1
|
Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation. Mol Cell Biol 2015; 36:295-303. [PMID: 26527620 DOI: 10.1128/mcb.00898-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
Most mammalian genes produce transcripts whose 3' ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS2PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3' end processing.
Collapse
|
2
|
Peterson ML. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:92-105. [PMID: 21956971 DOI: 10.1002/wrna.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunoglobulin heavy chain (IgH) genes, which encode one of the two chains of antibody molecules, were the first cellular genes shown to undergo developmentally regulated alternative RNA processing. These genes produce two different mRNAs from a single primary transcript. One mRNA is cleaved and polyadenylated at an upstream poly(A) signal while the other mRNA removes this poly(A) signal by RNA splicing and is cleaved and polyadenylated at a downstream poly(A) site. A broad range of studies have been performed to understand the mechanism of IgH RNA processing regulation during B lymphocyte development. The model that has emerged is much more complex than envisioned by the earliest view of regulation through poly(A) signal choice. Regulation requires that the IgH gene contain competing splice and cleavage-polyadenylation reactions with balanced efficiencies. Because non-IgH genes with these structural features also can be regulated, IgH gene-specific sequence elements are not required for regulation. Changes in cleavage-polyadenylation and RNA splicing, as well as pol II elongation, all contribute to IgH developmental RNA processing regulation. Multiple factors are likely involved in the regulation during B lymphocyte maturation. Additional biologically relevant factors that contribute to IgH regulation remain to be identified and incorporated into a mechanistic model for regulation. Much of the work to date confirms the complex nature of IgH mRNA regulation and suggests that a thorough understanding of this control will remain a challenge. However, it is also likely that such understanding will help elucidate novel mechanisms of RNA processing regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Peterson ML, Bingham GL, Cowan C. Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation. Mol Cell Biol 2006; 26:6762-71. [PMID: 16943419 PMCID: PMC1592873 DOI: 10.1128/mcb.00889-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory-specific poly(A) signal (mus) of the immunoglobulin mu gene plays a central role in regulating alternative RNA processing to produce RNAs that encode membrane-associated and secreted immunoglobulins. This poly(A) signal is in direct competition with a splice reaction, and regulation requires that these two reaction efficiencies be balanced. The mus poly(A) signal has several unique sequence features that may contribute to its strength and regulation. Site-directed mutations and small internal deletions made in the intact mu gene show that an extensive AU/A-rich sequence surrounding AAUAAA enhances signal use and that, of the two potential downstream GU-rich elements, both of which appear suboptimally located, only the proximal GU-rich sequence contributes substantially to use of this signal. A GU-rich sequence placed at a more standard location did not improve mus poly(A) signal use. All mu genes tested that contained modified mus poly(A) signals were developmentally regulated, indicating that the GU-rich sequences, the sequences between them previously identified as suboptimal U1A binding sites, and an upstream suboptimal U1A site do not contribute to mu mRNA processing regulation. Expression of wild-type and modified mu genes in HeLa cells overexpressing U1A also failed to demonstrate that U1A contributes to mus poly(A) signal regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., 108A Combs Building, Lexington, KY 40536-0096, USA.
| | | | | |
Collapse
|
4
|
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. Vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. eIF5A-1 mRNA (1.3 kb) and protein (18 kDa) are constitutively expressed in human cells. In contrast, expression of eIF5A-2 mRNA (0.7-5.6 kb) and eIF5A-2 protein (20 kDa) varies widely. Whereas eIF5A-2 mRNA was demonstrable in most cells, eIF5A-2 protein was detectable only in the colorectal and ovarian cancer-derived cell lines SW-480 and UACC-1598, which showed high overexpression of eIF5A-2 mRNA. Multiple forms of eIF5A-2 mRNA (5.6, 3.8, 1.6 and 0.7 kb) were identified as the products of one gene with various lengths of 3'-UTR, resulting from the use of different polyadenylation (AAUAAA) signals. The eIF5A-1 and eIF5A-2 precursor proteins were modified comparably in UACC-1598 cells and both were similarly stable. When eIF5A-1 and eIF5A-2 coding sequences were expressed from mammalian vectors in 293T cells, eIF5A-2 precursor was synthesized at a level comparable to that of eIF5A-1 precursor, indicating that the elements causing inefficient translation of eIF5A-2 mRNA reside outside of the open reading frame. On sucrose gradient separation of cytoplasmic RNA, only a small portion of total eIF5A-2 mRNA was associated with the polysomal fraction, compared with a much larger portion of eIF5A-1 mRNA in the polysomes. These findings suggest that the failure to detect eIF5A-2 protein even in eIF5A-2 mRNA positive cells is, at least in part, due to inefficient translation.
Collapse
Affiliation(s)
- Paul M J Clement
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | |
Collapse
|
5
|
Ma J, Gunderson SI, Phillips C. Non-snRNP U1A levels decrease during mammalian B-cell differentiation and release the IgM secretory poly(A) site from repression. RNA (NEW YORK, N.Y.) 2006; 12:122-32. [PMID: 16373497 PMCID: PMC1370892 DOI: 10.1261/rna.2159506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A regulated shift from the production of membrane to secretory forms of Immunoglobulin M (IgM) mRNA occurs during B cell differentiation due to the activation of an upstream secretory poly(A) site. U1A plays a key role in inhibiting the expression of the secretory poly(A) site by inhibiting both cleavage at the poly(A) site and subsequent poly(A) tail addition. However, how the inhibitory effect of U1A is alleviated in differentiated cells, which express the secretory poly(A) site, is not known. Using B cell lines representing different stages of B cell differentiation, we show that the amount of U1A available to inhibit the secretory poly(A) site is reduced in differentiated cells. Undifferentiated B cells have more total U1A than differentiated cells and a greater proportion of this is not associated with the U1snRNP. We show that this is available to inhibit poly(A) addition at the secretory poly(A) site using cold competitor RNA oligos to de-repress poly(A) addition in nuclear extracts from the respective cell lines. In addition, endogenous non-snRNP associated U1A-immunopurified from the different cell lines-inhibits poly(A) polymerase activity proportional to U1A recovered, suggesting that available U1A level alone is responsible for changes in its inhibitory effect at the secretory IgM poly (A) site.
Collapse
Affiliation(s)
- Jianglin Ma
- Rutgers University, Department of Molecular Biology and Biochemistry, Nelson Laboratories, Room A322, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
6
|
Phillips C, Pachikara N, Gunderson SI. U1A inhibits cleavage at the immunoglobulin M heavy-chain secretory poly(A) site by binding between the two downstream GU-rich regions. Mol Cell Biol 2004; 24:6162-71. [PMID: 15226420 PMCID: PMC434241 DOI: 10.1128/mcb.24.14.6162-6171.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunoglobulin M heavy-chain locus contains two poly(A) sites which are alternatively expressed during B-cell differentiation. Despite its promoter proximal location, the secretory poly(A) site is not expressed in undifferentiated cells. Crucial to the activation of the secretory poly(A) site during B-cell differentiation are changes in the binding of cleavage stimulatory factor 64K to GU-rich elements downstream of the poly(A) site. What regulates this change is not understood. The secretory poly(A) site contains two downstream GU-rich regions separated by a 29-nucleotide sequence. Both GU-rich regions are necessary for binding of the specific cleavage-polyadenylation complex. We demonstrate here that U1A binds two (AUGCN(1-3)C) motifs within the 29-nucleotide sequence and inhibits the binding of cleavage stimulatory factor 64K and cleavage at the secretory poly(A) site.
Collapse
Affiliation(s)
- Catherine Phillips
- Molecular Biology and Biochemistry, Rutgers University, Nelson Labs, Room A322, 604 Allison Rd., Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
7
|
Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004; 23:616-26. [PMID: 14749727 PMCID: PMC1271804 DOI: 10.1038/sj.emboj.7600070] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/17/2003] [Indexed: 11/09/2022] Open
Abstract
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.
Collapse
Affiliation(s)
- Isabelle Kaufmann
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Arno Friedlein
- Roche Genetics, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanno Langen
- Roche Genetics, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland. Tel.: +41 61 267 20 60; Fax: +41 61 267 20 79; E-mail:
| |
Collapse
|
8
|
Phillips C, Gunderson S. Sequences adjacent to the 5' splice site control U1A binding upstream of the IgM heavy chain secretory poly(A) site. J Biol Chem 2003; 278:22102-11. [PMID: 12670951 DOI: 10.1074/jbc.m301349200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the stability of the alternatively expressed immunoglobulin M heavy chain secretory mRNA is developmentally regulated by U1A. U1A binds novel non-consensus sites upstream of the secretory poly(A) site and inhibits poly(A) tail addition in undifferentiated cells. U1A's dependence for binding and function upon a stem-loop structure has been extensively characterized for the consensus sites. We therefore probed the structure surrounding the novel U1A binding sites. We show that two of the three novel binding sites represent the major single-stranded regions upstream of the secretory poly(A) site, consistent with a major role at this site. The strength of binding and ability of U1A to inhibit poly(A) polymerase correlate with the accessibility of the novel sites. However, long range interactions are responsible for maintaining them in an open configuration. Mutation of an RNase V1-sensitive site 102 nucleotides upstream, directly adjacent to the competing 5' splice site, changes the structure of one the U1A binding sites and thus abolishes the binding of the second U1A molecule and the ability of U1A ability to inhibit poly(A) polymerase activity at this site. These sites bind U1A via its N-terminal domain but with a 10-fold lower affinity than U1 small nuclear RNA. This lower binding affinity is more conducive to U1A's regulation of poly(A) tail addition to heterologous mRNA.
Collapse
Affiliation(s)
- Catherine Phillips
- Nelson Laboratories, Rutgers University, Room 322, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
9
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 2003; 31:1375-86. [PMID: 12595544 PMCID: PMC149834 DOI: 10.1093/nar/gkg241] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 01/13/2003] [Indexed: 01/06/2023] Open
Abstract
Primary, secondary and higher-order structures of downstream elements of mammalian pre-mRNA polyadenylation signals [poly(A) signals] are re viewed. We have carried out a detailed analysis on our database of 244 human pre-mRNA poly(A) signals in order to characterize elements in their downstream regions. We suggest that the downstream region of the mammalian pre-mRNA poly(A) signal consists of various simple elements located at different distances from each other. Thus, the downstream region is not described by any precise consensus. Searching our database, we found that approximately 80% of pre-mRNAs with the AAUAAA or AUUAAA core upstream elements contain simple downstream elements, consisting of U-rich and/or 2GU/U tracts, the former occurring approximately 2-fold more often than the latter. Approximately one-third of the pre-mRNAs analyzed here contain sequences that may form G-quadruplexes. A substantial number of these sequences are located immediately downstream of the poly(A) signal. A possible role of G-rich sequences in the polyadenylation process is discussed. A model of the secondary structure of the SV40 late pre-mRNA poly(A) signal downstream region is presented.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- Molecular Biophysics Department, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, vul. Zabolotnoho, Kyiv, 03143, Ukraine.
| | | | | | | |
Collapse
|
10
|
Aissouni Y, Perez C, Calmels B, Benech PD. The cleavage/polyadenylation activity triggered by a U-rich motif sequence is differently required depending on the poly(A) site location at either the first or last 3'-terminal exon of the 2'-5' oligo(A) synthetase gene. J Biol Chem 2002; 277:35808-14. [PMID: 12082089 DOI: 10.1074/jbc.m200540200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of the two mRNAs encoding distinct forms of 2'-5'-oligoadenylate synthetase depends on processing that involves the recognition of alternative poly(A) sites and an internal 5'-splice site located within the first 3'-terminal exon. The resulting 1.6- and 1.8-kb mRNAs are expressed in fibroblast cell lines, whereas lymphoblastoid B cells, such as Daudi, produce only the 1.8-kb mRNA. In the present study, we have shown that the 3'-end processing at the last 3'-terminal exon occurs independently of the core poly(A) site sequence or the presence of regulatory elements. In contrast, in Daudi cells, the recognition of the poly(A) site at the first 3'-terminal exon is impaired because of an unfavorable sequence context. The 3'-end processing at this particular location requires a strong stabilization of the cleavage/polyadenylation factors, which can be achieved by the insertion of a 25-nucleotide long U-rich motif identified upstream of the last poly(A) site. Consequently, we speculate that in cells expressing the 1.6-kb mRNA, such as fibroblasts, direct or indirect participation of a specific mechanism or cell type-specific factors are required for an efficient polyadenylation at the first 3'-terminal exon.
Collapse
Affiliation(s)
- Youssef Aissouni
- U119 INSERM, Institute of Cancerology and Immunology of Marseille, 27 Boulevard Lei Roure, F-13009, Marseille, France
| | | | | | | |
Collapse
|
11
|
Peterson ML, Bertolino S, Davis F. An RNA polymerase pause site is associated with the immunoglobulin mus poly(A) site. Mol Cell Biol 2002; 22:5606-15. [PMID: 12101252 PMCID: PMC133935 DOI: 10.1128/mcb.22.15.5606-5615.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin mu alternative RNA processing is regulated during B-cell maturation and requires balanced efficiencies of the competing splice (mum) and cleavage-polyadenylation (mus) reactions. When we deleted sequences 50 to 200 nucleotides beyond the mus poly(A) site, the mus/mum mRNA ratio decreased three- to eightfold in B, plasma, and nonlymphoid cells. The activity could not be localized to a smaller fragment but did function in heterologous contexts. Our data suggest that this region contains an RNA polymerase II pause site that enhances the use of the mus poly(A) site. First, known pause sites replaced the activity of the deleted fragment. Second, the mu fragment, when placed between tandem poly(A) sites, enhanced the use of the upstream poly(A) site. Finally, nuclear run-ons detected an increase in RNA polymerase loading just downstream from the mus poly(A) site, even when the poly(A) site was inactivated. When this mu fragment and another pause site were inserted 1 kb downstream from the mus poly(A) site, they no longer affected the mRNA expression ratio, suggesting that pause sites affect poly(A) site use over a limited distance. Fragments from the immunoglobulin A gene were also found to have RNA polymerase pause site activity.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
12
|
Ko B, Gunderson SI. Identification of new poly(A) polymerase-inhibitory proteins capable of regulating pre-mRNA polyadenylation. J Mol Biol 2002; 318:1189-206. [PMID: 12083511 DOI: 10.1016/s0022-2836(02)00240-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 3' ends of nearly all eukaryotic pre-mRNAs undergo cleavage and polyadenylation, thereby acquiring a poly(A) tail added by the enzyme poly(A) polymerase (PAP). Two well-characterized examples of regulated poly(A) tail addition in the nucleus consist of spliceosomal proteins, either the U1A or U170K proteins, binding to the pre-mRNA and inhibiting PAP via their PAP regulatory domains (PRDs). These two proteins are the only known examples of this type of gene regulation. On the basis of sequence comparisons, it was predicted that many other proteins, including some members of the SR family of splicing proteins, contain functional PRDs. Here we demonstrate that the putative PRDs found in the SR domains of the SR proteins SRP75 and U2AF65, via fusion to a heterologous MS2 RNA binding protein, specifically and efficiently inhibit PAP in vitro and pre-mRNA polyadenylation in vitro and in vivo. A similar region from the SR domain of SRP40 does not exhibit these activities, indicating that this is not a general property of SR domains. We find that the polyadenylation- and PAP-inhibitory activity of a given polypeptide can be accurately predicted based on sequence similarity to known PRDs and can be measured even if the polypeptides' RNA target is unknown. Our results also indicate that PRDs function as part of a network of interactions within the pre-mRNA processing complex and suggest that this type of regulation will be more widespread than previously thought.
Collapse
Affiliation(s)
- Bom Ko
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
13
|
Phillips C, Jung S, Gunderson SI. Regulation of nuclear poly(A) addition controls the expression of immunoglobulin M secretory mRNA. EMBO J 2001; 20:6443-52. [PMID: 11707415 PMCID: PMC125739 DOI: 10.1093/emboj/20.22.6443] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
B-cell differentiation is accompanied by a dramatic increase in cytoplasmic accumulation and stability of the IgM heavy chain (mu) secretory mRNA. Despite considerable effort, the mechanism is unknown. We have identified three short motifs upstream of the secretory poly(A) site, which, when mutated in the mu heavy chain gene, significantly increase the accumulation of the secretory form of poly(A)(+) mRNA relative to the membrane form and regulate the expression of the secretory poly(A) site in a developmental manner. We show that these motifs bind U1A and inhibit polyadenylation in vitro and in vivo. Overexpression of U1A in vivo results in the selective inhibition of the secretory form. Thus, this novel mechanism selectively controls post-cleavage expression of the mu secretory mRNA. We present evidence that this mechanism is used to regulate alternative expression of other genes.
Collapse
Affiliation(s)
- C Phillips
- Rutgers University, Nelson Labs Room A322, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
14
|
Veraldi KL, Arhin GK, Martincic K, Chung-Ganster LH, Wilusz J, Milcarek C. hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol Cell Biol 2001; 21:1228-38. [PMID: 11158309 PMCID: PMC99576 DOI: 10.1128/mcb.21.4.1228-1238.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies on the regulation of polyadenylation of the immunoglobulin (Ig) heavy-chain pre-mRNA argued for trans-acting modifiers of the cleavage-polyadenylation reaction operating differentially during B-cell developmental stages. Using four complementary approaches, we demonstrate that a change in the level of hnRNP F is an important determinant in the regulated use of alternative polyadenylation sites between memory and plasma stage B cells. First, by Western analyses of cellular proteins, the ratio of hnRNP F to H or H' was found to be higher in memory B cells than in plasma cells. In memory B cells the activity of CstF-64 binding to pre-mRNA, but not its amount, was reduced. Second, examination of the complexes formed on input pre-mRNA in nuclear extracts revealed large assemblages containing hnRNP H, H', and F but deficient in CstF-64 in memory B-cell extracts but not in plasma cells. Formation of these large complexes is dependent on the region downstream of the AAUAAA in pre-mRNA, suggesting that CstF-64 and the hnRNPs compete for a similar region. Third, using a recombinant protein we showed that hnRNP F could bind to the region downstream of a poly(A) site, block CstF-64 association with RNA, and inhibit the cleavage reaction. Fourth, overexpression of recombinant hnRNP F in plasma cells resulted in a decrease in the endogenous Ig heavy-chain mRNA secretory form-to-membrane ratio. These results demonstrate that mammalian hnRNP F can act as a negative regulator in the pre-mRNA cleavage reaction and that increased expression of F in memory B cells contributes to the suppression of the Ig heavy-chain secretory poly(A) site.
Collapse
Affiliation(s)
- K L Veraldi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
15
|
Coyle JH, Lebman DA. Correct immunoglobulin alpha mRNA processing depends on specific sequence in the C alpha 3-alpha M intron. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3659-65. [PMID: 10725723 DOI: 10.4049/jimmunol.164.7.3659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The maturation of IgM-expressing B cells to IgM-secreting plasma cells is associated with both an increase in mu mRNA and the ratio of secreted to membrane forms of mu mRNA which differ at the 3' termini. In contrast, both in vitro and in vivo the secreted form of alpha mRNA is predominant at all stages in the development of a secretory IgA response. Previous studies demonstrated that preferential usage of the alpha s poly(A) site does not result from transcription termination and is independent of either the poly(A) sites or the 3' splice site associated with the exon encoding the membrane exon of IgA (alpha M). The present study demonstrates that a 349-bp region located 774 bp 3' to the alpha s poly(A) site is required for the preferential usage of the alpha s terminus. This region, which is the first isotype-specific cis-acting regulatory sequence not immediately adjacent to a secretory poly(A) site to be identified, contains regulatory elements that increase the efficiency of polyadenylation/cleavage. A ubiquitous, approximately 58-kDa RNA-binding protein interacts specifically with this regulatory region. These studies support the premise that cis-acting elements unique to each CH gene can impinge upon a common mechanism regulating Ig mRNA processing.
Collapse
MESH Headings
- Base Sequence
- Burkitt Lymphoma
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin Constant Regions/biosynthesis
- Immunoglobulin Constant Regions/genetics
- Immunoglobulin Constant Regions/metabolism
- Immunoglobulin alpha-Chains/biosynthesis
- Immunoglobulin alpha-Chains/genetics
- Immunoglobulin alpha-Chains/metabolism
- Introns/genetics
- Molecular Weight
- Poly A/genetics
- Poly A/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/immunology
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J H Coyle
- Department of Microbiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
16
|
Lebman DA, Coyle JH. Developmental regulation of immunoglobulin mRNA processing and the IgA response: establishing a paradigm. Immunol Res 1999; 20:43-53. [PMID: 10467982 DOI: 10.1007/bf02786506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
IgA, which is protective at mucosal sites, is derived from memory B cells that develop in the organized lymphoid tissue of the gastrointestinal tract and subsequently mature to plasma cells in the lamina propria. Similarly to B cells expressing other isotypes, the maturation of IgA-expressing B cells is associated with both an increase in the steady-state level of immunoglobulin mRNA and the ratio of secreted to membrane forms of mRNA, which differ in 3' terminus. In contrast to B cells expressing other isotypes, at all stages in the development of an IgA response, the secreted form of alpha mRNA predominates. In this article, studies on the general features of IgA B cell development, mechanisms regulating 3' terminus usage of Ig mRNAs, and isotype-specific regulation of 3' terminus usage particularly in regard to alpha mRNA are discussed.
Collapse
Affiliation(s)
- D A Lebman
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678, USA.
| | | |
Collapse
|
17
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 818] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
18
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
19
|
Chuvpilo S, Zimmer M, Kerstan A, Glöckner J, Avots A, Escher C, Fischer C, Inashkina I, Jankevics E, Berberich-Siebelt F, Schmitt E, Serfling E. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 1999; 10:261-9. [PMID: 10072078 DOI: 10.1016/s1074-7613(00)80026-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transcription factor NF-ATc is synthesized in three prominent isoforms. These differ in the length of their C terminal peptides and mode of synthesis. Due to a switch from the use of a 3' polyA site to a more proximal polyA site, NF-ATc expression switches from the synthesis of the two longer isoforms in naive T cells to that of short isoform A in T effector cells. The relative low binding affinity of cleavage stimulation factor CstF-64 to the proximal polyA site seems to contribute to its neglect in naive T cells. These alternative polyadenylation events ensure the rapid accumulation of high concentrations of NF-ATc necessary to exceed critical threshold levels of NF-ATc for gene induction in effector T cells.
Collapse
Affiliation(s)
- S Chuvpilo
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Phillips C, Kyriakopoulou CB, Virtanen A. Identification of a stem-loop structure important for polyadenylation at the murine IgM secretory poly(A) site. Nucleic Acids Res 1999; 27:429-38. [PMID: 9862962 PMCID: PMC148197 DOI: 10.1093/nar/27.2.429] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have previously shown that a distal GU-rich downstream element of the mouse IgM secretory poly(A) site is important for polyadenylation in vivo and for polyadenylation specific complex formation in vitro. This element can be predicted to form a stem-loop structure with two asymmetric internal loops. As stem-loop structures commonly define protein RNA binding sites, we have probed the biological activity of the secondary structure of this element. We show that mutations affecting the stem of the structure abolish the biological activity of this element in vivo and in vitro at the level of cleavage and polyadenylation specificity factor/cleavage stimulation factor complex formation and that both internal loops contribute to the enhancing effect of the sequence in vivo. Lead (II) cleavage patterns and RNase H probing of the sequence element in vitro are consistent with the predicted secondary structure. Furthermore, mobility on native PAGE suggests a bent structure. We propose that the secondary structure of this downstream element optimizes its interaction with components of the polyadenylation complex.
Collapse
Affiliation(s)
- C Phillips
- Department of Genetics and Pathology, Uppsala University, Box 589, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|