been shown to bind as homodimers to a pair of CGG triplets oriented either as direct (CGG NX CGG), inverted (CGG NX CCG), or everted repeats (CCG NX CGG), where N indicates nucleotides. Variation in the spacing between the CGG triplets also contributes to the diversity of sites recognized. For example, Leu3p binds to the everted sequence CCG N4 CGG with a strict requirement for a 4-base pair spacing. Here, we show that another member of the family, Uga3p, recognizes the same DNA motif as Leu3p. However, these transcription factors have distinct DNA targets. We demonstrate that additional specificity of binding is provided by nucleotides located between the two everted CGG triplets. Altering the 4 nucleotides between to the two everted CGG triplets switches the specificity from a Uga3p site to a Leu3p site in both in vitro and in vivo assays. Thus, our results identify a new mechanism that expands the repertoire of DNA targets of the family of zinc cluster proteins. These experiments provide a model for discrimination between targets of zinc cluster proteins.
Collapse
Affiliation(s)
- J Noël
- Department of Medicine, Royal Victoria Hospital, and Department of Biochemistry, McGill University, Montréal, Québec, Canada H3A 1A1
| | | |
Collapse
|
33
|
Junker M, Rodgers KK, Coleman JE. Zinc as a structural and folding element of proteins which interact with DNA. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(98)00128-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Becker B, Feller A, el Alami M, Dubois E, Piérard A. A nonameric core sequence is required upstream of the LYS genes of Saccharomyces cerevisiae for Lys14p-mediated activation and apparent repression by lysine. Mol Microbiol 1998; 29:151-63. [PMID: 9701810 DOI: 10.1046/j.1365-2958.1998.00916.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the structural genes for lysine (LYS) biosynthesis is controlled by a pathway-specific regulation mediated by the transcriptional activator Lys14 in the presence of alpha-aminoadipate semialdehyde, an intermediate of the pathway acting as a co-inducer. Owing to end product inhibition of the first step of the pathway, excess lysine reduces the production of the co-inducer and causes apparent repression of the LYS genes. Analysis of LYS promoters and insertions within an heterologous reporter gene have allowed the characterization of an upstream activating element (UASLYS) able to confer Lys14- and alpha-amino-adipate semialdehyde-dependent activation as well as apparent repression by lysine to another yeast gene. This DNA motif is present as one of several copies in the promoters of at least six LYS genes. The consensus sequence derived from the comparison of the UASLYS showing the highest activation capacities comprises the nonameric core sequence TCCRNYGGA. The RNY sequence of the 3 bp spacer as well as the presence of flanking AT-rich regions on both sides of the core sequence appear essential for optimal activation. Further evidence that this element is the target of Lys14p was provided by the demonstration that Lys14p binds to UASLYS in vitro. The binding is independent of the presence of the co-inducer and is not affected by lysine. It depends on the integrity of the putative Zn(II)2Cys6 binuclear cluster contained in the Lys14p.
Collapse
Affiliation(s)
- B Becker
- Laboratoire de Microbiologie, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
35
|
Corton JC, Moreno E, Johnston SA. Alterations in the GAL4 DNA-binding domain can affect transcriptional activation independent of DNA binding. J Biol Chem 1998; 273:13776-80. [PMID: 9593720 DOI: 10.1074/jbc.273.22.13776] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GAL4 protein belongs to a large class of fungal transcriptional activator proteins encoding within their DNA-binding domains (DBD) six cysteines that coordinate two atoms of zinc (the Zn2Cys6 domain). In an effort to characterize the interactions between the Zn2Cys6 class transcriptional activator proteins and their DNA-binding sites, we have replaced in the full-length GAL4 protein small regions of the Zn2Cys6 domain with the analogous regions of another Zn2Cys6 protein called PPR1 an activator of pyrimidine biosynthetic genes. Alterations between the first and third cysteines abolished binding to GAL4 (upstream activation sequence of GAL (UASG)) or PPR1 (upstream acitvation sequence of UAS) DNA-binding sites and severely reduced transcriptional activation in yeast. In contrast, alterations between the third and fourth cysteines had only minor effects on binding to UASG but led to substantial decreases in activation in both yeast and a mammalian cell line. In the crystal structure of the GAL4 DBD-UASG complex (Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992) Nature 356, 408-414), this region is facing away from the DNA, making it likely that there exists within the GAL4 DBD an accessible domain important in activation.
Collapse
Affiliation(s)
- J C Corton
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709-2137, USA.
| | | | | |
Collapse
|
36
|
Todd RB, Andrianopoulos A, Davis MA, Hynes MJ. FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J 1998; 17:2042-54. [PMID: 9524126 PMCID: PMC1170549 DOI: 10.1093/emboj/17.7.2042] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The facB gene is required for acetate induction of acetamidase (amdS) and the acetate utilization enzymes acetyl-CoA synthase (facA), isocitrate lyase (acuD) and malate synthase (acuE) in Aspergillus nidulans. The facB gene encodes a transcriptional activator with a GAL4-type Zn(II)2Cys6 zinc binuclear cluster DNA-binding domain which is shown to be required for DNA binding. In vitro DNA-binding sites for FacB in the 5' regions of the amdS, facA, acuD and acuE genes have been identified. Mutations in amdS FacB DNA-binding sites affected expression of an amdS-lacZ reporter in vivo and altered the affinity of in vitro DNA binding. This study shows that the FacB Zn(II)2Cys6 cluster binds to dissimilar sites which show similarity in form but not sequence with DNA-binding sites of other Zn(II)2Cys6 proteins. Sequences with homology to FacB sites are found in the 5' regions of genes regulated by the closely related yeast Zn(II)2Cys6 protein CAT8.
Collapse
Affiliation(s)
- R B Todd
- Department of Genetics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
37
|
Vuidepot AL, Bontems F, Gervais M, Guiard B, Shechter E, Lallemand JY. NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream activation sequence interactions: recognition of a CGG trinucleotide and of an additional thymine 5 bp downstream by the zinc cluster and the N-terminal extremity of the protein. Nucleic Acids Res 1997; 25:3042-50. [PMID: 9224603 PMCID: PMC146857 DOI: 10.1093/nar/25.15.3042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA binding domain of the yeast transcriptional activator CYP1(HAP1) contains a zinc-cluster structure. The structures of the DNA binding domain-DNA complexes of two other zinc-cluster proteins (GAL4 and PPR1) have been studied by X-ray crystallography. Their binding domains present, besides the zinc cluster, a short linker peptide and a dimerization element. They recognize, as homodimers, two rotationally symmetric CGG trinucleotides, the linker peptide and the dimerization element playing a crucial role in binding specificity. Surprisingly, CYP1 recognizes degenerate forms of a direct repeat, CGGnnnTAnCGGnnnTA, and the role of its linker is under discussion. To better understand the binding specificity of CYP1, we have studied, by NMR, the interaction between the CYP1(55-126) peptide and two DNA fragments derived from the CYC1 upstream activation sequence 1B. Our data indicate that CYP1(55-126) interacts with a CGG and with a thymine 5 bp downstream. The CGG trinucleotide is recognized by the zinc cluster in the major groove, as for GAL4 and PPR1, and the thymine is bound in the minor groove by the N-terminal region, which possesses a basic stretch of arginyl and lysyl residues. This suggests that the CYP1(55-126) N-terminal region could play a role in the affinity and/or specificity of the interaction with its DNA targets, in contrast to GAL4 and PPR1.
Collapse
Affiliation(s)
- A L Vuidepot
- Groupe de RMN, DCSO, Ecole Polytechnique, F91128 Palaiseau, France
| | | | | | | | | | | |
Collapse
|
38
|
Todd RB, Andrianopoulos A. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 1997; 21:388-405. [PMID: 9290251 DOI: 10.1006/fgbi.1997.0993] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coevolution of DNA binding proteins and their cognate binding sites is essential for the maintenance of function. As a result, comparison of DNA binding proteins of unknown function in one species with characterized DNA binding proteins in another can identify potential targets and functions. The Zn(II)2Cys6 (or C6 zinc) binuclear cluster DNA binding domain has thus far been identified exclusively in fungal proteins, generally transcriptional regulators, and there are more than 80 known or predicted proteins which contain this motif, the best characterized of which are GAL4, PPR1, LEU3, HAP1, LAC9, and PUT3. Here we review all known proteins containing the Zn(II)2Cys6 motif, along with their function, DNA binding, dimerization, and zinc(II) coordination properties and DNA binding sites. In addition, we have identified all of the Zn(II)2Cys6 motif-containing proteins in the sequence databases, including a large number with unknown function from the completed Saccharomyces cerevisiae and ongoing Schizosaccharomyces pombe genome projects, and examined the phylogenetic relationships of all the Zn(II)2Cys6 motifs from these proteins. Based on these relationships, we have assigned potential functions to a number of these unknown proteins.
Collapse
Affiliation(s)
- R B Todd
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
39
|
Näit-Kaoudjt R, Williams R, Guiard B, Gervais M. Some DNA targets of the yeast CYP1 transcriptional activator are functionally asymmetric--evidence of two half-sites with different affinities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:301-9. [PMID: 9118994 DOI: 10.1111/j.1432-1033.1997.00301.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CYP1 protein is a yeast transcriptional regulator which contains a zinc cluster in its DNA-binding domain. It was recently shown by selecting random CYP1 binding sites that CYP1 protein recognizes with a higher affinity targets containing the CGGNNNTANCGG consensus sequence. Notably, this ideal sequence is however not found in wild-type CYP1 target sites. In order to investigate how CYP1 protein actually binds to its targets, mutations were introduced in three of them (UAS1-A/CYC1, UAS1-A/CYB2, UAS/CYC7) and the consequences towards the binding of purified CYP1-(1-200)-peptide were analyzed. Our data support the following conclusions: (a) When the sequence element contains two CGGs and no TA, both CGGs are essential for binding. (b) If the sequence element contains only the right CGG and the TA, both are sufficient but indispensable for the binding of CYP1. (c) When two CGCs and the TA are present, the right CGC, and not the left one, is essential for the binding of CYP1. (d) CYP1-(1-200)-peptide is usually a monomer in solution but binds DNA as a dimer. Finally, we found evidence for the presence of two half-sites with different measured affinities in the asymmetric sequences of some CYP1 targets.
Collapse
Affiliation(s)
- R Näit-Kaoudjt
- Centre de Génétique Moléculaire, Laboratoire propre du Centre Nationalde la Recherche Scientifique associé à l'Universite Pierre etMarie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
40
|
Hellauer K, Rochon MH, Turcotte B. A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol Cell Biol 1996; 16:6096-102. [PMID: 8887639 PMCID: PMC231612 DOI: 10.1128/mcb.16.11.6096] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Gal4, Put3, and Ppr1 yeast zinc cluster proteins bind as homodimers to DNA sequences composed of palindromic CGG triplets. Spacing between the triplets specifies the target site for a given zinc cluster protein. In addition, Hap1p, another zinc cluster protein, also recognizes CGG triplets but only when oriented as a direct repeat. Unexpectedly, our results show that Leu3p, another member of this family, also recognizes CGG triplets but oriented in opposite directions and spaced by 4 nucleotides (an everted repeat or inverted palindrome: CCG-N4-CGG). This constitutes a novel DNA motif for zinc cluster proteins. Moreover, the presence of this motif was shown to be essential for in vivo activation by Leu3p of a minimal reporter containing one copy of a target site for this activator. We also provide evidence that another member of this family, Pdr3p, binds to an everted repeat spaced by 0 nucleotides (CCGCGG). Thus, our results show that three CGG motifs are used by members of the zinc cluster family: palindromes, direct repeats, and everted repeats.
Collapse
Affiliation(s)
- K Hellauer
- Department of Medicine, Royal Victoria Hospital, Québec, Canada
| | | | | |
Collapse
|