1
|
Collora JA, Ho YC. Integration site-dependent HIV-1 promoter activity shapes host chromatin conformation. Genome Res 2023; 33:891-906. [PMID: 37295842 PMCID: PMC10519397 DOI: 10.1101/gr.277698.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcription factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used four well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within an ∼5- to 30-kb distance. CRISPRa- and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ∼100-300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromatin interaction (by 4C-seq), we identified enrichment of ETS, RUNT, and ZNF-family transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study has found that HIV-1 promoter activity increases host chromatin accessibility, and HIV-1 interacted with host chromatin within the existing chromatin boundaries in an integration site-dependent manner.
Collapse
Affiliation(s)
- Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
2
|
Hu H, Xiao A, Zhang S, Li Y, Shi X, Jiang T, Zhang L, Zhang L, Zeng J. DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics 2020; 35:1660-1667. [PMID: 30295703 DOI: 10.1093/bioinformatics/bty842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Human immunodeficiency virus type 1 (HIV-1) genome integration is closely related to clinical latency and viral rebound. In addition to human DNA sequences that directly interact with the integration machinery, the selection of HIV integration sites has also been shown to depend on the heterogeneous genomic context around a large region, which greatly hinders the prediction and mechanistic studies of HIV integration. RESULTS We have developed an attention-based deep learning framework, named DeepHINT, to simultaneously provide accurate prediction of HIV integration sites and mechanistic explanations of the detected sites. Extensive tests on a high-density HIV integration site dataset showed that DeepHINT can outperform conventional modeling strategies by automatically learning the genomic context of HIV integration from primary DNA sequence alone or together with epigenetic information. Systematic analyses on diverse known factors of HIV integration further validated the biological relevance of the prediction results. More importantly, in-depth analyses of the attention values output by DeepHINT revealed intriguing mechanistic implications in the selection of HIV integration sites, including potential roles of several DNA-binding proteins. These results established DeepHINT as an effective and explainable deep learning framework for the prediction and mechanistic study of HIV integration. AVAILABILITY AND IMPLEMENTATION DeepHINT is available as an open-source software and can be downloaded from https://github.com/nonnerdling/DeepHINT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hailin Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - An Xiao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Sai Zhang
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yangyang Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.,Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China.,Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Zhu Z, Li K, Xu D, Liu Y, Tang H, Xie Q, Xie L, Liu J, Wang H, Gong Y, Hu Z, Zheng J. ZFX regulates glioma cell proliferation and survival in vitro and in vivo. J Neurooncol 2013; 112:17-25. [PMID: 23322077 DOI: 10.1007/s11060-012-1032-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/26/2012] [Indexed: 12/15/2022]
Abstract
The zinc finger transcription factor ZFX functions as an important regulator of self-renewal in multiple stem cell types, as well as a sex determinant of mammals. Moreover, ZFX expression is abnormally elevated in several cancers, and correlates with malignancy grade. To investigate its role in the pathogenesis of gliomas, we used lentivirus-mediated RNA interference (RNAi) to knockdown ZFX expression in human glioma cell lines. Our results demonstrate that ZFX plays a crucial role in glioma proliferation and survival, confirming recent reports. We also show for the first time that ZFX knockdown decreases the in vivo growth potential of U87 glioma xenografts in both subcutaneous and intracranial models in nude mice. We conclude that lentivirus-mediated RNAi targeting of ZFX may serve as a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Zhichuan Zhu
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Raha T, Cheng SWG, Green MR. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol 2005; 3:e44. [PMID: 15719058 PMCID: PMC546330 DOI: 10.1371/journal.pbio.0030044] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 12/06/2004] [Indexed: 11/19/2022] Open
Abstract
The human immunodeficiency virus type I (HIV-1) transactivator protein Tat is an unusual transcriptional activator that is thought to act solely by promoting RNA polymerase II processivity. Here we study the mechanism of Tat action by analyzing transcription complex (TC) assembly in vivo using chromatin immunoprecipitation assays. We find, unexpectedly, that like typical activators Tat dramatically stimulates TC assembly. Surprisingly, however, the TC formed on the HIV-1 long terminal repeat is atypical and contains TATA-box-binding protein (TBP) but not TBP-associated factors (TAFs). Tat function involves direct interaction with the cellular cofactor positive transcription elongation factor b (P-TEFb). Artificial tethering of P-TEFb subunits to HIV-1 promoter DNA or nascent RNA indicates that P-TEFb is responsible for directing assembly of a TC containing TBP but not TAFs. On the basis of this finding, we identify P-TEFb-dependent cellular promoters that also recruit TBP in the absence of TAFs. Thus, in mammalian cells transcription of protein-coding genes involves alternative TCs that differ by the presence or absence of TAFs.
Collapse
Affiliation(s)
- Tamal Raha
- 1Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular MedicineUniversity of Massachusetts Medical School, Worcester, MassachusettsUnited States of America
| | - S. W. Grace Cheng
- 1Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular MedicineUniversity of Massachusetts Medical School, Worcester, MassachusettsUnited States of America
| | - Michael R Green
- 1Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular MedicineUniversity of Massachusetts Medical School, Worcester, MassachusettsUnited States of America
| |
Collapse
|
5
|
Poloumienko A. Cloning and comparative analysis of the bovine, porcine, and equine sex chromosome genes ZFX and ZFY. Genome 2004; 47:74-83. [PMID: 15060604 DOI: 10.1139/g03-099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A growing body of evidence suggests the involvement of sex chromosome genes in mammalian development. We report the cloning and characterization of the complete coding regions of the bovine Y chromosome ZFY and X chromosome ZFX genes, and partial coding regions of porcine and equine ZFX and ZFY genes. Bovine ZFY and ZFX are highly similar to each other and to ZFX and ZFY from other species. While bovine and human ZFY proteins are both 801 amino acids long, bovine ZFX is 5 amino acids shorter than human ZFX. Like in humans, both bovine ZFY and ZFX contain 13 zinc finger motifs and belong to the Krueppel family of C2H2-type zinc finger proteins. The internal exon-intron organization of the bovine, porcine and equine ZFX and ZFY genes has been determined and compared. Within this region, the exon lengths and the positions of the splice sites are conserved, further suggesting a high evolutionary conservation of the ZFX and ZFY genes. Additionally, new alternatively spliced forms of human ZFX have been identified.
Collapse
Affiliation(s)
- Arkadi Poloumienko
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Canada.
| |
Collapse
|
6
|
Ho MY, Murphy D. The vasopressin gene non-canonical Hogness box: effect on protein binding and promoter function. Mol Cell Endocrinol 2002; 186:17-25. [PMID: 11850118 DOI: 10.1016/s0303-7207(01)00677-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Comparison of the promoter sequences of the genes encoding the neuropeptide hormone vasopressin from a number of organisms has revealed that they do not contain a classical Hogness box. In all vertebrate species examined, the canonical TATA box is replaced with a CATA sequence. We hypothesised that this conserved modified sequence may play a role in the regulation of vasopressin promoter activity. We used electrophoretic mobility shift assays to show that TATA and CATA sequences generate different complexes with SON nuclear proteins. Further, the transfection of wild-type (CATA) and mutated (TATA) VP promoter-reporter constructs into a heterologous cell line demonstrated a sequence-specific effect on transcriptional activity. The CATA sequence contributes to weaker promoter activity than a TATA box, but is able to interact with the upstream elements to increase the efficacy of an enhancer. The CATA box may thus be involved in the cell-specific and physiological regulation of the VP gene.
Collapse
Affiliation(s)
- Mei Yin Ho
- Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore, Singapore
| | | |
Collapse
|