1
|
Hayashi S. Variation of tRNA modifications with and without intron dependency. Front Genet 2024; 15:1460902. [PMID: 39296543 PMCID: PMC11408192 DOI: 10.3389/fgene.2024.1460902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
tRNAs have recently gained attention for their novel regulatory roles in translation and for their diverse functions beyond translation. One of the most remarkable aspects of tRNA biogenesis is the incorporation of various chemical modifications, ranging from simple base or ribose methylation to more complex hypermodifications such as formation of queuosine and wybutosine. Some tRNAs are transcribed as intron-containing pre-tRNAs. While the majority of these modifications occur independently of introns, some are catalyzed in an intron-inhibitory manner, and in certain cases, they occur in an intron-dependent manner. This review focuses on pre-tRNA modification, including intron-containing pre-tRNA, in both intron-inhibitory and intron-dependent fashions. Any perturbations in the modification and processing of tRNAs may lead to a range of diseases and disorders, highlighting the importance of understanding these mechanisms in molecular biology and medicine.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
2
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
3
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
Hayne CK, Sekulovski S, Hurtig JE, Stanley RE, Trowitzsch S, van Hoof A. New insights into RNA processing by the eukaryotic tRNA splicing endonuclease. J Biol Chem 2023; 299:105138. [PMID: 37544645 PMCID: PMC10485636 DOI: 10.1016/j.jbc.2023.105138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
Through its role in intron cleavage, tRNA splicing endonuclease (TSEN) plays a critical function in the maturation of intron-containing pre-tRNAs. The catalytic mechanism and core requirement for this process is conserved between archaea and eukaryotes, but for decades, it has been known that eukaryotic TSENs have evolved additional modes of RNA recognition, which have remained poorly understood. Recent research identified new roles for eukaryotic TSEN, including processing or degradation of additional RNA substrates, and determined the first structures of pre-tRNA-bound human TSEN complexes. These recent discoveries have changed our understanding of how the eukaryotic TSEN targets and recognizes substrates. Here, we review these recent discoveries, their implications, and the new questions raised by these findings.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
| | - Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National, Institutes of Health, Research Triangle Park, North Carolina, USA.
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA.
| |
Collapse
|
5
|
White LK, Strugar SM, MacFadden A, Hesselberth JR. Nanopore sequencing of internal 2'-PO 4 modifications installed by RNA repair. RNA (NEW YORK, N.Y.) 2023; 29:847-861. [PMID: 36854608 PMCID: PMC10187680 DOI: 10.1261/rna.079290.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/09/2023] [Indexed: 05/18/2023]
Abstract
Ligation by plant and fungal RNA ligases yields an internal 2'-phosphate group on each RNA ligation product. In budding yeast, this covalent mark occurs at the splice junction of two targets of ligation: intron-containing tRNAs and the messenger RNA HAC1 The repertoire of RNA molecules repaired by RNA ligation has not been explored due to a lack of unbiased approaches for identifying RNA ligation products. Here, we define several unique signals produced by 2'-phosphorylated RNAs during nanopore sequencing. A 2'-phosphate at the splice junction of HAC1 mRNA inhibits 5' → 3' degradation, enabling detection of decay intermediates in yeast RNA repair mutants by nanopore sequencing. During direct RNA sequencing, intact 2'-phosphorylated RNAs on HAC1 and tRNAs produce diagnostic changes in nanopore current properties and base calling features, including stalls produced as the modified RNA translocates through the nanopore motor protein. These approaches enable directed studies to identify novel RNA repair events in other contexts.
Collapse
Affiliation(s)
- Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Saylor M Strugar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
6
|
Nostramo RT, Hopper AK. A Simple Method for the Detection of Wybutosine-Modified tRNA PheGAA as a Readout of Retrograde tRNA Nuclear Import and Re-export: HCl/Aniline Cleavage and Nonradioactive Northern Hybridization. Methods Mol Biol 2023; 2666:1-14. [PMID: 37166653 PMCID: PMC10370157 DOI: 10.1007/978-1-0716-3191-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
tRNAs are highly mobile molecules that are trafficked back and forth between the nucleus and cytoplasm by several proteins. However, characterization of the movement of tRNAs and the proteins mediating these movements can be difficult. Here, we describe an easy and cost-effective assay to discover genes that are involved in two specific tRNA trafficking events, retrograde nuclear import and nuclear re-export for yeast, Saccharomyces cerevisiae. This assay, referred to as the hydrochloric acid (HCl)/aniline assay, identifies the presence or absence of a unique modification on tRNAPheGAA called wybutosine (yW) that requires mature, spliced tRNAPheGAA to undergo retrograde nuclear import and subsequent nuclear re-export for its addition. Therefore, the presence/absence of yW-modified tRNAPheGAA serves as a readout of retrograde nuclear import and nuclear re-export. This simple assay can be used to determine the role of any gene product in these previously elusive tRNA trafficking events.
Collapse
Affiliation(s)
- Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Nagato Y, Tomikawa C, Yamaji H, Soma A, Takai K. Intron-Dependent or Independent Pseudouridylation of Precursor tRNA Containing Atypical Introns in Cyanidioschyzon merolae. Int J Mol Sci 2022; 23:ijms232012058. [PMID: 36292915 PMCID: PMC9602550 DOI: 10.3390/ijms232012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic precursor tRNAs (pre-tRNAs) often have an intron between positions 37 and 38 of the anticodon loop. However, atypical introns are found in some eukaryotes and archaea. In an early-diverged red alga Cyanidioschyzon merolae, the tRNAIle(UAU) gene contains three intron coding regions, located in the D-, anticodon, and T-arms. In this study, we focused on the relationship between the intron removal and formation of pseudouridine (Ψ), one of the most universally modified nucleosides. It had been reported that yeast Pus1 is a multiple-site-specific enzyme that synthesizes Ψ34 and Ψ36 in tRNAIle(UAU) in an intron-dependent manner. Unexpectedly, our biochemical experiments showed that the C. merolae ortholog of Pus1 pseudouridylated an intronless tRNAIle(UAU) and that the modification position was determined to be 55 which is the target of Pus4 but not Pus1 in yeast. Furthermore, unlike yeast Pus1, cmPus1 mediates Ψ modification at positions 34, 36, and/or 55 only in some specific intron-containing pre-tRNAIle(UAU) variants. cmPus4 was confirmed to be a single-site-specific enzyme that only converts U55 to Ψ, in a similar manner to yeast Pus4. cmPus4 did not catalyze the pseudouridine formation in pre-tRNAs containing an intron in the T-arm.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
- Correspondence: ; Tel.: +81-89-927-9947
| | - Hideyuki Yamaji
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| |
Collapse
|
8
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
9
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Martinez NM, Schaening-Burgos C, Gilbert WV. Pseudouridine site assignment by high-throughput in vitro RNA pseudouridylation and sequencing. Methods Enzymol 2021; 658:277-310. [PMID: 34517951 DOI: 10.1016/bs.mie.2021.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pseudouridine (Ψ) is one of the most abundant modifications in cellular RNAs. High-throughput pseudouridine profiling of eukaryotic mRNAs from cells has revealed novel sites of modification across the transcriptome. Pseudouridine affects RNA structure and RNA-protein interactions with the potential to influence many steps of mRNA metabolism and thereby affect gene expression. Identifying the mechanisms by which individual pseudouridines sites are modified by pseudouridine synthases (PUS) will facilitate studies on the molecular functions of Ψ. Multiple pseudouridine synthases are expressed in all organisms and might direct pseudouridylation of diverse cellular RNAs, but the RNA targets of many enzymes and their specificity determinants remain to be defined. We developed a high-throughput in vitro pseudouridylation assay followed by sequencing that allows validation of candidate sites identified in cells, assignment of sites as direct targets of PUS and interrogation of the RNA sequence and structural features that direct modification. We also implemented an analysis pipeline to assign Ψ sites from these data, including an updated approach to peak-calling that accounts for noisy signal from low-abundance transcripts.
Collapse
Affiliation(s)
- Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | | | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
| |
Collapse
|
11
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
12
|
Nostramo RT, Hopper AK. A novel assay provides insight into tRNAPhe retrograde nuclear import and re-export in S. cerevisiae. Nucleic Acids Res 2020; 48:11577-11588. [PMID: 33074312 PMCID: PMC7672469 DOI: 10.1093/nar/gkaa879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, tRNAs are transcribed in the nucleus and subsequently exported to the cytoplasm where they serve as essential adaptor molecules in translation. However, tRNAs can be returned to the nucleus by the evolutionarily conserved process called tRNA retrograde nuclear import, before relocalization back to the cytoplasm via a nuclear re-export step. Several important functions of these latter two trafficking events have been identified, yet the pathways are largely unknown. Therefore, we developed an assay in Saccharomyces cerevisiae to identify proteins mediating tRNA retrograde nuclear import and re-export using the unique wybutosine modification of mature tRNAPhe. Our hydrochloric acid/aniline assay revealed that the karyopherin Mtr10 mediates retrograde import of tRNAPhe, constitutively and in response to amino acid deprivation, whereas the Hsp70 protein Ssa2 mediates import specifically in the latter. Furthermore, tRNAPhe is re-exported by Crm1 and Mex67, but not by the canonical tRNA exporters Los1 or Msn5. These findings indicate that the re-export process occurs in a tRNA family-specific manner. Together, this assay provides insights into the pathways for tRNAPhe retrograde import and re-export and is a tool that can be used on a genome-wide level to identify additional gene products involved in these tRNA trafficking events.
Collapse
Affiliation(s)
- Regina T Nostramo
- Department of Molecular Genetics Center for RNA Biology The Ohio State University, Columbus, OH 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics Center for RNA Biology The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Schultz SKL, Kothe U. tRNA elbow modifications affect the tRNA pseudouridine synthase TruB and the methyltransferase TrmA. RNA (NEW YORK, N.Y.) 2020; 26:1131-1142. [PMID: 32385137 PMCID: PMC7430675 DOI: 10.1261/rna.075473.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 05/20/2023]
Abstract
tRNAs constitute the most highly modified class of RNA. Every tRNA contains a unique set of modifications, and Ψ55, m5U54, and m7G46 are frequently found within the elbow of the tRNA structure. Despite the abundance of tRNA modifications, we are only beginning to understand the orchestration of modification enzymes during tRNA maturation. Here, we investigated whether pre-existing modifications impact the binding affinity or catalysis by tRNA elbow modification enzymes. Specifically, we focused on the Escherichia coli enzymes TruB, TrmA, and TrmB which generate Ψ55, m5U54, and m7G46, respectively. tRNAs containing a single modification were prepared, and the binding and activity preferences of purified E. coli TrmA, TruB, and TrmB were examined in vitro. TruB preferentially binds and modifies unmodified tRNA. TrmA prefers to modify unmodified tRNA, but binds most tightly to tRNA that already contains Ψ55. In contrast, binding and modification by TrmB is insensitive to the tRNA modification status. Our results suggest that TrmA and TruB are likely to act on mostly unmodified tRNA precursors during the early stages of tRNA maturation whereas TrmB presumably acts on later tRNA intermediates that are already partially modified. In conclusion, we uncover the mechanistic basis for the preferred modification order in the E. coli tRNA elbow region.
Collapse
Affiliation(s)
- Sarah Kai-Leigh Schultz
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
14
|
mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol 2019; 15:966-974. [PMID: 31477916 PMCID: PMC6764900 DOI: 10.1038/s41589-019-0353-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/22/2019] [Indexed: 01/28/2023]
Abstract
Pseudouridine (Ψ) is a post-transcriptional RNA modification that alters RNA-RNA and RNA-protein interactions that affect gene expression. mRNA pseudouridylation was recently discovered as a widespread and conserved phenomenon, but the mechanisms responsible for selective, regulated pseudouridylation of specific sequences within mRNAs were unknown. Here, we have revealed new mRNA targets for five pseudouridine synthases and probed the determinants of mRNA target recognition by the predominant mRNA pseudouridylating enzyme, Pus1, by developing high-throughput kinetic analysis of pseudouridylation in vitro. Combining computational prediction and rational mutational analysis revealed an RNA structural motif that is both necessary and sufficient for mRNA pseudouridylation. Applying this structural context information predicted hundreds of additional mRNA targets, that we showed were pseudouridylated in vivo. These results demonstrate a structure-dependent mode of mRNA target recognition by a conserved pseudouridine synthase and implicate modulation of RNA structure as the likely mechanism to regulate mRNA pseudouridylation.
Collapse
|
15
|
Barraud P, Tisné C. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 2019; 71:1126-1140. [PMID: 30932315 PMCID: PMC6850298 DOI: 10.1002/iub.2041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNAs (tRNAs) are essential components of the cellular protein synthesis machineries, but are also implicated in many roles outside translation. To become functional, tRNAs, initially transcribed as longer precursor tRNAs, undergo a tightly controlled biogenesis process comprising the maturation of their extremities, removal of intronic sequences if present, addition of the 3'-CCA amino-acid accepting sequence, and aminoacylation. In addition, the most impressive feature of tRNA biogenesis consists in the incorporation of a large number of posttranscriptional chemical modifications along its sequence. The chemical nature of these modifications is highly diverse, with more than hundred different modifications identified in tRNAs to date. All functions of tRNAs in cells are controlled and modulated by modifications, making the understanding of the mechanisms that determine and influence nucleotide modifications in tRNAs an essential point in tRNA biology. This review describes the different aspects that determine whether a certain position in a tRNA molecule is modified or not. We describe how sequence and structural determinants, as well as the presence of prior modifications control modification processes. We also describe how environmental factors and cellular stresses influence the level and/or the nature of certain modifications introduced in tRNAs, and report situations where these dynamic modulations of tRNA modification levels are regulated by active demodification processes. © 2019 IUBMB Life, 71(8):1126-1140, 2019.
Collapse
Affiliation(s)
- Pierre Barraud
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| | - Carine Tisné
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| |
Collapse
|
16
|
Abstract
Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNAPhe with time-resolved NMR measurements, we show that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we show that a strong hierarchy controls the introduction of the T54, Ψ55 and m1A58 modifications in the T-arm, and we demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general. Transfer RNA (tRNA) is regulated by RNA modifications. Here the authors employ time-resolved NMR to monitor modifications of yeast tRNAPhe in cellular extracts, revealing a sequential order and cross-talk between modifications.
Collapse
|
17
|
Han L, Phizicky EM. A rationale for tRNA modification circuits in the anticodon loop. RNA (NEW YORK, N.Y.) 2018; 24:1277-1284. [PMID: 30026310 PMCID: PMC6140457 DOI: 10.1261/rna.067736.118] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The numerous post-transcriptional modifications of tRNA play a crucial role in tRNA function. While most modifications are introduced to tRNA independently, several sets of modifications are found to be interconnected such that the presence of one set of modifications drives the formation of another modification. The vast majority of these modification circuits are found in the anticodon loop (ACL) region where the largest variety and highest density of modifications occur compared to the other parts of the tRNA and where there is relatively limited sequence and structural information. We speculate here that the modification circuits in the ACL region arise to enhance enzyme modification specificity by direct or indirect use of the first modification in the circuit as an additional recognition element for the second modification. We also describe the five well-studied modification circuits in the ACL, and outline possible mechanisms by which they may act. The prevalence of these modification circuits in the ACL and the phylogenetic conservation of some of them suggest that a number of other modification circuits will be found in this region in different organisms.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
18
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
19
|
Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S. Cooperativity between different tRNA modifications and their modification pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:409-418. [PMID: 29222069 DOI: 10.1016/j.bbagrm.2017.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Ribonucleotide modifications perform a wide variety of roles in synthesis, turnover and functionality of tRNA molecules. The presence of particular chemical moieties can refine the internal interaction network within a tRNA molecule, influence its thermodynamic stability, contribute novel chemical properties and affect its decoding behavior during mRNA translation. As the lack of specific modifications in the anticodon stem and loop causes disrupted proteome homeostasis, diminished response to stress conditions, and the onset of human diseases, the underlying modification cascades have recently gained particular scientific and clinical interest. Nowadays, a complicated but conclusive image of the interconnectivity between different enzymatic modification cascades and their resulting tRNA modifications emerges. Here we summarize the current knowledge in the field, focusing on the known instances of cross talk among the enzymatic tRNA modification pathways and the consequences on the dynamic regulation of the tRNA modificome by various factors. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
20
|
Torres AG, Piñeyro D, Rodríguez-Escribà M, Camacho N, Reina O, Saint-Léger A, Filonava L, Batlle E, Ribas de Pouplana L. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res 2015; 43:5145-57. [PMID: 25916855 PMCID: PMC4446420 DOI: 10.1093/nar/gkv277] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 11/12/2022] Open
Abstract
Transfer RNAs (tRNAs) are key adaptor molecules of the genetic code that are heavily modified post-transcriptionally. Inosine at the first residue of the anticodon (position 34; I34) is an essential widespread tRNA modification that has been poorly studied thus far. The modification in eukaryotes results from a deamination reaction of adenine that is catalyzed by the heterodimeric enzyme adenosine deaminase acting on tRNA (hetADAT), composed of two subunits: ADAT2 and ADAT3. Using high-throughput small RNA sequencing (RNAseq), we show that this modification is incorporated to human tRNAs at the precursor tRNA level and during maturation. We also functionally validated the human genes encoding for hetADAT and show that the subunits of this enzyme co-localize in nucleus in an ADAT2-dependent manner. Finally, by knocking down HsADAT2, we demonstrate that variations in the cellular levels of hetADAT will result in changes in the levels of I34 modification in all its potential substrates. Altogether, we present RNAseq as a powerful tool to study post-transcriptional tRNA modifications at the precursor tRNA level and give the first insights on the biology of I34 tRNA modification in metazoans.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - David Piñeyro
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Adélaïde Saint-Léger
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Liudmila Filonava
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain Catalan Institution for Research and Advanced Studies (ICREA), P/Lluis Companys 23, Barcelona, 08010 Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain Catalan Institution for Research and Advanced Studies (ICREA), P/Lluis Companys 23, Barcelona, 08010 Catalonia, Spain
| |
Collapse
|
21
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
22
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Struktur und Funktion nicht-kanonischer Nukleobasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 2012; 51:7110-31. [PMID: 22744788 DOI: 10.1002/anie.201201193] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Indexed: 12/19/2022]
Abstract
DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.
Collapse
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dhungel N, Hopper AK. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing. Genes Dev 2012; 26:503-14. [PMID: 22391451 DOI: 10.1101/gad.183004.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity.
Collapse
Affiliation(s)
- Nripesh Dhungel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
25
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
26
|
Abstract
Post-transcriptional ribonucleotide modification is a phenomenon best studied in tRNA, where it occurs most frequently and in great chemical diversity. This paper reviews the intrinsic network of modifications in the structural core of the tRNA, which governs structural flexibility and rigidity to fine-tune the molecule to peak performance and to regulate its steady-state level. Structural effects of RNA modifications range from nanometer-scale rearrangements to subtle restrictions of conformational space on the angstrom scale. Structural stabilization resulting from nucleotide modification results in increased thermal stability and translates into protection against unspecific degradation by bases and nucleases. Several mechanisms of specific degradation of hypomodified tRNA, which were only recently discovered, provide a link between structural and metabolic stability.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
27
|
Hopper AK, Pai DA, Engelke DR. Cellular dynamics of tRNAs and their genes. FEBS Lett 2009; 584:310-7. [PMID: 19931532 DOI: 10.1016/j.febslet.2009.11.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
This discussion focuses on the cellular dynamics of tRNA transcription, processing, and turnover. Early tRNA biosynthesis steps are shared among most tRNAs, while later ones are often individualized for specific tRNAs. In yeast, tRNA transcription and early processing occur coordinately in the nucleolus, requiring topological arrangement of approximately 300 tRNA genes and early processing enzymes to this site; later processing events occur in the nucleoplasm or cytoplasm. tRNA nuclear export requires multiple exporters which function in parallel and the export process is coupled with other cellular events. Nuclear-cytoplasmic tRNA subcellular movement is not unidirectional as a retrograde pathway delivers mature cytoplasmic tRNAs to the nucleus. Despite the long half-lives, there are multiple pathways to turnover damaged tRNAs or normal tRNAs upon cellular stress.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, 484 W. 12th Ave., Room Riffe 800, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
28
|
Murthi A, Shaheen HH, Huang HY, Preston MA, Lai TP, Phizicky EM, Hopper AK. Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae. Mol Biol Cell 2009; 21:639-49. [PMID: 20032305 PMCID: PMC2820427 DOI: 10.1091/mbc.e09-07-0551] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
tRNAs traffic between the nucleus and the cytoplasm in response to nutrient availability. Using a new assay to track tRNA within cells, we show that tRNA nuclear import is constitutive, whereas tRNA reexport to the cytoplasm is regulated. Msn5 functions only in tRNA re-export, whereas Los1 functions in both the primary and reexport steps. tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.
Collapse
Affiliation(s)
- Athulaprabha Murthi
- Department of Molecular Genetics, Graduate Program in Molecular, Cellular, and Developmental Biology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Urban A, Behm-Ansmant I, Branlant C, Motorin Y. RNA sequence and two-dimensional structure features required for efficient substrate modification by the Saccharomyces cerevisiae RNA:{Psi}-synthase Pus7p. J Biol Chem 2008; 284:5845-58. [PMID: 19114708 DOI: 10.1074/jbc.m807986200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA:pseudouridine (Psi) synthase Pus7p of Saccharomyces cerevisiae is a multisite-specific enzyme that is able to modify U(13) in several yeast tRNAs, U(35) in the pre-tRNA(Tyr) (GPsiA), U(35) in U2 small nuclear RNA, and U(50) in 5 S rRNA. Pus7p belongs to the universally conserved TruD-like family of RNA:Psi-synthases found in bacteria, archaea, and eukarya. Although several RNA substrates for yeast Pus7p have been identified, specificity of their recognition and modification has not been studied. However, conservation of a 7-nt-long sequence, including the modified U residue, in all natural Pus7p substrates suggested the importance of these nucleotides for Pus7p recognition and/or catalysis. Using site-directed mutagenesis, we designed a set of RNA variants derived from the yeast tRNA(Asp)(GUC), pre-tRNA(Tyr)(GPsiA), and U2 small nuclear RNA and tested their ability to be modified by Pus7p in vitro. We demonstrated that the highly conserved U(-2) and A(+1) residues (nucleotide numbers refer to target U(0)) are crucial identity elements for efficient modification by Pus7p. Nucleotide substitutions at other surrounding positions (-4, -3, +2, +3) have only a moderate effect. Surprisingly, the identity of the nucleotide immediately 5' to the target U(0) residue (position -1) is not important for efficient modification. Alteration of tRNA three-dimensional structure had no detectable effect on Pus7p activity at position 13. However, our results suggest that the presence of at least one stem-loop structure including or close to the target U nucleotide is required for Pus7p-catalyzed modification.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567, CNRS-UHP Nancy I, Nancy Université, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | |
Collapse
|
30
|
Ozanick SG, Bujnicki JM, Sem DS, Anderson JT. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res 2007; 35:6808-19. [PMID: 17932071 PMCID: PMC2175304 DOI: 10.1093/nar/gkm574] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNA(Met)i The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-L-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNA(Met)i, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present.
Collapse
Affiliation(s)
- Sarah G Ozanick
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
31
|
Grosjean H, Droogmans L, Roovers M, Keith G. Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol 2007; 425:55-101. [PMID: 17673079 DOI: 10.1016/s0076-6879(07)25003-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The presence of modified ribonucleotides derived from adenosine, guanosine, cytidine, and uridine is a hallmark of almost all cellular RNA, and especially tRNA. The objective of this chapter is to describe a few simple methods that can be used to identify the presence or absence of a modified nucleotide in tRNA and to reveal the enzymatic activity of particular tRNA-modifying enzymes in vitro and in vivo. The procedures are based on analysis of prelabeled or postlabeled nucleotides (mainly with [(32)P] but also with [(35)S], [(14)C] or [(3)H]) generated after complete digestion with selected nucleases of modified tRNA isolated from cells or incubated in vitro with modifying enzyme(s). Nucleotides of the tRNA digests are separated by two-dimensional (2D) thin-layer chromatography on cellulose plates (TLC), which allows establishment of base composition and identification of the nearest neighbor nucleotide of a given modified nucleotide in the tRNA sequence. This chapter provides useful maps for identification of migration of approximately 70 modified nucleotides on TLC plates by use of two different chromatographic systems. The methods require only a few micrograms of purified tRNA and can be run at low cost in any laboratory.
Collapse
Affiliation(s)
- Henri Grosjean
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
32
|
Behm-Ansmant I, Massenet S, Immel F, Patton JR, Motorin Y, Branlant C. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. RNA (NEW YORK, N.Y.) 2006; 12:1583-93. [PMID: 16804160 PMCID: PMC1524882 DOI: 10.1261/rna.100806] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006; 34:1816-35. [PMID: 16600899 PMCID: PMC1447645 DOI: 10.1093/nar/gkl085] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 01/09/2023] Open
Abstract
We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic 'p-distance tree' using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes.
Collapse
MESH Headings
- Ascomycota/enzymology
- Ascomycota/genetics
- Base Sequence
- Codon
- Conserved Sequence
- DNA, Fungal/chemistry
- Evolution, Molecular
- Genes, Fungal
- Genome, Fungal
- Genomics
- Introns
- Molecular Sequence Data
- Multigene Family
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, Bât 144. CEA/Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
34
|
Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA (NEW YORK, N.Y.) 2006; 12:508-21. [PMID: 16431988 PMCID: PMC1383588 DOI: 10.1261/rna.2305406] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
1-Methyladenosine modification at position 58 of tRNA is catalyzed by a two-subunit methyltransferase composed of Trm6p and Trm61p in Saccharomyces cerevisiae. Initiator tRNA (tRNAi(Met)) lacking m1A58 (hypomethylated) is rendered unstable through the cooperative function of the poly(A) polymerases, Trf4p/Trf5p, and the nuclear exosome. We provide evidence that a catalytically active Trf4p poly(A) polymerase is required for polyadenylation of hypomethylated tRNAi(Met) in vivo. DNA sequence analysis of tRNAi(Met) cDNAs and Northern hybridizations of poly(A)+ RNA provide evidence that nascent pre-tRNAi(Met) transcripts are targeted for polyadenylation and degradation. We determined that a mutant U6 snRNA and an aberrant form of 5S rRNA are stabilized in the absence of Trf4p, supporting that Trf4p facilitated RNA surveillance is a global process that stretches beyond hypomethylated tRNAi(Met). We conclude that an array of RNA polymerase III transcripts are targeted for Trf4p/ Trf5p-dependent polyadenylation and turnover to eliminate mutant and variant forms of normally stable RNAs.
Collapse
MESH Headings
- Base Sequence
- Catalytic Domain/genetics
- DNA, Fungal/genetics
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Methylation
- Mutagenesis, Site-Directed
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sujatha Kadaba
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Wehr Life Sciences, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
35
|
Kalhor HR, Penjwini M, Clarke S. A novel methyltransferase required for the formation of the hypermodified nucleoside wybutosine in eucaryotic tRNA. Biochem Biophys Res Commun 2005; 334:433-40. [PMID: 16005430 DOI: 10.1016/j.bbrc.2005.06.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
We demonstrate that the product of the yeast open reading frame YML005w is required for wybutosine (yW) formation in the phenylalanine-accepting tRNA of the yeast Saccharomyces cerevisiae. tRNA isolated from a deletion mutant of the YML005w gene accumulates 4-demethylwyosine (ImG-14), a precursor lacking three of the methyl groups of the yW hypermodified base. Since the amino acid sequence of the YML005w gene contains the signature motifs of the seven beta-strand methyltransferases, we now designate the gene TRM12 for tRNA methyltransferase. Using pulse-chase labeling of intact yeast cells with S-adenosyl-L-[methyl-(3)H]methionine, we show that the methylesterified form of yW is metabolically stable.
Collapse
Affiliation(s)
- Hamid R Kalhor
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1560, USA
| | | | | |
Collapse
|
36
|
Ozanick S, Krecic A, Andersland J, Anderson JT. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA (NEW YORK, N.Y.) 2005; 11:1281-90. [PMID: 16043508 PMCID: PMC1370811 DOI: 10.1261/rna.5040605] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among all types of RNA, tRNA is unique given that it possesses the largest assortment and abundance of modified nucleosides. The methylation at N(1) of adenosine 58 is a conserved modification, occurring in bacterial, archaeal, and eukaryotic tRNAs. In the yeast Saccharomyces cerevisiae, the tRNA 1-methyladenosine 58 (m(1)A58) methyltransferase (Mtase) is a two-subunit enzyme encoded by the essential genes TRM6 (GCD10) and TRM61 (GCD14). While the significance of many tRNA modifications is poorly understood, methylation of A58 is known to be critical for maintaining the stability of initiator tRNA(Met) in yeast. Furthermore, all retroviruses utilize m(1)A58-containing tRNAs to prime reverse transcription, and it has been shown that the presence of m(1)A58 in human tRNA(3) (Lys) is needed for accurate termination of plus-strand strong-stop DNA synthesis during HIV-1 replication. In this study we have identified the human homologs of the yeast m(1)A Mtase through amino acid sequence identity and complementation of trm6 and trm61 mutant phenotypes. When coexpressed in yeast, human Trm6p and Trm61p restored the formation of m(1)A in tRNA, modifying both yeast initiator tRNA(Met) and human tRNA(3) (Lys). Stable hTrm6p/hTrm61p complexes purified from yeast maintained tRNA m(1)A Mtase activity in vitro. The human m(1)A Mtase complex also exhibited substrate specificity--modifying wild-type yeast tRNA(i) (Met) but not an A58U mutant. Therefore, the human tRNA m(1)A Mtase shares both functional and structural homology with the yeast tRNA m(1)A Mtase, possessing similar enzymatic activity as well as a conserved binary composition.
Collapse
Affiliation(s)
- Sarah Ozanick
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
37
|
Renalier MH, Joseph N, Gaspin C, Thebault P, Mougin A. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP. RNA (NEW YORK, N.Y.) 2005; 11:1051-63. [PMID: 15987815 PMCID: PMC1370790 DOI: 10.1261/rna.2110805] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalysis
- Cloning, Molecular
- Consensus Sequence
- Cytosine/metabolism
- Escherichia coli/genetics
- Genome, Archaeal
- Glutathione Transferase/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Open Reading Frames
- Phylogeny
- Protein Structure, Secondary
- Pyrobaculum/genetics
- Pyrobaculum/metabolism
- Pyrococcus abyssi/enzymology
- Pyrococcus abyssi/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
- Temperature
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/classification
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Marie-Hélène Renalier
- IEFG 109, Laboratoire de Biologie Moléculaire des Eucaryotes, (LBME) UMR CNRS/UHP 5099 118, route de Narbonne, 31062 Toulouse Cedex 02, France
| | | | | | | | | |
Collapse
|
38
|
Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B. Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA. Mol Cell Biol 2005; 25:4359-70. [PMID: 15899842 PMCID: PMC1140639 DOI: 10.1128/mcb.25.11.4359-4370.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/14/2004] [Accepted: 03/01/2005] [Indexed: 11/20/2022] Open
Abstract
N(2)-Monomethylguanosine-10 (m(2)G10) and N(2),N(2)-dimethylguanosine-26 (m(2)(2)G26) are the only two guanosine modifications that have been detected in tRNA from nearly all archaea and eukaryotes but not in bacteria. In Saccharomyces cerevisiae, formation of m(2)(2)G26 is catalyzed by Trm1p, and we report here the identification of the enzymatic activity that catalyzes the formation of m(2)G10 in yeast tRNA. It is composed of at least two subunits that are associated in vivo: Trm11p (Yol124c), which is the catalytic subunit, and Trm112p (Ynr046w), a putative zinc-binding protein. While deletion of TRM11 has no detectable phenotype under laboratory conditions, deletion of TRM112 leads to a severe growth defect, suggesting that it has additional functions in the cell. Indeed, Trm112p is associated with at least four proteins: two tRNA methyltransferases (Trm9p and Trm11p), one putative protein methyltransferase (Mtc6p/Ydr140w), and one protein with a Rossmann fold dehydrogenase domain (Lys9p/Ynr050c). In addition, TRM11 interacts genetically with TRM1, thus suggesting that the absence of m(2)G10 and m(2)(2)G26 affects tRNA metabolism or functioning.
Collapse
|
39
|
The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Behm-Ansmant I, Grosjean H, Massenet S, Motorin Y, Branlant C. Pseudouridylation at position 32 of mitochondrial and cytoplasmic tRNAs requires two distinct enzymes in Saccharomyces cerevisiae. J Biol Chem 2004; 279:52998-3006. [PMID: 15466869 DOI: 10.1074/jbc.m409581200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic and mitochondrial tRNAs contain several pseudouridylation sites, and the tRNA:Psi-synthase acting at position 32 had not been identified in Saccharomyces cerevisiae. By combining genetic and biochemical analyses, we demonstrate that two enzymes, Rib2/Pus8p and Pus9p, are required for Psi32 formation in cytoplasmic and mitochondrial tRNAs, respectively. Pus9p acts mostly in mitochondria, and Rib2/Pus8p is strictly cytoplasmic. This is the first case reported so far of two distinct tRNA modification enzymes acting at the same position but present in two different compartments. This peculiarity may be the consequence of a gene fusion that occurred during yeast evolution. Indeed, Rib2/Pus8p displays two distinct catalytic activities involved in completely unrelated metabolism: its C-terminal domain has a DRAP-deaminase activity required for riboflavin biogenesis in the cytoplasm, whereas its N-terminal domain carries the tRNA:Psi32-synthase activity. Pus9p has only a tRNA:Psi32-synthase activity and contains a characteristic mitochondrial targeting sequence at its N terminus. These results are discussed in terms of RNA:Psi-synthase evolution.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des Acides Ribonucléiques (ARN) et Enzymologie Moléculaire, UMR 7567 CNRSUHP Nancy I, Faculté des Sciences, BP 239, Vandoeuvre-les-Nancy 54506 Cedex, France
| | | | | | | | | |
Collapse
|
41
|
Behm-Ansmant I, Urban A, Ma X, Yu YT, Motorin Y, Branlant C. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Psi-synthase also acting on tRNAs. RNA (NEW YORK, N.Y.) 2003; 9:1371-82. [PMID: 14561887 PMCID: PMC1287059 DOI: 10.1261/rna.5520403] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Accepted: 08/15/2003] [Indexed: 05/19/2023]
Abstract
The Saccharomyces cerevisiae Pus7 protein was recently characterized as a novel RNA:pseudouridine (Psi)-synthase acting at position 35 in U2 snRNA. However, U2 snRNA was the only potential substrate tested for this enzyme. In this work, we demonstrated that although Pus7p is responsible for the formation of only one of the six Psi residues present in yeast UsnRNAs, it catalyzes U to Psi conversion at position 13 in cytoplasmic tRNAs and at position 35 in pre-tRNA(Tyr). Sites of RNA modification by Pus7p were identified by analysis of the in vivo RNA modification defects resulting from the absence of active Pus7p production and by in vitro tests using extracts from WT and genetically modified yeast cells. For demonstration of the direct implication of Pus7p in RNA modification, the activity of the WT and mutated Pus7p recombinant proteins was tested on in vitro produced tRNA and pre-tRNA transcripts. Mutation of an aspartic acid residue (D256) that is conserved in all Pus7 homologs abolishes the enzymatic activity both in vivo and in vitro. This suggests the direct involvement of D256 in catalysis. Target sites of Pus7p in RNAs share a common sequence Pu(G/C)UNPsiAPu (Pu = purine, N = any nucleotide), which is expected to be important for substrate recognition. Modification of tRNAs by Pus7p explains the presence of Pus7p homologs in archaea and some bacteria species, which do not have U2 snRNA, and in vertebrates, where Psi34 (equivalent to Psi35 in yeast) formation in U2 snRNA is an H/ACA snoRNA guided process. Our results increase the number of known RNA modification enzymes acting on different types of cellular RNAs.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA (NEW YORK, N.Y.) 2002; 8:1253-66. [PMID: 12403464 PMCID: PMC1370335 DOI: 10.1017/s1355838202024019] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
7-methylguanosine (m7G) modification of tRNA occurs widely in eukaryotes and bacteria, is nearly always found at position 46, and is one of the few modifications that confers a positive charge to the base. Screening of a Saccharomyces cerevisiae genomic library of purified GST-ORF fusion proteins reveals two previously uncharacterized proteins that copurify with m7G methyltransferase activity on pre-tRNA(Phe). ORF YDL201w encodes Trm8, a protein that is highly conserved in prokaryotes and eukaryotes and that contains an S-adenosylmethionine binding domain. ORF YDR165w encodes Trm82, a less highly conserved protein containing putative WD40 repeats, which are often implicated in macromolecular interactions. Neither protein has significant sequence similarity to yeast Abd1, which catalyzes m7G modification of the 5' cap of mRNA, other than the methyltransferase motif shared by Trm8 and Abd1. Several lines of evidence indicate that both Trm8 and Trm82 proteins are required for tRNA m7G-methyltransferase activity: Extracts derived from strains lacking either gene have undetectable m7G methyltransferase activity, RNA from strains lacking either gene have much reduced m7G, and coexpression of both proteins is required to overproduce activity. Aniline cleavage mapping shows that Trm8/Trm82 proteins modify pre-tRNAPhe at G46, the site that is modified in vivo. Trm8 and Trm82 proteins form a complex, as affinity purification of Trm8 protein causes copurification of Trm82 protein in approximate equimolar yield. This functional two-protein family appears to be retained in eukaryotes, as expression of both corresponding human proteins, METTL1 and WDR4, is required for m7G-methyltransferase activity.
Collapse
Affiliation(s)
- Andrei Alexandrov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA
| | | | | |
Collapse
|
43
|
Marck C, Grosjean H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA (NEW YORK, N.Y.) 2002; 8:1189-232. [PMID: 12403461 PMCID: PMC1370332 DOI: 10.1017/s1355838202022021] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
From 50 genomes of the three domains of life (7 eukarya, 13 archaea, and 30 bacteria), we extracted, analyzed, and compared over 4,000 sequences corresponding to cytoplasmic, nonorganellar tRNAs. For each genome, the complete set of tRNAs required to read the 61 sense codons was identified, which permitted revelation of three major anticodon-sparing strategies. Other features and sequence peculiarities analyzed are the following: (1) fit to the standard cloverleaf structure, (2) characteristic consensus sequences for elongator and initiator tDNAs, (3) frequencies of bases at each sequence position, (4) type and frequencies of conserved 2D and 3D base pairs, (5) anticodon/tDNA usages and anticodon-sparing strategies, (6) identification of the tRNA-Ile with anticodon CAU reading AUA, (7) size of variable arm, (8) occurrence and location of introns, (9) occurrence of 3'-CCA and 5'-extra G encoded at the tDNA level, and (10) distribution of the tRNA genes in genomes and their mode of transcription. Among all tRNA isoacceptors, we found that initiator tDNA-iMet is the most conserved across the three domains, yet domain-specific signatures exist. Also, according to which tRNA feature is considered (5'-extra G encoded in tDNAs-His, AUA codon read by tRNA-Ile with anticodon CAU, presence of intron, absence of "two-out-of-three" reading mode and short V-arm in tDNA-Tyr) Archaea sequester either with Bacteria or Eukarya. No common features between Eukarya and Bacteria not shared with Archaea could be unveiled. Thus, from the tRNomic point of view, Archaea appears as an "intermediate domain" between Eukarya and Bacteria.
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette, France.
| | | |
Collapse
|
44
|
Lecointe F, Namy O, Hatin I, Simos G, Rousset JP, Grosjean H. Lack of pseudouridine 38/39 in the anticodon arm of yeast cytoplasmic tRNA decreases in vivo recoding efficiency. J Biol Chem 2002; 277:30445-53. [PMID: 12058040 DOI: 10.1074/jbc.m203456200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many different modified nucleotides are found in naturally occurring tRNA, especially in the anticodon region. Their importance for the efficiency of the translational process begins to be well documented. Here we have analyzed the in vivo effect of deleting genes coding for yeast tRNA-modifying enzymes, namely Pus1p, Pus3p, Pus4p, or Trm4p, on termination readthrough and +1 frameshift events. To this end, we have transformed each of the yeast deletion strains with a lacZ-luc dual-reporter vector harboring selected programmed recoding sites. We have found that only deletion of the PUS3 gene, encoding the enzyme that introduces pseudouridines at position 38 or 39 in tRNA, has an effect on the efficiency of the translation process. In this mutant, we have observed a reduced readthrough efficiency of each stop codon by natural nonsense suppressor tRNAs. This effect is solely due to the absence of pseudouridine 38 or 39 in tRNA because the inactive mutant protein Pus3[D151A]p did not restore the level of natural readthrough. Our results also show that absence of pseudouridine 39 in the slippery tRNA(UAG)(Leu) reduces +1 frameshift efficiency. Therefore, the presence of pseudouridine 38 or 39 in the tRNA anticodon arm enhances misreading of certain codons by natural nonsense tRNAs as well as promotes frameshifting on slippery sequences in yeast.
Collapse
Affiliation(s)
- François Lecointe
- Laboratoire d'Enzymologie et de Biochimie Structurales, CNRS, Avenue de la Terrasse, Bat. 34, F-91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
45
|
Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B. Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop. EMBO J 2002; 21:1811-20. [PMID: 11927565 PMCID: PMC125368 DOI: 10.1093/emboj/21.7.1811] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome of Saccharomyces cerevisiae encodes three close homologues of the Escherichia coli 2'-O-rRNA methyltransferase FtsJ/RrmJ, designated Trm7p, Spb1p and Mrm2p. We present evidence that Trm7p methylates the 2'-O-ribose of nucleotides at positions 32 and 34 of the tRNA anticodon loop, both in vivo and in vitro. In a trm7Delta strain, which is viable but grows slowly, translation is impaired, thus indicating that these tRNA modifications could be important for translation efficiency. We discuss the emergence of a family of three 2'-O-RNA methyltransferases in Eukaryota and one in Prokaryota from a common ancestor. We propose that each eukaryotic enzyme is located in a different cell compartment, in which it would methylate a different RNA that can adopt a very similar secondary structure.
Collapse
Affiliation(s)
- Lionel Pintard
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 1919 Route de Mende, F-34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
46
|
Grosshans H, Lecointe F, Grosjean H, Hurt E, Simos G. Pus1p-dependent tRNA pseudouridinylation becomes essential when tRNA biogenesis is compromised in yeast. J Biol Chem 2001; 276:46333-9. [PMID: 11571299 DOI: 10.1074/jbc.m107141200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Pus1p catalyzes the formation of pseudouridine (psi) at specific sites of several tRNAs, but its function is not essential for cell viability. We show here that Pus1p becomes essential when another tRNA:pseudouridine synthase, Pus4p, or the essential minor tRNA for glutamine are mutated. Strikingly, this mutant tRNA, which carries a mismatch in the T psi C arm, displays a nuclear export defect. Furthermore, nuclear export of at least one wild-type tRNA species becomes defective in the absence of Pus1p. Our data, thus, show that the modifications formed by Pus1p are essential when other aspects of tRNA biogenesis or function are compromised and suggest that impairment of nuclear tRNA export in the absence of Pus1p might contribute to this phenotype.
Collapse
Affiliation(s)
- H Grosshans
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
47
|
Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP. Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 2001; 29:4518-29. [PMID: 11713301 PMCID: PMC92551 DOI: 10.1093/nar/29.22.4518] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a search of the Pyrococcus genomes for homologs of eukaryotic methylation guide small nucleolar RNAs, we have experimentally identified in Pyrococcus abyssi four novel box C/D small RNAs predicted to direct 2'-O-ribose methylations onto the first position of the anticodon in tRNALeu(CAA), tRNALeu(UAA), elongator tRNAMet and tRNATrp, respectively. Remarkably, one of them corresponds to the intron of its presumptive target, pre-tRNATrp. This intron is predicted to direct in cis two distinct ribose methylations within the unspliced tRNA precursor, not only onto the first position of the anticodon in the 5' exon but also onto position 39 (universal tRNA numbering) in the 3' exon. The two intramolecular RNA duplexes expected to direct methylation, which both span an exon-intron junction in pre-tRNATrp, are phylogenetically conserved in euryarchaeotes. We have experimentally confirmed the predicted guide function of the box C/D intron in halophile Haloferax volcanii by mutagenesis analysis, using an in vitro splicing/RNA modification assay in which the two cognate ribose methylations of pre-tRNATrp are faithfully reproduced. Euryarchaeal pre-tRNATrp should provide a unique system to further investigate the molecular mechanisms of RNA-guided ribose methylation and gain new insights into the origin and evolution of the complex family of archaeal and eukaryotic box C/D small RNAs.
Collapse
MESH Headings
- Base Sequence
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- Genome, Archaeal
- Introns/genetics
- Methylation
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Nucleosides/genetics
- Nucleosides/metabolism
- Nucleotides/genetics
- Nucleotides/metabolism
- Phylogeny
- Plasmids/genetics
- Pyrococcus/genetics
- Pyrococcus/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Trp/genetics
- RNA, Transfer, Trp/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- B Clouet d'Orval
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
48
|
Ansmant I, Motorin Y, Massenet S, Grosjean H, Branlant C. Identification and characterization of the tRNA:Psi 31-synthase (Pus6p) of Saccharomyces cerevisiae. J Biol Chem 2001; 276:34934-40. [PMID: 11406626 DOI: 10.1074/jbc.m103131200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To characterize the substrate specificity of the putative RNA:pseudouridine (Psi)-synthase encoded by the Saccharomyces cerevisiae open reading frame (ORF) YGR169c, the corresponding gene was deleted in yeast, and the consequences of the deletion on tRNA and small nuclear RNA modification were tested. The resulting DeltaYGR169c strain showed no detectable growth phenotype, and the only difference in Psi formation in stable cellular RNAs was the absence of Psi at position 31 in cytoplasmic and mitochondrial tRNAs. Complementation of the DeltaYGR169c strain by a plasmid bearing the wild-type YGR169c ORF restored Psi(31) formation in tRNA, whereas a point mutation of the enzyme active site (Asp(168)-->Ala) abolished tRNA:Psi(31)-synthase activity. Moreover, recombinant His(6)-tagged Ygr169 protein produced in Escherichia coli was capable of forming Psi(31) in vitro using tRNAs extracted from the DeltaYGR169c yeast cells as substrates. These results demonstrate that the protein encoded by the S. cerevisiae ORF YGR169c is the Psi-synthase responsible for modification of cytoplasmic and mitochondrial tRNAs at position 31. Because this is the sixth RNA:Psi-synthase characterized thus far in yeast, we propose to rename the corresponding gene PUS6 and the expressed protein Pus6p. Finally, the cellular localization of the green fluorescent protein-tagged Pus6p was studied by functional tests and direct fluorescence microscopy.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
49
|
Björk GR, Jacobsson K, Nilsson K, Johansson MJ, Byström AS, Persson OP. A primordial tRNA modification required for the evolution of life? EMBO J 2001; 20:231-9. [PMID: 11226173 PMCID: PMC140193 DOI: 10.1093/emboj/20.1.231] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of reading frame maintenance must have been an early event, and presumably preceded the emergence of the three domains Archaea, Bacteria and Eukarya. Features evolved early in reading frame maintenance may still exist in present-day organisms. We show that one such feature may be the modified nucleoside 1-methylguanosine (m(1)G37), which prevents frameshifting and is present adjacent to and 3' of the anticodon (position 37) in the same subset of tRNAs from all organisms, including that with the smallest sequenced genome (Mycoplasma genitalium), and organelles. We have identified the genes encoding the enzyme tRNA(m(1)G37)methyltransferase from all three domains. We also show that they are orthologues, and suggest that they originated from a primordial gene. Lack of m(1)G37 severely impairs the growth of a bacterium and a eukaryote to a similar degree. Yeast tRNA(m(1)G37)methyltransferase also synthesizes 1-methylinosine and participates in the formation of the Y-base (yW). Our results suggest that m(1)G37 existed in tRNA before the divergence of the three domains, and that a tRNA(m(1)G37)methyltrans ferase is part of the minimal set of gene products required for life.
Collapse
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
50
|
Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucleic Acids Res 2000; 28:1941-6. [PMID: 10756195 PMCID: PMC103309 DOI: 10.1093/nar/28.9.1941] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
So far, four RNA:pseudouridine (Psi)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Psi-synthases responsible for several U-->Psi conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Psi-synthases, four additional open reading frames (ORFs) encoding putative RNA:Psi-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Psi residue normally present in the fully matured mitochondrial rRNAs (Psi(2819)in 21S rRNA) was missing, while Psi residues at all the tested pseudo-uridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U-->Psi conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71-->A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Psi(2819)synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Psi-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Psi(2819)in mitochondrial 21S rRNA is not essential for cell viability.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|