1
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Naganathan A, Keltz R, Lyon H, Culver GM. Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly. Biochimie 2021; 191:104-117. [PMID: 34508826 DOI: 10.1016/j.biochi.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The bacterial ribosomal protein S15 is located in the platform, a functional region of the 30S ribosomal subunit. While S15 is critical for in vitro formation of E. coli small subunits (SSUs), it is dispensable for in vivo biogenesis and growth. In this work, a novel synergistic interaction between rpsO, the gene that encodes S15, and rnc (the gene that encodes RNase III), was uncovered in E. coli. RNase III catalyzes processing of precursor ribosomal RNA (rRNA) transcripts and thus is involved in functional ribosome subunit maturation. Strains lacking S15 (ΔrpsO), RNase III (Δrnc) or both genes were examined to understand the relationship between these two factors and the impact of this double deletion on rRNA processing and SSU maturation. The double deletion of rpsO and rnc partially alleviates the observed cold sensitivity of ΔrpsO alone. A novel 16S rRNA precursor (17S∗ rRNA) that is detected in free 30S subunits of Δrnc is incorporated in 70S-like ribosomes in the double deletion. The stable accumulation of 17S∗ rRNA suggests that timing of processing events is closely coupled with SSU formation events in vivo. The double deletion has a suppressive effect on the cell elongation phenotype of ΔrpsO. The alteration of the phenotypes associated with S15 loss, due to the absence of RNase III, indicates that pre-rRNA processing and improvement of growth, relative to that observed for ΔrpsO, are connected. The characterization of the functional link between the two factors illustrates that there are redundancies and compensatory pathways for SSU maturation.
Collapse
Affiliation(s)
| | - Roxanne Keltz
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Hiram Lyon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY, USA; Center for RNA Biology, University of Rochester, Rochester, NY, USA; Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
3
|
Razi A, Davis JH, Hao Y, Jahagirdar D, Thurlow B, Basu K, Jain N, Gomez-Blanco J, Britton RA, Vargas J, Guarné A, Woodson SA, Williamson JR, Ortega J. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res 2019; 47:8301-8317. [PMID: 31265110 PMCID: PMC6736133 DOI: 10.1093/nar/gkz571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023] Open
Abstract
Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era’s role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.
Collapse
Affiliation(s)
- Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph H Davis
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Brett Thurlow
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josue Gomez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javier Vargas
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1 Canada
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James R Williamson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
4
|
Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori. Nucleic Acids Res 2019; 47:5906-5921. [PMID: 31006803 PMCID: PMC6582327 DOI: 10.1093/nar/gkz258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
In most bacteria, ribosomal RNA is transcribed as a single polycistronic precursor that is first processed by RNase III. This double-stranded specific RNase cleaves two large stems flanking the 23S and 16S rRNA mature sequences, liberating three 16S, 23S and 5S rRNA precursors, which are further processed by other ribonucleases. Here, we investigate the rRNA maturation pathway of the human gastric pathogen Helicobacter pylori. This bacterium has an unusual arrangement of its rRNA genes, the 16S rRNA gene being separated from a 23S-5S rRNA cluster. We show that RNase III also initiates processing in this organism, by cleaving two typical stem structures encompassing 16S and 23S rRNAs and an atypical stem–loop located upstream of the 5S rRNA. Deletion of RNase III leads to the accumulation of a large 23S-5S precursor that is found in polysomes, suggesting that it can function in translation. Finally, we characterize a cis-encoded antisense RNA overlapping the leader of the 23S-5S rRNA precursor. We present evidence that this antisense RNA interacts with this precursor, forming an intermolecular complex that is cleaved by RNase III. This pairing induces additional specific cleavages of the rRNA precursor coupled with a rapid degradation of the antisense RNA.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Sandrine Chabas
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| |
Collapse
|
5
|
Leppik M, Liiv A, Remme J. Random pseuoduridylation in vivo reveals critical region of Escherichia coli 23S rRNA for ribosome assembly. Nucleic Acids Res 2017; 45:6098-6108. [PMID: 28334881 PMCID: PMC5449589 DOI: 10.1093/nar/gkx160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022] Open
Abstract
Pseudouridine is the most common modified nucleoside in RNA, which is found in stable RNA species and in eukaryotic mRNAs. Functional analysis of pseudouridine is complicated by marginal effect of its absence. We demonstrate that excessive pseudouridines in rRNA inhibit ribosome assembly. Ten-fold increase of pseudouridines in the 16S and 23S rRNA made by a chimeric pseudouridine synthase leads to accumulation of the incompletely assembled large ribosome subunits. Hyper modified 23S rRNA is found in the r-protein assembly defective particles and are selected against in the 70S and polysome fractions showing modification interference. Eighteen positions of 23S rRNA were identified where isomerization of uridines interferes with ribosome assembly. Most of the interference sites are located in the conserved core of the large subunit, in the domain 0 of 23S rRNA, around the peptide exit tunnel. A plausible reason for pseudouridine-dependent inhibition of ribosome assembly is stabilization of rRNA structure, which leads to the folding traps of rRNA and to the retardation of the ribosome assembly.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
6
|
Sashital DG, Greeman CA, Lyumkis D, Potter CS, Carragher B, Williamson JR. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife 2014; 3. [PMID: 25313868 PMCID: PMC4371863 DOI: 10.7554/elife.04491] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3' domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3'-domain is unanchored and the 5'-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells.
Collapse
Affiliation(s)
- Dipali G Sashital
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Candacia A Greeman
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Dmitry Lyumkis
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Clinton S Potter
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Bridget Carragher
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| |
Collapse
|
7
|
Gupta N, Culver GM. Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Nat Struct Mol Biol 2014; 21:937-43. [PMID: 25195050 PMCID: PMC4355579 DOI: 10.1038/nsmb.2887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Processing of transcribed precursor ribosomal RNA (pre-rRNA) to a mature state is a conserved aspect of ribosome biogenesis in vivo. We developed an affinity-purification system to isolate and analyze in vivo-formed pre-rRNA-containing ribonucleoprotein (RNP) particles (rRNPs) from wild-type E. coli. We observed that the first processing intermediate of pre-small subunit (pre-SSU) rRNA is a platform for biogenesis. These pre-SSU-containing RNPs have differing ribosomal-protein and auxiliary factor association and rRNA folding. Each RNP lacks the proper architecture in functional regions, thus suggesting that checkpoints preclude immature subunits from entering the translational cycle. This work offers in vivo snapshots of SSU biogenesis and reveals that multiple pathways exist for the entire SSU biogenesis process in wild-type E. coli. These findings have implications for understanding SSU biogenesis in vivo and offer a general strategy for analysis of RNP biogenesis.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Gloria M Culver
- 1] Department of Biology, University of Rochester, Rochester, New York, USA. [2] Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
8
|
Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol Cell 2013; 52:506-16. [PMID: 24207057 DOI: 10.1016/j.molcel.2013.09.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 12/27/2022]
Abstract
Assembly of 30S ribosomal subunits from their protein and RNA components requires extensive refolding of the 16S rRNA and is assisted by 10-20 assembly factors in bacteria. We probed the structures of 30S assembly intermediates in E. coli cells, using a synchrotron X-ray beam to generate hydroxyl radical in the cytoplasm. Widespread differences between mature and pre-30S complexes in the absence of assembly factors RbfA and RimM revealed global reorganization of RNA-protein interactions prior to maturation of the 16S rRNA and showed how RimM reduces misfolding of the 16S 3' domain during transcription in vivo. Quantitative (14)N/(15)N mass spectrometry of affinity-purified pre-30S complexes confirmed the absence of tertiary assembly proteins and showed that N-terminal acetylation of proteins S18 and S5 correlates with correct folding of the platform and central pseudoknot. Our results indicate that cellular factors delay specific RNA folding steps to ensure the quality of assembly.
Collapse
Affiliation(s)
- Sarah F Clatterbuck Soper
- Cell, Molecular, and Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
9
|
Bubunenko M, Court DL, Refaii AA, Saxena S, Korepanov A, Friedman DI, Gottesman ME, Alix JH. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol Microbiol 2013; 87:382-93. [PMID: 23190053 PMCID: PMC3545037 DOI: 10.1111/mmi.12105] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 01/02/2023]
Abstract
Escherichia coli NusA and NusB proteins bind specific sites, such as those in the leader and spacer sequences that flank the 16S region of the ribosomal RNA transcript, forming a complex with RNA polymerase that suppresses Rho-dependent transcription termination. Although antitermination has long been the accepted role for Nus factors in rRNA synthesis, we propose that another major role for the Nus-modified transcription complex in rrn operons is as an RNA chaperone insuring co-ordination of 16S rRNA folding and RNase III processing that results in production of proper 30S ribosome subunits. This contrarian proposal is based on our studies of nusA and nusB cold-sensitive mutations that have altered translation and at low temperature accumulate 30S subunit precursors. Both phenotypes are suppressed by deletion of RNase III. We argue that these results are consistent with the idea that the nus mutations cause altered rRNA folding that leads to abnormal 30S subunits and slow translation. According to this idea, functional Nus proteins stabilize an RNA loop between their binding sites in the 5' RNA leader and on the transcribing RNA polymerase, providing a topological constraint on the RNA that aids normal rRNA folding and processing.
Collapse
Affiliation(s)
- Mikhail Bubunenko
- Frederick National Laboratory for Cancer Research, Basic Research Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Donald L. Court
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Abdalla Al Refaii
- CNRS UPR9073, associated with University of Paris Diderot, Sorbonne Paris Cite Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| | - Shivalika Saxena
- Columbia University Medical Center, Departments of Microbiology and Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | - Alexey Korepanov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - David I. Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max E. Gottesman
- Columbia University Medical Center, Departments of Microbiology and Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | - Jean-Hervé Alix
- CNRS UPR9073, associated with University of Paris Diderot, Sorbonne Paris Cite Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| |
Collapse
|
10
|
Lubkowska L, Maharjan AS, Komissarova N. RNA folding in transcription elongation complex: implication for transcription termination. J Biol Chem 2011; 286:31576-85. [PMID: 21730066 DOI: 10.1074/jbc.m111.249359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsic transcription termination signal in DNA consists of a short inverted repeat followed by a T-rich stretch. Transcription of this sequence by RNA polymerase (RNAP) results in formation of a "termination hairpin" (TH) in the nascent RNA and in rapid dissociation of the transcription elongation complex (EC) at termination points located 7-8 nt downstream of the base of TH stem. RNAP envelops 15 nt of the RNA following RNA growing 3'-end, suggesting that folding of the TH is impeded by a tight protein environment when RNAP reaches the termination points. To monitor TH folding under this constraint, we halted Escherichia coli ECs at various distances downstream from a TH and treated them with single-strand specific RNase T1. The EC interfered with TH formation when halted at 6, 7, and 8, but not 9, nt downstream from the base of the potential stem. Thus, immediately before termination, the downstream arm of the TH is protected from complementary interactions with the upstream arm. This protection makes TH folding extremely sensitive to the sequence context, because the upstream arm easily engages in competing interactions with the rest of the nascent RNA. We demonstrate that by de-synchronizing TH formation and transcription of the termination points, this subtle competition significantly affects the efficiency of transcription termination. This finding can explain previous puzzling observations that sequences far upstream of the TH or point mutations in the terminator that preserve TH stability affect termination. These results can help understand other time sensitive co-transcriptional processes in pro- and eukaryotes.
Collapse
Affiliation(s)
- Lucyna Lubkowska
- NCI Center for Cancer Research, Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
11
|
Siibak T, Remme J. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified. RNA (NEW YORK, N.Y.) 2010; 16:2023-32. [PMID: 20719918 PMCID: PMC2941110 DOI: 10.1261/rna.2160010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/15/2010] [Indexed: 05/25/2023]
Abstract
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.
Collapse
MESH Headings
- Base Sequence
- Chloramphenicol/pharmacology
- DNA Primers/genetics
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Pseudouridine/chemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Triinu Siibak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
12
|
Ramaswamy P, Woodson SA. Global stabilization of rRNA structure by ribosomal proteins S4, S17, and S20. J Mol Biol 2009; 392:666-77. [PMID: 19616559 DOI: 10.1016/j.jmb.2009.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/01/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Ribosomal proteins stabilize the folded structure of the ribosomal RNA and enable the recruitment of further proteins to the complex. Quantitative hydroxyl radical footprinting was used to measure the extent to which three different primary assembly proteins, S4, S17, and S20, stabilize the three-dimensional structure of the Escherichia coli 16S 5' domain. The stability of the complexes was perturbed by varying the concentration of MgCl(2). Each protein influences the stability of the ribosomal RNA tertiary interactions beyond its immediate binding site. S4 and S17 stabilize the entire 5' domain, while S20 has a more local effect. Multistage folding of individual helices within the 5' domain shows that each protein stabilizes a different ensemble of structural intermediates that include nonnative interactions at low Mg(2+) concentration. We propose that the combined interactions of S4, S17, and S20 with different helical junctions bias the free-energy landscape toward a few RNA conformations that are competent to add the secondary assembly protein S16 in the next step of assembly.
Collapse
|
13
|
Abstract
The assembly of bacterial ribosomes is viewed with increasing interest as a potential target for new antibiotics. The in vivo synthesis and assembly of ribosomes are briefly reviewed here, highlighting the many ways in which assembly can be perturbed. The process is compared with the model in vitro process from which much of our knowledge is derived. The coordinate synthesis of the ribosomal components is essential for their ordered and efficient assembly; antibiotics interfere with this coordination and therefore affect assembly. It has also been claimed that the binding of antibiotics to nascent ribosomes prevents their assembly. These two contrasting models of antibiotic action are compared and evaluated. Finally, the suitability and tractability of assembly as a drug target are assessed.
Collapse
|
14
|
Ramaswamy P, Woodson SA. S16 throws a conformational switch during assembly of 30S 5' domain. Nat Struct Mol Biol 2009; 16:438-45. [PMID: 19343072 PMCID: PMC2720800 DOI: 10.1038/nsmb.1585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/09/2009] [Indexed: 11/09/2022]
Abstract
Rapid and accurate assembly of new ribosomal subunits is essential for cell growth. Here, we show that the ribosomal proteins make assembly more cooperative by discriminating against non-native conformations of the E. coli 16S rRNA. We used hydroxyl radical footprinting to measure how much the proteins stabilize individual rRNA tertiary interactions, revealing the free energy landscape for assembly of the 16S 5′ domain. When ribosomal proteins S4, S17, and S20 bind the 5′ domain RNA, a native and a non-native assembly intermediate are equally populated. The secondary assembly protein S16 suppresses the non-native intermediate, smoothing the path to the native complex. In the final step of 5′ domain assembly, S16 drives a conformational switch at helix 3 that stabilizes pseudoknots in the 30S decoding center. Long-range communication between the S16 binding site and the decoding center helps explain the critical role of S16 in 30S assembly.
Collapse
Affiliation(s)
- Priya Ramaswamy
- Program in Cell, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
16
|
Schoemaker RJW, Gultyaev AP. Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding. Nucleic Acids Res 2006; 34:2015-26. [PMID: 16614451 PMCID: PMC1435978 DOI: 10.1093/nar/gkl154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 03/12/2006] [Accepted: 03/20/2006] [Indexed: 12/04/2022] Open
Abstract
Archaeal C/D box small RNAs (sRNAs) are homologues of eukaryotic C/D box small nucleolar RNAs (snoRNAs). Their main function is guiding 2'-O-ribose methylation of nucleotides in rRNAs. The methylation requires the pairing of an sRNA antisense element to an rRNA target site with formation of an RNA-RNA duplex. The temporary formation of such a duplex during rRNA maturation is expected to influence rRNA folding in a chaperone-like way, in particular in thermophilic Archaea, where multiple sRNAs with two binding sites are found. Here we investigate possible mechanisms of chaperone function of Archaeoglobus fulgidus and Pyrococcus abyssi C/D box sRNAs using computer simulations of rRNA secondary structure formation by genetic algorithm. The effects of sRNA binding on rRNA structure are introduced as temporary structural constraints during co-transcriptional folding. Comparisons of the final predictions with simulations without sRNA binding and with phylogenetic structures show that sRNAs with two antisense elements may significantly facilitate the correct formation of long-range interactions in rRNAs, in particular at elevated temperatures. The simulations suggest that the main mechanism of this effect is a transient restriction of folding in rRNA domains where the termini are brought together by binding to double-guide sRNAs.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Base Sequence
- Binding Sites
- Computer Simulation
- Molecular Chaperones/chemistry
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pyrococcus abyssi/genetics
- RNA, Antisense/chemistry
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Temperature
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Ruud J. W. Schoemaker
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| | - Alexander P. Gultyaev
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| |
Collapse
|
17
|
Adilakshmi T, Ramaswamy P, Woodson SA. Protein-independent Folding Pathway of the 16S rRNA 5′ Domain. J Mol Biol 2005; 351:508-19. [PMID: 16023137 DOI: 10.1016/j.jmb.2005.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/21/2022]
Abstract
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.
Collapse
Affiliation(s)
- Tadepalli Adilakshmi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-7865, USA
| | | | | |
Collapse
|
18
|
van Mooy BAS, Devol AH, Keil RG. Quantifying 3H-thymidine incorporation rates by a phylogenetically defined group of marine planktonic bacteria (Bacteriodetes phylum). Environ Microbiol 2004; 6:1061-9. [PMID: 15344931 DOI: 10.1111/j.1462-2920.2004.00636.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The rate of [(3)H-methyl] thymidine ((3)H-TdR) incorporation into DNA has been applied extensively to measure cell production by bacterial communities in aquatic environments. Here we describe a method to quantify (3)H-TdR incorporation by specific, phylogenetically defined members of the bacterial community. The method involves selectively capturing DNA from targeted groups of bacteria and then quantifying its (3)H radioactivity. The method was applied to measure (3)H-TdR incorporation by the members of the phylum Bacteriodetes whose members, which include the Cytophaga-Flavobacter cluster, are ubiquitous in coastal waters. (3)H-labelled DNA from Bacteriodetes was selectively biotinylated in PCR-like reactions that contained a Bacteriodetes-specific 16S rRNA gene primer, thermostable DNA polymerase and biotinylated dUTP. The biotinylated DNA was then captured on streptavidin-coated beads and its (3)H radioactivity determined by scintillation counting. We have termed this method 'selective nucleic acid polymerase-biotinylation and capture' or 'SNAP-BAC'. Internal (33)P-labelled DNA standards were used to quantify the recovery of (3)H-labelled DNA from the SNAP-BAC reactions. The method was verified by successfully targeting Bacteriodetes in simple laboratory mixtures of (3)H-labelled DNA extracted from pure cultures of Bacteriodetes and gamma-proteobacteria. Field application of this method in Puget Sound and off the Washington coast determined that Bacteriodetes were responsible for 56 +/- 17% and 32 +/- 5% of community (3)H-TdR incorporation (1.3 +/- 0.3 and 9.9 +/- 1.7 pmol l(-1) h(-1)) at these two locations.
Collapse
Affiliation(s)
- Benjamin A S van Mooy
- School of Oceanography, University of Washington, BOX 355351, Seattle, Washington 98195-5351, USA.
| | | | | |
Collapse
|
19
|
Liiv A, Remme J. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. J Mol Biol 2004; 342:725-41. [PMID: 15342233 DOI: 10.1016/j.jmb.2004.07.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/10/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
An important step of ribosome assembly is the folding of the rRNA into a functional structure. Despite knowledge of the folded state of rRNA in the ribosomal subunits, there is very little information on the rRNA folding pathway. We are interested in understanding how the functional structure of rRNA is formed and whether the rRNA folding intermediates have a role in ribosome assembly. To this end, transient secondary structures around both ends of pre-23S rRNA were analyzed by a chemical probing approach, using pre-23S rRNA transcripts. Metastable hairpin loop structures were found at both ends of 23S rRNA. The functional importance of the transient structures around the ends of 23S rRNA was tested by mutations that alter only the transient structure. The effect of mutations on 23S rRNA folding was tested in vitro and in vivo. It was found that both stabilization and destabilization of the transient structure around the 5' end of 23S rRNA inhibits post-transcriptional refolding in vitro and ribosome formation in vivo. The data suggest that the transient structure of rRNA has a function during 23S rRNA folding and thereby in ribosome assembly.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Nucleic Acid Conformation
- Protein Subunits
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribonuclease III/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Aivar Liiv
- Estonian Biocentre, Tartu University, Riia st. 23, 51010 Tartu, Estonia
| | | |
Collapse
|
20
|
Meyer IM, Miklós I. Co-transcriptional folding is encoded within RNA genes. BMC Mol Biol 2004; 5:10. [PMID: 15298702 PMCID: PMC514895 DOI: 10.1186/1471-2199-5-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 08/06/2004] [Indexed: 11/10/2022] Open
Abstract
Background Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. Methods The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. Results We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. Conclusions These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Genes
- Hydrogen Bonding
- Introns/genetics
- Models, Genetic
- Nucleic Acid Conformation
- RNA/genetics
- RNA/ultrastructure
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- Irmtraud M Meyer
- Oxford Centre for Gene Function, University of Oxford, South Parks Road, Oxford OX1 3QB, UK
| | - István Miklós
- Eötvös University and Hungarian Academic of Science, Theoretical Biology and Ecology Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| |
Collapse
|
21
|
Watanabe T, Takagi A, Sasagawa N, Ishiura S, Nakase H. Altered expression of CUG binding protein 1 mRNA in myotonic dystrophy 1: possible RNA–RNA interaction. Neurosci Res 2004; 49:47-54. [PMID: 15099703 DOI: 10.1016/j.neures.2004.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 01/20/2004] [Indexed: 11/16/2022]
Abstract
The triplet repeats mutation, which causes myotonic dystrophy 1 (DM1), is thought to have a dominant negative effect on RNA levels. In light of previous results using differential display analysis, the present study focused on the expression of CUG binding protein 1 (CUGBP1) mRNA. Northern blot analysis demonstrated that the quantity of CUGBP1 mRNA in three DM1 patients was approximately 70% of that observed in three normal controls (P < 0.05). In addition, a semi-quantitative RT-PCR assay showed that the relative amount of CUGBP1 mRNA was reduced in muscle biopsy samples from 10 DM1 patients compared to that from five normal individuals (P < 0.01) and 10 myopathic disease controls (P < 0.01). The amount of CUGBP1 mRNA was negatively correlated with the size of the CTG expansion (r = -0.85, P < 0.05). In vitro RNA-RNA binding experiments demonstrated that the incubation of expanded CUG repeats with CUGBP1 RNA generated a higher molecular weight band, which was digested by RNase III. The CUGBP1 mRNA was found to contain several CAG repeat sequences. These results suggest that the CUG expansion may bind to complementary sequences within the CUGBP1 mRNA and that this molecular interaction may affect CUGBP1 mRNA expression in DM1.
Collapse
Affiliation(s)
- Tomoji Watanabe
- Department of Neurology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, 222 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| | | | | | | | | |
Collapse
|
22
|
Heilman-Miller SL, Woodson SA. Effect of transcription on folding of the Tetrahymena ribozyme. RNA (NEW YORK, N.Y.) 2003; 9:722-33. [PMID: 12756330 PMCID: PMC1370439 DOI: 10.1261/rna.5200903] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 03/11/2003] [Indexed: 05/20/2023]
Abstract
Sequential formation of RNA interactions during transcription can bias the folding pathway and ultimately determine the functional state of a transcript. The kinetics of cotranscriptional folding of the Tetrahymena L-21 ribozyme was compared with refolding of full-length transcripts under the same conditions. Sequential folding after transcription by phage T7 or Escherichia coli polymerase is only twice as fast as refolding, and the yield of native RNA is the same. By contrast, a greater fraction of circularly permuted variants folded correctly at early times during transcription than during refolding. Hybridization of complementary oligonucleotides suggests that cotranscriptional folding enables a permuted RNA beginning at G303 to escape non-native interactions in P3 and P9. We propose that base pairing of upstream sequences during transcription elongation favors branched secondary structures that increase the probability of forming the native ribozyme structure.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | | |
Collapse
|
23
|
Schäferkordt J, Wagner R. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation. Nucleic Acids Res 2001; 29:3394-403. [PMID: 11504877 PMCID: PMC55841 DOI: 10.1093/nar/29.16.3394] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cold Temperature
- Conserved Sequence/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Half-Life
- Molecular Sequence Data
- Mutation/genetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Operon/genetics
- Phenotype
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribonuclease III
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Deletion/genetics
- Temperature
- Thermodynamics
Collapse
Affiliation(s)
- J Schäferkordt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|