1
|
Wen WC, Lin YH, Duh TH, Chen CH, Feng CH, Chen YL. Fluorescence detection of apolipoprotein E gene polymorphisms based on oligonucleotide ligation and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4710-4717. [PMID: 37680175 DOI: 10.1039/d3ay01245j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative condition that causes brain cell death and is the leading cause of dementia. Most patients with Alzheimer's disease are diagnosed with late-onset Alzheimer's disease (LOAD), with apolipoprotein E (APOE) genotypes being highly associated with the frequency of LOAD risk. A fluorescence detection system coupled with oligonucleotide ligation and magnetic separation was developed to identify two single-nucleotide polymorphisms (SNPs) for the APOE gene and recognize APOE alleles for LOAD. The system utilized a fluorescence probe with one base-discriminating nucleoside for SNP (F probe) and a perfectly complementary biotin-modified sequence against the target DNA (P probe). When the F and P probes matched the target DNA sequences, DNA ligation occurred, and ligation products were produced. Streptavidin magnetic beads were subsequently employed to remove the ligation products, and a decrease in fluorescence intensity was observed in the supernatant compared to when there was no target DNA. This system detected two SNPs of APOE alleles, namely rs429358 and rs7412. The results indicated that the R-values ((F0 - F1)/F0) for rs429358 were 0.92 ± 0.002 for the T/T target, 0.47 ± 0.004 for the T/C target and 0.11 ± 0.004 for the C/C target, respectively. The R-values for rs7412 were 0.73 ± 0.009 for the C/C target, 0.42 ± 0.001 for the C/T target and 0.16 ± 0.007 for the T/T target, respectively. F0 and F1 represent the fluorescence intensity of the F probe without and with target DNA, respectively. Based on fluorescence intensity, the fluorescence detection system was able to identify the genotypes of the APOE gene accurately to evaluate the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Wan-Chen Wen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hui Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yen-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621301, Taiwan
| |
Collapse
|
2
|
Magoulopoulou A, Salas SM, Tiklová K, Samuelsson ER, Hilscher MM, Nilsson M. Padlock Probe-Based Targeted In Situ Sequencing: Overview of Methods and Applications. Annu Rev Genomics Hum Genet 2023; 24:133-150. [PMID: 37018847 DOI: 10.1146/annurev-genom-102722-092013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Elucidating spatiotemporal changes in gene expression has been an essential goal in studies of health, development, and disease. In the emerging field of spatially resolved transcriptomics, gene expression profiles are acquired with the tissue architecture maintained, sometimes at cellular resolution. This has allowed for the development of spatial cell atlases, studies of cell-cell interactions, and in situ cell typing. In this review, we focus on padlock probe-based in situ sequencing, which is a targeted spatially resolved transcriptomic method. We summarize recent methodological and computational tool developments and discuss key applications. We also discuss compatibility with other methods and integration with multiomic platforms for future applications.
Collapse
Affiliation(s)
- Anastasia Magoulopoulou
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Sergio Marco Salas
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Katarína Tiklová
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Erik Reinhold Samuelsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Markus M Hilscher
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| |
Collapse
|
3
|
Shi J, Oger PM, Cao P, Zhang L. Thermostable DNA ligases from hyperthermophiles in biotechnology. Front Microbiol 2023; 14:1198784. [PMID: 37293226 PMCID: PMC10244674 DOI: 10.3389/fmicb.2023.1198784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
DNA ligase is an important enzyme ubiquitous in all three kingdoms of life that can ligate DNA strands, thus playing essential roles in DNA replication, repair and recombination in vivo. In vitro, DNA ligase is also used in biotechnological applications requiring in DNA manipulation, including molecular cloning, mutation detection, DNA assembly, DNA sequencing, and other aspects. Thermophilic and thermostable enzymes from hyperthermophiles that thrive in the high-temperature (above 80°C) environments have provided an important pool of useful enzymes as biotechnological reagents. Similar to other organisms, each hyperthermophile harbors at least one DNA ligase. In this review, we summarize recent progress on structural and biochemical properties of thermostable DNA ligases from hyperthermophiles, focusing on similarities and differences between DNA ligases from hyperthermophilic bacteria and archaea, and between these thermostable DNA ligases and non-thermostable homologs. Additionally, altered thermostable DNA ligases are discussed. Possessing improved fidelity or thermostability compared to the wild-type enzymes, they could be potential DNA ligases for biotechnology in the future. Importantly, we also describe current applications of thermostable DNA ligases from hyperthermophiles in biotechnology.
Collapse
Affiliation(s)
- Jingru Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Philippe M. Oger
- University of Lyon, INSA de Lyon, CNRS UMR, Villeurbanne, France
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Williamson A, Leiros HKS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020; 48:8225-8242. [PMID: 32365176 PMCID: PMC7470946 DOI: 10.1093/nar/gkaa307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.
Collapse
Affiliation(s)
- Adele Williamson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | | |
Collapse
|
5
|
Osman EA, Alladin-Mustan BS, Hales SC, Matharu GK, Gibbs JM. Enhanced mismatch selectivity of T4 DNA ligase far above the probe: Target duplex dissociation temperature. Biopolymers 2020; 112:e23393. [PMID: 32896905 DOI: 10.1002/bip.23393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3'-terminus of the ligating strand using short ligation probes (9-mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5'-phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sarah C Hales
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gunwant K Matharu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Bacolod MD, Mirza AH, Huang J, Giardina SF, Feinberg PB, Soper SA, Barany F. Application of Multiplex Bisulfite PCR-Ligase Detection Reaction-Real-Time Quantitative PCR Assay in Interrogating Bioinformatically Identified, Blood-Based Methylation Markers for Colorectal Cancer. J Mol Diagn 2020; 22:885-900. [PMID: 32407802 DOI: 10.1016/j.jmoldx.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
The analysis of CpG methylation in circulating tumor DNA fragments has emerged as a promising approach for the noninvasive early detection of solid tumors, including colorectal cancer (CRC). The most commonly employed assay involves bisulfite conversion of circulating tumor DNA, followed by targeted PCR, then real-time quantitative PCR (alias methylation-specific PCR). This report demonstrates the ability of a multiplex bisulfite PCR-ligase detection reaction-real-time quantitative PCR assay to detect seven methylated CpG markers (CRC or colon specific), in both simulated (approximately 30 copies of fragmented CRC cell line DNA mixed with approximately 3000 copies of fragmented peripheral blood DNA) and CRC patient-derived cell-free DNAs. This scalable assay is designed for multiplexing and incorporates steps for improved sensitivity and specificity, including the enrichment of methylated CpG fragments, ligase detection reaction, the incorporation of ribose bases in primers, and use of uracil DNA glycosylase. Six of the seven CpG markers (located in promoter regions of PPP1R16B, KCNA3, CLIP4, GDF6, SEPT9, and GSG1L) were identified through integrated analyses of genome-wide methylation data sets for 31 different types of cancer. These markers were mapped to CpG sites at the promoter region of VIM; VIM and SEPT9 are established epigenetic markers of CRC. Additional bioinformatics analyses show that the methylation at these CpG sites negatively correlates with the transcription of their corresponding genes.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
7
|
Wang J, Zhu J, Wang C, Zhou G, Yu X, Fan H, An R, Komiyama M, Liang X. Thermus thermophilus DNA Ligase Connects Two Fragments Having Exceptionally Short Complementary Termini at High Temperatures. Biochemistry 2020; 59:400-406. [PMID: 31887028 DOI: 10.1021/acs.biochem.9b00866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermus thermophilus DNA ligase (Tth DNA ligase) is widely employed for cloning, enzymatic synthesis, and molecular diagnostics at high temperatures (e.g., 65 °C). It has been long believed that the complementary ends must be very long (e.g., >30 bp) to place two DNA fragments nearby for the ligation. In the current study, the length of the complementary portion was systematically varied, and the ligation efficiency was evaluated using the high resolution melting (HRM) method. Unexpectedly, very short oligonucleotides (7-10 nt) were successfully ligated on the complementary overhang attached to a dsDNA at 70 °C. Furthermore, sticky ends with the overhang of only 4 nt long, available after scission with many restriction enzymes, were also efficiently ligated at 45-70 °C. The ligation yield for the 6-nt-long sticky ends was as high as 80%. It was concluded that Tth DNA ligase can be used as a unique tool for DNA manipulation that cannot be otherwise easily accomplished.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China.,CAS Key laboratory of Marine Ecology and Environmental Sciences , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
| | - Jianming Zhu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Chenru Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Guangqing Zhou
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Xin Yu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Huijun Fan
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Ran An
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| | - Makoto Komiyama
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Xingguo Liang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| |
Collapse
|
8
|
Zhu J, Wang J, Cheng K, Chen H, An R, Zhang Y, Komiyama M, Liang X. Effective Characterization of DNA Ligation Kinetics by High-Resolution Melting Analysis. Chembiochem 2019; 21:785-788. [PMID: 31592561 DOI: 10.1002/cbic.201900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Indexed: 12/31/2022]
Abstract
High-resolution melting (HRM) analysis has been improved and applied for the first time to quantitative analysis of enzymatic reactions. By using the relative ratios of peak intensities of substrates and products, the quantitativity of conventional HRM analysis has been improved to allow detailed kinetic analysis. As an example, the ligation of sticky ends through the action of T4 DNA ligase has been kinetically analyzed, with comprehensive data on substrate specificity and other properties having been obtained. For the first time, the kinetic parameters (kobs and apparent Km ) of sticky-end ligation were obtained for both fully matched and mismatched sticky ends. The effect of ATP concentration on sticky-end ligation was also investigated. The improved HRM method should also be applicable to versatile DNA-transforming enzymes, because the only requirement is that the products have Tm values different enough from the substrates.
Collapse
Affiliation(s)
- Jianming Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,CAS Key laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Kai Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, P. R. China
| |
Collapse
|
9
|
Potapov V, Ong JL, Langhorst BW, Bilotti K, Cahoon D, Canton B, Knight TF, Evans TC, Lohman GJS. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining. Nucleic Acids Res 2019; 46:e79. [PMID: 29741723 PMCID: PMC6061786 DOI: 10.1093/nar/gky303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5′-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5′-TNA overhangs ligate extremely inefficiently compared to all other Watson–Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.
Collapse
Affiliation(s)
- Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Jennifer L Ong
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Bradley W Langhorst
- Applications and Product Development, New England Biolabs, Ipswich, MA 01938, USA
| | | | | | | | | | - Thomas C Evans
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | | |
Collapse
|
10
|
Cui Y, Han X, An R, Zhou G, Komiyama M, Liang X. Cyclization of secondarily structured oligonucleotides to single-stranded rings by using Taq DNA ligase at high temperatures. RSC Adv 2018; 8:18972-18979. [PMID: 35539641 PMCID: PMC9080623 DOI: 10.1039/c8ra02804d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022] Open
Abstract
Single-stranded DNA rings play important roles in nanoarchitectures, molecular machines, DNA detection, etc. Although T4 DNA ligase has been widely employed to cyclize single-stranded oligonucleotides into rings, the cyclization efficiency is very low when the oligonucleotides (l-DNAs) take complicated secondary structures at ambient temperatures. In the present study, this problem has been solved by using Thermus aquaticus DNA ligase (Taq DNA ligase) at higher temperatures (65 and 70 °C) where the secondary structures are less stable or completely destroyed. This method is based on our new finding that this ligase successfully functions even when the splint strand is short and forms no stable duplex with l-DNA (at least in the absence of the enzyme). In order to increase the efficiency of cyclization, various operation factors (lengths and sequences of splint, as well as the size of the DNA ring) have been investigated. Based on these results, DNA rings have been successfully synthesized from secondarily structured oligonucleotides in high yields and high selectivity. The present methodology is applicable to the preparation of versatile DNA rings involving complicated secondary structures, which should show novel properties and greatly widen the scope of DNA-based nanotechnology. We have achieved the efficient preparation of single-stranded DNA rings from secondarily structured oligonucleotides.![]()
Collapse
Affiliation(s)
- Yixiao Cui
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Xutiange Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Ran An
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Laboratory for Marine Drugs and Bioproducts
| | - Guangqing Zhou
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Makoto Komiyama
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- National Institute for Materials Science (NIMS)
| | - Xingguo Liang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Laboratory for Marine Drugs and Bioproducts
| |
Collapse
|
11
|
Schneider N, Meier M. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation. RNA (NEW YORK, N.Y.) 2017; 23:250-256. [PMID: 27879431 PMCID: PMC5238799 DOI: 10.1261/rna.057836.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/18/2016] [Indexed: 05/22/2023]
Abstract
Padlock probes are single-stranded DNA molecules that are circularized upon hybridization to their target sequence by a DNA ligase. In the following, the circulated padlock probes are amplified and detected with fluorescently labeled probes complementary to the amplification product. The hallmark of padlock probe assays is a high detection specificity gained by the ligation reaction. Concomitantly, the ligation reaction is the largest drawback for a quantitative in situ detection of mRNAs due to the low affinities of common DNA or RNA ligases to RNA-DNA duplex strands. Therefore, current protocols require that mRNAs be reverse transcribed to DNA before detection with padlock probes. Recently, it was found that the DNA ligase from Paramecium bursaria Chlorella virus 1 (PBCV-1) is able to efficiently ligate RNA-splinted DNA. Hence, we designed a padlock probe assay for direct in situ detection of mRNAs using the PBCV-1 DNA ligase. Experimental single-cell data were used to optimize and characterize the efficiency of mRNA detection with padlock probes. Our results demonstrate that the PBCV-1 DNA ligase overcomes the efficiency limitation of current protocols for direct in situ mRNA detection, making the PBCV-1 DNA ligase an attractive tool to simplify in situ ligation sequencing applications.
Collapse
Affiliation(s)
- Nils Schneider
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies-BIOSS, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies-BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
12
|
The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase. PLoS One 2016; 11:e0150802. [PMID: 26954034 PMCID: PMC4782999 DOI: 10.1371/journal.pone.0150802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/19/2016] [Indexed: 02/02/2023] Open
Abstract
DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.
Collapse
|
13
|
Xu Q, Huang SQ, Ma F, Tang B, Zhang CY. Controllable Mismatched Ligation for Bioluminescence Screening of Known and Unknown Mutations. Anal Chem 2016; 88:2431-9. [DOI: 10.1021/acs.analchem.5b04540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qinfeng Xu
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Si-qiang Huang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fei Ma
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Lohman GJS, Bauer RJ, Nichols NM, Mazzola L, Bybee J, Rivizzigno D, Cantin E, Evans TC. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity. Nucleic Acids Res 2015; 44:e14. [PMID: 26365241 PMCID: PMC4737175 DOI: 10.1093/nar/gkv898] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/28/2015] [Indexed: 11/24/2022] Open
Abstract
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Bybee
- New England BioLabs, Inc., Ipswich, MA 01938-2723, USA
| | | | | | | |
Collapse
|
15
|
Wang P, Joshi P, Alazemi A, Zhang P. Upconversion nanoparticle-based ligase-assisted method for specific and sensitive detection of T790M mutation in epidermal growth factor receptor. Biosens Bioelectron 2014; 62:120-6. [PMID: 24995386 DOI: 10.1016/j.bios.2014.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
In this paper we report a highly specific and sensitive method for the detection of T790M mutation in epidermal growth factor receptor (EGFR). This detection scheme is based on luminescent resonance energy transfer between upconversion nanoparticles and the intercalating dye, SYBR Green I. Target DNA serves as a template for two DNA probes, one of them covalently attached to upconversion nanoparticles, to be joined into a long, hairpin-forming DNA by ligase. The number of the resulting DNA strand, which brings SYBR Green I close to the upconversion nanoparticles, is amplified by thermal cycling. A number of factors affecting the detection specificity and sensitivity, including probe design, ligation temperature, type and amount of ligase, and number of thermal cycles, have been considered and investigated to optimize the performance of the method. The method can easily differentiate the T790M mutation from the wild-type sequence with a mutant-to-wild-type ratio of 1:100. The results show that 0.01pmole of EGFR T790M mutant can be readily detected.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Padmanabh Joshi
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Abdulrahman Alazemi
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
16
|
Zou Z, Qing Z, He X, Wang K, He D, Shi H, Yang X, Qing T, Yang X. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Talanta 2014; 125:306-12. [PMID: 24840448 DOI: 10.1016/j.talanta.2014.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis.
Collapse
Affiliation(s)
- Zhen Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Zhihe Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Taiping Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xiaoxiao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| |
Collapse
|
17
|
Chang CM, Chang WH, Wang CH, Wang JH, Mai JD, Lee GB. Nucleic acid amplification using microfluidic systems. LAB ON A CHIP 2013; 13:1225-42. [PMID: 23407669 DOI: 10.1039/c3lc41097h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the post-human-genome-project era, the development of molecular diagnostic techniques has advanced the frontiers of biomedical research. Nucleic-acid-based technology (NAT) plays an especially important role in molecular diagnosis. However, most research and clinical protocols still rely on the manual analysis of individual samples by skilled technicians which is a time-consuming and labor-intensive process. Recently, with advances in microfluidic designs, integrated micro total-analysis-systems have emerged to overcome the limitations of traditional detection assays. These microfluidic systems have the capability to rapidly perform experiments in parallel and with a high-throughput which allows a NAT analysis to be completed in a few hours or even a few minutes. These features have a significant beneficial influence on many aspects of traditional biological or biochemical research and this new technology is promising for improving molecular diagnosis. Thus, in the foreseeable future, microfluidic systems developed for molecular diagnosis using NAT will become an important tool in clinical diagnosis. One of the critical issues for NAT is nucleic acid amplification. In this review article, recent advances in nucleic acid amplification techniques using microfluidic systems will be reviewed. Different approaches for fast amplification of nucleic acids for molecular diagnosis will be highlighted.
Collapse
Affiliation(s)
- Chen-Min Chang
- Institute of Oral Medicine, National Cheng Kung University, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Xie JJ, Han Z, Liu JH, Liu XP. Expression, purification and biochemical characterization of Methanocaldococcus jannaschii DNA ligase. Protein Expr Purif 2012; 87:79-86. [PMID: 23147204 DOI: 10.1016/j.pep.2012.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/20/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
We describe the biochemical characterization of Methanocaldococcus jannaschii (M. jannaschii) DNA ligase and its potential application in single nucleotide polymorphism (SNP) genotyping. The recombinant M. jannaschii DNA ligase is an ATP-dependent ligase. The ligase activity was dependent on metal ions of Mg(2+) and Mn(2+). The optimal concentrations of ATP cofactor and Mg(2+) ion were 0.01-2 and 10 mM, respectively. The optimal pH value for DNA ligation was 8.5. High concentrations of NaCl inhibited DNA ligation. The effects of mismatches on joining short oligonucleotides by M. jannaschii DNA ligase were fully characterized. The mismatches at the first position 5' to the nick inhibited ligation more than those at the first position 3' to the nick. The mismatches at other positions 5' to the nick (3rd to 7th sites) exhibited less inhibition on ligation. However, the introduction of a C/C mismatch at the third position 5' to the nick could completely inhibit the ligation of the terminal-mismatched nick of an oligonucleotide duplex by M. jannaschii DNA ligase. Therefore, introducing an additional mismatch at the third position 5' to the SNP site is a more effective approach in genotyping by M. jannaschii DNA ligase.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
19
|
Li J, Deng T, Chu X, Yang R, Jiang J, Shen G, Yu R. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem 2010; 82:2811-6. [PMID: 20192245 DOI: 10.1021/ac100336n] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly sensitive and specific colorimetry-based rolling circle amplification (RCA) assay method for single-nucleotide polymorphism genotyping has been developed. A circular template is generated by ligation upon the recognition of a point mutation on DNA targets. An RCA amplification is then initiated using the circular template in the presence of Phi29 polymerase. The RCA product can be digested by a restricting endonuclease, and the cleaved DNA fragments can mediate the aggregation of gold nanoparticle-tagged DNA probes. This causes a colorimetric change of the solution as the indicator of the mutation occurrence, which can be detected using UV-vis spectroscopy or viewed by naked eyes. On the basis of the high amplification efficiency of Phi29 polymerase, a mutated target of approximately 70 fM can be detected in this assay. In addition, the protection of the circle template using phosphorothioated nucleotides allows the digestion reaction to be performed simultaneously in RCA. Moreover, DNA ligase offers high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant targets even when the ratio of the wild-type to the mutant is 10,000:1. The developed RCA-based colorimetric detection scheme was demonstrated for SNP typing of beta-thalassemia gene at position -28 in genomic DNA.
Collapse
Affiliation(s)
- Jishan Li
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Vinogradova O, Pyshnyi D. Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA. Acta Naturae 2010; 2:36-53. [PMID: 22649627 PMCID: PMC3347538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The analysis of DNA nucleotide polymorphisms is one of the main goals of DNA diagnostics. DNA-dependent enzymes (DNA polymerases and DNA ligases) are widely used to enhance the sensitivity and reliability of systems intended for the detection of point mutations in genetic material. In this article, we have summarized the data on the selectiveness of DNA-dependent enzymes and on the structural factors in enzymes and DNA which influence the effectiveness of mismatch discrimination during enzymatic conversion of oligonucleotide probes on a DNA template. The data presented characterize the sensitivity of a series of DNA-dependent enzymes that are widely used in the detection of noncomplementary base pairs in nucleic acid substrate complexes. We have analyzed the spatial properties of the enzyme-substrate complexes. These properties are vital for the enzymatic reaction and the recognition of perfect DNA-substrates. We also discuss relevant approaches to increasing the selectivity of enzyme-dependent reactions. These approaches involve the use of modified oligonucleotide probes which "disturb" the native structure of the DNA-substrate complexes.
Collapse
Affiliation(s)
- O.A. Vinogradova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences
| | - D.V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences
| |
Collapse
|
21
|
Kim J, Mrksich M. Profiling the selectivity of DNA ligases in an array format with mass spectrometry. Nucleic Acids Res 2009; 38:e2. [PMID: 19854942 PMCID: PMC2800213 DOI: 10.1093/nar/gkp827] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This article describes a method for the global profiling of the substrate specificities of DNA ligases and illustrates examples using the Taq and T4 DNA ligases. The method combines oligonucleotide arrays, which offer the benefits of high throughput and multiplexed assays, with mass spectrometry to permit label-free assays of ligase activity. Arrays were prepared by immobilizing ternary biotin-tagged DNA substrates to a self-assembled monolayer presenting a layer of streptavidin protein. The array represented complexes having all possible matched and mismatched base pairs at the 3′ side of the nick site and also included a number of deletions and insertions at this site. The arrays were treated with ligases and adenosine triphosphate or analogs of the nucleotide triphosphate and then analyzed by matrix-assisted laser desorption-ionization mass spectrometry to determine the yields for both adenylation of the 5′-probe strand and joining of the two probe strands. The resulting activity profiles reveal the basis for specificity of the ligases and also point to strategies that use ATP analogs to improve specificity. This work introduces a method that can be applied to profile a broad range of enzymes that operate on nucleic acid substrates.
Collapse
Affiliation(s)
- Joohoon Kim
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
22
|
A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens Bioelectron 2009; 24:3201-7. [DOI: 10.1016/j.bios.2009.03.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/17/2022]
|
23
|
Sinville R, Coyne J, Meagher RJ, Cheng YW, Barany F, Barron A, Soper SA. Ligase detection reaction for the analysis of point mutations using free-solution conjugate electrophoresis in a polymer microfluidic device. Electrophoresis 2009; 29:4751-60. [PMID: 19053073 DOI: 10.1002/elps.200800197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide "drag-tags" onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently labeled LDR/drag-tag conjugate (LDR-dt) products in a multiplexed, single-tube format with mutant:WT ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a PMMA microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the EOF. Typical analysis times for LDR-dt were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40.
Collapse
Affiliation(s)
- Rondedrick Sinville
- Center for BioModular Multi-Scale Microsystems, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Thermus thermophilus as biological model. Extremophiles 2009; 13:213-31. [DOI: 10.1007/s00792-009-0226-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
|
25
|
Conze T, Shetye A, Tanaka Y, Gu J, Larsson C, Göransson J, Tavoosidana G, Söderberg O, Nilsson M, Landegren U. Analysis of genes, transcripts, and proteins via DNA ligation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:215-239. [PMID: 20636060 DOI: 10.1146/annurev-anchem-060908-155239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Analytical reactions in which short DNA strands are used in combination with DNA ligases have proven useful for measuring, decoding, and locating most classes of macromolecules. Given the need to accumulate large amounts of precise molecular information from biological systems in research and in diagnostics, ligation reactions will continue to offer valuable strategies for advanced analytical reactions. Here, we provide a basis for further development of methods by reviewing the history of analytical ligation reactions, discussing the properties of ligation reactions that render them suitable for engineering novel assays, describing a wide range of successful ligase-based assays, and briefly considering future directions.
Collapse
Affiliation(s)
- Tim Conze
- Department of Genetics and Pathology, The Rudbeck Lab, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Detection and serotyping of dengue virus in serum samples by multiplex reverse transcriptase PCR-ligase detection reaction assay. J Clin Microbiol 2008; 46:3276-84. [PMID: 18685000 DOI: 10.1128/jcm.00163-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever is important both for the diagnosis of the disease and for the implementation of epidemiologic control measures. A technique for the multiplex detection and typing of DENV serotypes 1 to 4 (DENV-1 to DENV-4) from clinical samples by PCR-ligase detection reaction (LDR) has been developed. A serotype-specific PCR amplifies the regions of genes C and E simultaneously. The two amplicons are targeted in a multiplex LDR, and the resultant fluorescently labeled ligation products are detected on a universal array. The assay was optimized using 38 DENV strains and was evaluated with 350 archived acute-phase serum samples. The sensitivity of the assay was 98.7%, and its specificity was 98.4%, relative to the results of real-time PCR. The detection threshold was 0.017 PFU for DENV-1, 0.004 PFU for DENV-2, 0.8 PFU for DENV-3, and 0.7 PFU for DENV-4. The assay is specific; it does not cross-react with the other flaviviruses tested (West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, Kunjin virus, Murray Valley virus, Powassan virus, and yellow fever virus). All but 1 of 26 genotypic variants of DENV serotypes in a global DENV panel from different geographic regions were successfully identified. The PCR-LDR assay is a rapid, sensitive, specific, and high-throughput technique for the simultaneous detection of all four serotypes of DENV.
Collapse
|
27
|
Sun Y, Seo MS, Kim JH, Kim YJ, Kim GA, Lee JI, Lee JH, Kwon ST. Novel DNA ligase with broad nucleotide cofactor specificity from the hyperthermophilic crenarchaeon Sulfophobococcus zilligii: influence of ancestral DNA ligase on cofactor utilization. Environ Microbiol 2008; 10:3212-24. [PMID: 18647334 DOI: 10.1111/j.1462-2920.2008.01710.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA ligases are divided into two groups according to their cofactor requirement to form ligase-adenylate, ATP-dependent DNA ligases and NAD(+)-dependent DNA ligases. The conventional view that archaeal DNA ligases only utilize ATP has recently been disputed with discoveries of dual-specificity DNA ligases (ATP/ADP or ATP/NAD(+)) from the orders Desulfurococcales and Thermococcales. Here, we studied DNA ligase encoded by the hyperthermophilic crenarchaeon Sulfophobococcus zilligii. The ligase exhibited multiple cofactor specificity utilizing ADP and GTP in addition to ATP. The unusual cofactor specificity was confirmed via a DNA ligase nick-closing activity assay using a fluorescein/biotin-labelled oligonucleotide and a radiolabelled oligonucleotide. The exploitation of GTP as a catalytic energy source has not to date been reported in any known DNA ligase. This phenomenon may provide evolutionary evidence of the nucleotide cofactor utilization by DNA ligases. To bolster this hypothesis, we summarize and evaluate previous assertions. We contend that DNA ligase evolution likely started from crenarchaeotal DNA ligases and diverged to eukaryal DNA ligases and euryarchaeotal DNA ligases. Subsequently, the NAD(+)-utilizing property of some euryarchaeotal DNA ligases may have successfully differentiated to bacterial NAD(+)-dependent DNA ligases.
Collapse
Affiliation(s)
- Younguk Sun
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Arslan P, Ihara T, Mukae M, Jyo A. The effect of local structural disruption on the yield of photochemical ligation between anthracene-oligonucleotide conjugates. ANAL SCI 2008; 24:173-6. [PMID: 18187868 DOI: 10.2116/analsci.24.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The techniques of chemical ligation have attracted great attention as an alternative to enzymatic joining of DNA ends. Here we introduce the photoligation of anthracene-modified ODN conjugates through anthracene cyclodimer formation. The effect of the positions and the kinds of single base mismatch on the template was evaluated using eight templates with one-base displacements. We found out that the yield of the ligation was affected by mispairing in a position-dependent manner. Such results would be attributed to the disruption of the local structure at the ligation site.
Collapse
Affiliation(s)
- Pelin Arslan
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
29
|
York J, Spetzler D, Xiong F, Frasch WD. Single-molecule detection of DNA via sequence-specific links between F1-ATPase motors and gold nanorod sensors. LAB ON A CHIP 2008; 8:415-419. [PMID: 18305859 DOI: 10.1039/b716744j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report the construction of a novel biosensing nanodevice to detect single, sequence-specific target DNA molecules. Nanodevice assembly occurs through the association of an immobilized F1-ATPase molecular motor and a functionalized gold nanorod via a single 3',5'-dibiotinylated DNA molecule. Target-dependent 3',5'-dibiotinylated DNA bridges form by combining ligation and exonucleation reactions (LXR), with a specificity capable of selecting against a single nucleotide polymorphism (SNP). Using dark field microscopy to detect gold nanorods, quantitation of assembled nanodevices is sufficient to distinguish the presence of as few as 1800 DNA bridges from nonspecifically bound nanorods. The rotary mechanism of F1-ATPase can drive gold nanorod rotation when the nanorod is attached via the DNA bridge. Therefore, rotation discriminates fully assembled devices from nonspecifically bound nanorods, resulting in a sensitivity limit of one zeptomole (600 molecules).
Collapse
Affiliation(s)
- Justin York
- Molecular and Cellular Biology Graduate Program, Faculty of Biomedicine and Biotechnology, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | |
Collapse
|
30
|
Deng T, Li J, Jiang JH, Shen GL, Yu RQ. A sensitive fluorescence anisotropy method for point mutation detection by using core-shell fluorescent nanoparticles and high-fidelity DNA ligase. Chemistry 2007; 13:7725-30. [PMID: 17607685 DOI: 10.1002/chem.200700195] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study reports a proof-of-principle for a sensitive genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) based on fluorescence anisotropy measurements through a core-shell fluorescent nanoparticles assembly and ligase reaction. By incorporating the core-shell fluorescent nanoparticles into fluorescence anisotropy measurements, this assay provided a convenient and sensitive detection assay that enabled straightforward single-base discrimination without the need of complicated operational steps. The assay was implemented via two steps: first, the hybridization reaction that allowed two nanoparticle-tagged probes to hybridize with the target DNA strand and the ligase reaction that generated the ligation between perfectly matched probes while no ligation occurred between mismatched ones were implemented synchronously in the same solution. Then, a thermal treatment at a relatively high temperature discriminated the ligation of probes. When the reaction mixture was heated to denature the duplex formed, the fluorescence anisotropy value of the perfect-match solution does not revert to the initial value, while that of the mismatch again comes back as the assembled fluorescent nanoparticles dispart. The present approach has been demonstrated with the discrimination of a single base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild type and mutant type were successfully scored. Due to its ease of operation and high sensitivity, it was expected that the proposed detection approach might hold great promise in practical clinical diagnosis.
Collapse
Affiliation(s)
- Ting Deng
- State Key Laboratory of Chem/Biosensing and Chemometrics, Chemistry and Chemical Engineering College, Hunan University, Changsha 410082, China
| | | | | | | | | |
Collapse
|
31
|
Li J, Zhong W. Typing of multiple single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay. Anal Chem 2007; 79:9030-8. [PMID: 17973502 DOI: 10.1021/ac701702t] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of suspension array with rolling circle amplification can lead to a sensitive and specific assay for single-nucleotide polymorphisms (SNPs) detection, as demonstrated in this study. A circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase on microspheres. The elongation products were labeled with fluorochrome-tagged probes and detected in a flow cytometer, indicating the mutation occurrence. As low as 10 amol of mutated strands was detected by this assay, and positive mutation detection was achieved with a wild-type to mutant ratio of 10 000:1, which could be attributed to the high amplification efficiency of Phi29, the high binding capacity of the microspheres, and the remarkable precision of DNA ligase in distinguishing mismatched bases at the ligation site. A novel design of using two differently labeled detection probes on the same microsphere to target both the wild-type and mutant samples allowed parallel determination of the heterozygosity for two SNPs (K-ras G12C and TP53 R273H) in PCR amplicons prepared from human genomic DNA extracts. This ability lays the groundwork for further enhancing the assay throughput by using multiple fluorophores and microspheres with distinct properties.
Collapse
Affiliation(s)
- Jishan Li
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
32
|
Feng H. Mutational analysis of bacterial NAD+-dependent DNA ligase: role of motif IV in ligation catalysis. Acta Biochim Biophys Sin (Shanghai) 2007; 39:608-16. [PMID: 17687496 DOI: 10.1111/j.1745-7270.2007.00313.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif IV in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif IV had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.
Collapse
Affiliation(s)
- Hong Feng
- Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
33
|
Buguliskis JS, Casta LJ, Butz CE, Matsumoto Y, Taraschi TF. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I. Mol Biochem Parasitol 2007; 155:128-37. [PMID: 17688957 PMCID: PMC2692355 DOI: 10.1016/j.molbiopara.2007.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 11/18/2022]
Abstract
We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.
Collapse
Affiliation(s)
- Jeffrey S. Buguliskis
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Louis J. Casta
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Charles E. Butz
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yoshihiro Matsumoto
- Medical Science Division, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111
| | - Theodore F. Taraschi
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Address Correspondence: Theodore F. Taraschi, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania, 19107-6731, Tel. 215-503-5020 Fax. 215-503-0206 E-mail:
| |
Collapse
|
34
|
Srivastava SK, Dube D, Kukshal V, Jha AK, Hajela K, Ramachandran R. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: Novel structure-function relationship and identification of a specific inhibitor. Proteins 2007; 69:97-111. [PMID: 17557328 DOI: 10.1002/prot.21457] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mycobacterium tuberculosis codes for an essential NAD+-dependent DNA ligase (MtuLigA) which is a novel, validated, and attractive drug target. We created mutants of the enzyme by systematically deleting domains from the C-terminal end of the enzyme to probe for their functional roles in the DNA nick joining reaction. Deletion of just the BRCT domain from MtuLigA resulted in total loss of activity in in vitro assays. However, the mutant could form an AMP-ligase intermediate that suggests that the defects caused by deletion of the BRCT domain occur primarily at steps after enzyme adenylation. Furthermore, genetic complementation experiments using a LigA deficient E. coli strain demonstrates that the BRCT domain of MtuLigA is necessary for bacterial survival in contrast to E. coli and T. filiformis LigA, respectively. We also report the identification, through virtual screening, of a novel N-substituted tetracyclic indole that competes with NAD+ and inhibits the enzyme with IC50 in the low muM range. It exhibits approximately 15-fold better affinity for MtuLigA compared to human DNA ligase I. In vivo assays using LigA deficient S. typhimurium and E. coli strains suggest that the observed antibacterial activity of the inhibitor arises from specific inhibition of LigA over ATP ligases in the bacteria. In silico ligand-docking studies suggest that the exquisite specificity of the inhibitor arises on account of its mimicking the interactions of NAD+ with MtuLigA. An analysis of conserved water in the binding site of the enzyme suggests strategies for synthesis of improved inhibitors with better specificity and potency.
Collapse
Affiliation(s)
- Sandeep Kumar Srivastava
- Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
35
|
Pingle MR, Granger K, Feinberg P, Shatsky R, Sterling B, Rundell M, Spitzer E, Larone D, Golightly L, Barany F. Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rRNA gene PCR-ligase detection reaction-capillary electrophoresis assay. J Clin Microbiol 2007; 45:1927-35. [PMID: 17428930 PMCID: PMC1933048 DOI: 10.1128/jcm.00226-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have developed a novel high-throughput PCR-ligase detection reaction-capillary electrophoresis (PCR-LDR-CE) assay for the multiplexed identification of 20 blood-borne pathogens (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Acinetobacter baumannii, Neisseria meningitidis, Bacteroides fragilis, Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella abortus), the last four of which are biothreat agents. The method relies on the amplification of two regions within the bacterial 16S rRNA gene, using universal PCR primers and querying the identity of specific single-nucleotide polymorphisms within the amplified regions in a subsequent LDR. The ligation products vary in color and size and are separated by CE. Each organism generates a specific pattern of ligation products, which can be used to distinguish the pathogens using an automated software program we developed for that purpose. The assay has been verified on 315 clinical isolates and demonstrated a detection sensitivity of 98%. Additionally, 484 seeded blood cultures were tested, with a detection sensitivity of 97.7%. The ability to identify geographically variant strains of the organisms was determined by testing 132 isolates obtained from across the United States. In summary, the PCR-LDR-CE assay can successfully identify, in a multiplexed fashion, a panel of 20 blood-borne pathogens with high sensitivity and specificity.
Collapse
Affiliation(s)
- Maneesh R Pingle
- Department of Microbiology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hashimoto M, Hupert ML, Murphy MC, Soper SA, Cheng YW, Barany F. Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations. Anal Chem 2007; 77:3243-55. [PMID: 15889915 DOI: 10.1021/ac048184d] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have fabricated a flow-through biochip assembly that consisted of two different microchips: (1) a polycarbonate (PC) chip for performing an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using an universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for the LDR in a continuous-flow format, in which two primers (discriminating primer that carried the complement base to the mutation being interrogated and a common primer) that flanked the point mutation and were ligated only when the particular mutation was present in the genomic DNA. The miniaturized reactor architecture allowed enhanced reaction speed due to its high surface-to-volume ratio and efficient thermal management capabilities. A PMMA chip was employed as the microarray device, where zip code sequences (24-mers), which were complementary to sequences present on the target, were microprinted into fluidic channels embossed into the PMMA substrate. Microfluidic addressing of the array reduced the hybridization time significantly through enhanced mass transport to the surface-tethered zip code probes. The two microchips were assembled as a single integrated unit with a novel interconnect concept to produce the flow-through microfluidic biochip. A microgasket, fabricated from an elastomer poly(dimethylsiloxane) with a total volume of the interconnecting assembly of <200 nL, was used as the interconnect between the two chips to produce the three-dimensional microfluidic network. We successfully demonstrated the ability to detect one mutant DNA in 100 normal sequences with the biochip assembly. The LDR/hybridization assay using the assembly performed the entire assay at a relatively fast processing speed: 6.5 min for on-chip LDR, 10 min for washing, and 2.6 min for fluorescence scanning (total processing time 19.1 min) and could screen multiple mutations simultaneously.
Collapse
Affiliation(s)
- Masahiko Hashimoto
- Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gao H, Huang J, Barany F, Cao W. Switching base preferences of mismatch cleavage in endonuclease V: an improved method for scanning point mutations. Nucleic Acids Res 2006; 35:e2. [PMID: 17130153 PMCID: PMC1702505 DOI: 10.1093/nar/gkl916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endonuclease V (endo V) recognizes a broad range of aberrations in DNA such as deaminated bases or mismatches. It nicks DNA at the second phosphodiester bond 3′ to a deaminated base or a mismatch. Endonuclease V obtained from Thermotoga maritima preferentially cleaves purine mismatches in certain sequence context. Endonuclease V has been combined with a high-fidelity DNA ligase to develop an enzymatic method for mutation scanning. A biochemical screening of site-directed mutants identified mutants in motifs III and IV that altered the base preferences in mismatch cleavage. Most profoundly, a single alanine substitution at Y80 position switched the enzyme to essentially a C-specific mismatch endonuclease, which recognized and cleaved A/C, C/A, T/C, C/T and even the previously refractory C/C mismatches. Y80A can also detect the G13D mutation in K-ras oncogene, an A/C mismatch embedded in a G/C rich sequence context that was previously inaccessible using the wild-type endo V. This investigation offers insights on base recognition and active site organization. Protein engineering in endo V may translate into better tools in mutation recognition and cancer mutation scanning.
Collapse
Affiliation(s)
| | - Jianmin Huang
- Department of Microbiology and Immunology, The Joan and Sanford I. Weill Medical College of Cornell University1300 York Avenue Box 62, NY 10021, USA
| | - Francis Barany
- Department of Microbiology and Immunology, The Joan and Sanford I. Weill Medical College of Cornell University1300 York Avenue Box 62, NY 10021, USA
| | - Weiguo Cao
- To whom correspondence should be addressed. Tel: +1 864 656 4176; Fax: +1 864 656 0393;
| |
Collapse
|
38
|
Saftalov L, Smith PA, Friedman AM, Bailey-Kellogg C. Site-directed combinatorial construction of chimaeric genes: general method for optimizing assembly of gene fragments. Proteins 2006; 64:629-42. [PMID: 16783818 DOI: 10.1002/prot.20984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Site-directed construction of chimaeric genes by in vitro recombination "mixes-and-matches" precise building blocks from multiple parent proteins, generating libraries of hybrids to be tested for structure-function relationships and/or screened for favorable properties and novel enzymatic activities. A direct annealing and ligation method can construct chimaeric genes without requiring sequence identity between parents, except for the short (approximately 3 nt) sequences of the fragment overhangs used for specific ligation. Careful planning of the assembly process is necessary, though, in order to ensure effective construction of desired fragment assemblies and to avoid undesired assemblies (e.g., repetition of fragments, fragments out of order). We develop algorithms for specific planned ligation of short overhangs (SPLISO) that efficiently explore possible assembly plans, varying the fragment overhangs and the order of ligation steps in the assembly pathway. While there is a combinatorial explosion in the number of possible assembly plans as the number of breakpoints and parent genes increases, we employ a dynamic programming approach to find globally optimal ones in low-order polynomial time (in practice, taking only seconds for basic assembly plans). We demonstrate the effectiveness of our algorithms in planning the assembly of hybrid libraries, under a variety of experimental options and restrictions, including flexibility in the position and amino acid sequence of breakpoints. Our method promises to enable more effective application of site-directed recombination to protein investigation and engineering.
Collapse
Affiliation(s)
- Liz Saftalov
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
39
|
Pang L, Li J, Jiang J, Shen G, Yu R. DNA point mutation detection based on DNA ligase reaction and nano-Au amplification: a piezoelectric approach. Anal Biochem 2006; 358:99-103. [PMID: 16996020 DOI: 10.1016/j.ab.2006.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/24/2006] [Accepted: 06/30/2006] [Indexed: 11/17/2022]
Abstract
A novel piezoelectric method for DNA point mutation detection based on DNA ligase reaction and nano-Au-amplified DNA probes is proposed. A capture probe was designed with the potential point mutation site located at the 3' end and a thiol group at the 5' end to be immobilized on the gold electrode surface of quartz crystal microbalance (QCM). Successive hybridization with the target DNA and detection probe of nano-Au-labeled DNA forms a double-strand DNA (dsDNA). After the DNA ligase reaction and denaturing at an elevated temperature, the QCM frequency would revert to the original value for the target with single-base mismatch, whereas a reduced frequency response would be obtained for the case of the perfect match target. In this way, the purpose of point mutation discrimination could be achieved. The current approach is demonstrated with the identification of a single-base mutation in artificial codon CD17 of the beta-thalassemia gene, and the wild type and mutant type were discriminated successfully. The scanning electron microscope (SEM) image showing that plenty of gold nanoparticles remained on the electrode surface demonstrated that the nano-Au label served as an efficient signal amplification agent in QCM assay. A detection limit of 2.6 x 10(-9)mol/L of oligonucleotides was achieved. Owing to its ease of operation and low detection limit, it is expected that the proposed procedure may hold great promise in both research-based and clinical genomic assays.
Collapse
Affiliation(s)
- Lanlan Pang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Showalter AK, Lamarche BJ, Bakhtina M, Su MI, Tang KH, Tsai MD. Mechanistic comparison of high-fidelity and error-prone DNA polymerases and ligases involved in DNA repair. Chem Rev 2006; 106:340-60. [PMID: 16464009 DOI: 10.1021/cr040487k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Ficht S, Dose C, Seitz O. As fast and selective as enzymatic ligations: unpaired nucleobases increase the selectivity of DNA-controlled native chemical PNA ligation. Chembiochem 2006; 6:2098-103. [PMID: 16208732 DOI: 10.1002/cbic.200500229] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA-controlled reactions offer interesting opportunities in biological, chemical, and nanosciences. In practical applications, such as in DNA sequence analysis, the sequence fidelity of the chemical-ligation reaction is of central importance. We present a ligation reaction that is as fast as and much more selective than enzymatic T4 ligase-mediated oligonucleotide ligations. The selectivity was higher than 3000-fold in discriminating matched from singly mismatched DNA templates. It is demonstrated that this enormous selectivity is the hallmark of the particular ligation architecture, which is distinct from previous ligation architectures designed as "nick ligations". Interestingly, the fidelity of the native chemical ligation of peptide nucleic acids was increased by more than one order of magnitude when performing the ligation in such a way that an abasic-site mimic was formed opposite an unpaired template base. It is shown that the high sequence fidelity of the abasic ligation could facilitate the MALDI-TOF mass-spectrometric analysis of early cancer onset by allowing the detection of as little as 0.2 % of single-base mutant DNA in the presence of 99.8 % wild-type DNA.
Collapse
Affiliation(s)
- Simon Ficht
- Institut für Chemie der Humboldt-Universität zu Berlin, Germany
| | | | | |
Collapse
|
42
|
Marras SAE, Tyagi S, Kramer FR. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clin Chim Acta 2006; 363:48-60. [PMID: 16111667 DOI: 10.1016/j.cccn.2005.04.037] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 04/22/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. METHODS The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. CONCLUSIONS The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.
Collapse
Affiliation(s)
- Salvatore A E Marras
- Department of Molecular Genetics, Public Health Research Institute, Newark, NJ 07103, USA
| | | | | |
Collapse
|
43
|
Langerak P, Nygren AOH, Schouten JP, Jacobs H. Rapid and quantitative detection of homologous and non-homologous recombination events using three oligonucleotide MLPA. Nucleic Acids Res 2005; 33:e188. [PMID: 16340005 PMCID: PMC1310898 DOI: 10.1093/nar/gni187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Embryonic stem (ES) cell technology allows modification of the mouse germline from large deletions and insertions to single nucleotide substitutions by homologous recombination. Identification of these rare events demands an accurate and fast detection method. Current methods for detection rely on Southern blotting and/or conventional PCR. Both the techniques have major drawbacks, Southern blotting is time-consuming and PCR can generate false positives. As an alternative, we here demonstrate a novel approach of Multiplex Ligation-dependent Probe Amplification (MLPA) as a quick, quantitative and reliable method for the detection of homologous, non-homologous and incomplete recombination events in ES cell clones. We have adapted MLPA to detect homologous recombinants in ES cell clones targeted with two different constructs: one introduces a single nucleotide change in the PCNA gene and the other allows for a conditional inactivation of the wild-type PCNA allele. By using MLPA probes consisting of three oligonucleotides we were able to simultaneously detect and quantify both wild-type and mutant alleles.
Collapse
Affiliation(s)
| | | | | | - Heinz Jacobs
- To whom correspondence should be addressed. Tel: +31 20 512 2066; Fax: +31 20 512 2057;
| |
Collapse
|
44
|
Li J, Chu X, Liu Y, Jiang JH, He Z, Zhang Z, Shen G, Yu RQ. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Res 2005; 33:e168. [PMID: 16257979 PMCID: PMC1275593 DOI: 10.1093/nar/gni163] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The present study reported proof-of-principle for a genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) through the gold nanoparticle assembly and the ligase reaction. By incorporating the high-fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation-based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single-base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold nanoparticle-tagged probes to hybrid with the target DNA strand, a ligase reaction that generates the ligation between perfectly matched probes while no ligation occurred between mismatched ones and a thermal treatment at a relatively high temperature that discriminate the ligation of probes. When the reaction mixture was heated to denature the formed duplex, the purple color of the perfect-match solution would not revert to red, while the mismatch gave a red color as the assembled gold nanoparticles disparted. The present approach has been demonstrated with the identification of a single-base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild-type and mutant type were successfully scored. To our knowledge, this was the first report concerning SNP detection based on the ligase reaction and the gold nanoparticle assembly. Owing to its ease of operation and high specificity, it was expected that the proposed procedure might hold great promise in practical clinical diagnosis of gene-mutant diseases.
Collapse
Affiliation(s)
| | | | - Yali Liu
- Clinical Pharmacology Laboratory, Tumor Hospital of Hunan ProvinceChangsha 410012, P. R. China
| | - Jian-Hui Jiang
- To whom correspondence should be addressed. Tel: +86 731 8821355; Fax: +86 731 8821355; or
| | - Zhimin He
- Cancer Research Institute, Xiangya School of Medicine, Central South UniversityChangsha 410078, P. R. China
| | - Zhiwei Zhang
- Cancer Research Institute, Xiangya School of Medicine, Central South UniversityChangsha 410078, P. R. China
| | - Guoli Shen
- To whom correspondence should be addressed. Tel: +86 731 8821355; Fax: +86 731 8821355; or
| | | |
Collapse
|
45
|
Wang B, Potter SJ, Lin Y, Cunningham AL, Dwyer DE, Su Y, Ma X, Hou Y, Saksena NK. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol 2005; 43:2339-44. [PMID: 15872263 PMCID: PMC1153787 DOI: 10.1128/jcm.43.5.2339-2344.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome (SARS) epidemic of 2003 was responsible for 774 deaths and caused significant economic damage worldwide. Since July 2003, a number of SARS cases have occurred in China, raising the possibility of future epidemics. We describe here a rapid, sensitive, and highly efficient assay for the detection of SARS coronavirus (SARS-CoV) in cultured material and a small number (n = 7) of clinical samples. Using rolling circle amplification (RCA), we were able to achieve sensitive detection levels of SARS-CoV RNA in both solid and liquid phases. The main advantage of RCA is that it can be performed under isothermal conditions with minimal reagents and avoids the generation of false-positive results, a problem that is frequently encountered in PCR-based assays. Furthermore, the RCA technology provides a faster, more sensitive, and economical option to currently available PCR-based methods.
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, The University of Sydney, Darcy Rd., Westmead, Sydney, NSW 2145, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gul S, Brown R, May E, Mazzulla M, Smyth MG, Berry C, Morby A, Powell DJ. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay. Biochem J 2005; 383:551-9. [PMID: 15283677 PMCID: PMC1133749 DOI: 10.1042/bj20040054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.
Collapse
Affiliation(s)
- Sheraz Gul
- Assay Development and Compound Profiling, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 4AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pincas H, Pingle MR, Huang J, Lao K, Paty PB, Friedman AM, Barany F. High sensitivity EndoV mutation scanning through real-time ligase proofreading. Nucleic Acids Res 2004; 32:e148. [PMID: 15514109 PMCID: PMC528826 DOI: 10.1093/nar/gnh150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.
Collapse
Affiliation(s)
- Hanna Pincas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Lu J, Tong J, Feng H, Huang J, Afonso CL, Rock DL, Barany F, Cao W. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:37-48. [PMID: 15450174 DOI: 10.1016/j.bbapap.2004.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/26/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.
Collapse
Affiliation(s)
- Jing Lu
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Martins-Pinheiro M, Galhardo RS, Lage C, Lima-Bessa KM, Aires KA, Menck CFM. Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group. BMC Evol Biol 2004; 4:29. [PMID: 15333143 PMCID: PMC518961 DOI: 10.1186/1471-2148-4-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 08/27/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA repair genes encode proteins that protect organisms against genetic damage generated by environmental agents and by-products of cell metabolism. The importance of these genes in life maintenance is supported by their high conservation, and the presence of duplications of such genes may be easily traced, especially in prokaryotic genomes. RESULTS The genome sequences of two Xanthomonas species were used as the basis for phylogenetic analyses of genes related to DNA repair that were found duplicated. Although 16S rRNA phylogenetic analyses confirm their classification at the basis of the gamma proteobacteria subdivision, differences were found in the origin of the various genes investigated. Except for lexA, detected as a recent duplication, most of the genes in more than one copy are represented by two highly divergent orthologs. Basically, one of such duplications is frequently positioned close to other gamma proteobacteria, but the second is often positioned close to unrelated bacteria. These orthologs may have occurred from old duplication events, followed by extensive gene loss, or were originated from lateral gene transfer (LGT), as is the case of the uvrD homolog. CONCLUSIONS Duplications of DNA repair related genes may result in redundancy and also improve the organisms' responses to environmental challenges. Most of such duplications, in Xanthomonas, seem to have arisen from old events and possibly enlarge both functional and evolutionary genome potentiality.
Collapse
Affiliation(s)
- Marinalva Martins-Pinheiro
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Rodrigo S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Claudia Lage
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Bloco G, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Keronninn M Lima-Bessa
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Karina A Aires
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Carlos FM Menck
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| |
Collapse
|
50
|
Liu P, Burdzy A, Sowers LC. DNA ligases ensure fidelity by interrogating minor groove contacts. Nucleic Acids Res 2004; 32:4503-11. [PMID: 15328364 PMCID: PMC516055 DOI: 10.1093/nar/gkh781] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3'-hydroxyl and 5'-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3' side of the ligase junction, but tolerant of mispairs on the 5' side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3' side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson-Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson-Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson-Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3' side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|