1
|
Lee KH, Song J, Kim S, Han SR, Lee SW. Real-time monitoring strategies for optimization of in vitro transcription and quality control of RNA. Front Mol Biosci 2023; 10:1229246. [PMID: 37771458 PMCID: PMC10523567 DOI: 10.3389/fmolb.2023.1229246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
RNA-based therapeutics and vaccines are opening up new avenues for modern medicine. To produce these useful RNA-based reagents, in vitro transcription (IVT) is an important reaction that primarily determines the yield and quality of the product. Therefore, IVT condition should be well optimized to achieve high yield and purity of transcribed RNAs. To this end, real-time monitoring of RNA production during IVT, which allows for fine tuning of the condition, would be required. Currently, light-up RNA aptamer and fluorescent dye pairs are considered as useful strategies to monitor IVT in real time. Fluorophore-labeled antisense probe-based methods can also be used for real-time IVT monitoring. In addition, a high-performance liquid chromatography (HPLC)-based method that can monitor IVT reagent consumption has been developed as a powerful tool to monitor IVT reaction in near real-time. This mini-review briefly introduces some strategies and examples for real-time IVT monitoring and discusses pros and cons of IVT monitoring methods.
Collapse
Affiliation(s)
| | - Jaehwi Song
- R&D Center, Rznomics Inc., Seongnam, Republic of Korea
| | | | | | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam, Republic of Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
2
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
3
|
Efficient computation of co-transcriptional RNA-ligand interaction dynamics. Methods 2018; 143:70-76. [PMID: 29730250 DOI: 10.1016/j.ymeth.2018.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 11/23/2022] Open
Abstract
Riboswitches form an abundant class of cis-regulatory RNA elements that mediate gene expression by binding a small metabolite. For synthetic biology applications, they are becoming cheap and accessible systems for selectively triggering transcription or translation of downstream genes. Many riboswitches are kinetically controlled, hence knowledge of their co-transcriptional mechanisms is essential. We present here an efficient implementation for analyzing co-transcriptional RNA-ligand interaction dynamics. This approach allows for the first time to model concentration-dependent metabolite binding/unbinding kinetics. We exemplify this novel approach by means of the recently studied I-A 2'-deoxyguanosine (2'dG)-sensing riboswitch from Mesoplasma florum.
Collapse
|
4
|
Fang GM, Chamiolo J, Kankowski S, Hövelmann F, Friedrich D, Löwer A, Meier JC, Seitz O. A bright FIT-PNA hybridization probe for the hybridization state specific analysis of a C → U RNA edit via FRET in a binary system. Chem Sci 2018; 9:4794-4800. [PMID: 29910930 PMCID: PMC5982193 DOI: 10.1039/c8sc00457a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
Oligonucleotide probes that show enhanced fluorescence upon nucleic acid hybridization enable the detection and visualization of specific mRNA molecules, in vitro and in cellulo. A challenging problem is the analysis of single nucleotide alterations that occur, for example, when cellular mRNA is subject to C → U editing. Given the length required for uniqueness of the targeted segment, the commonly used probes do not provide the level of sequence specificity needed to discriminate single base mismatched hybridization. Herein we introduce a binary probe system based on fluorescence resonance energy transfer (FRET) that distinguishes three possible states i.e. (i) absence of target, (ii) presence of edited (matched) and (iii) unedited (single base mismatched) target. To address the shortcomings of read-out via FRET, we designed donor probes that avoid bleed through into the acceptor channel and nevertheless provide a high intensity of FRET signaling. We show the combined use of thiazole orange (TO) and an oxazolopyridine analogue (JO), linked as base surrogates in modified PNA FIT-probes that serve as FRET donor for a second, near-infrared (NIR)-labeled strand. In absence of target, donor emission is low and FRET cannot occur in lieu of the lacking co-alignment of probes. Hybridization of the TO/JO-PNA FIT-probe with the (unedited RNA) target leads to high brightness of emission at 540 nm. Co-alignment of the NIR-acceptor strand ensues from recognition of edited RNA inducing emission at 690 nm. We show imaging of mRNA in fixed and live cells and discuss the homogeneous detection and intracellular imaging of a single nucleotide mRNA edit used by nature to post-transcriptionally modify the function of the Glycine Receptor (GlyR).
Collapse
Affiliation(s)
- Ge-Min Fang
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , D-12489 Berlin , Germany . .,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , China
| | - Jasmine Chamiolo
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , D-12489 Berlin , Germany .
| | - Svenja Kankowski
- Zoological Institute , Technical University Braunschweig , Spielmannstr. 7 , D-38106 Braunschweig , Germany
| | - Felix Hövelmann
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , D-12489 Berlin , Germany .
| | - Dhana Friedrich
- Max Delbrück Centrum für Molekulare Medizin , Robert Rössle Straße 10 , 13125 Berlin , Germany.,Technische Universität Darmstadt , Department of Biology , Schnittspahnstraße 13 , 64287 Darmstadt , Germany
| | - Alexander Löwer
- Max Delbrück Centrum für Molekulare Medizin , Robert Rössle Straße 10 , 13125 Berlin , Germany.,Technische Universität Darmstadt , Department of Biology , Schnittspahnstraße 13 , 64287 Darmstadt , Germany
| | - Jochen C Meier
- Zoological Institute , Technical University Braunschweig , Spielmannstr. 7 , D-38106 Braunschweig , Germany
| | - Oliver Seitz
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , D-12489 Berlin , Germany .
| |
Collapse
|
5
|
Ma JL, Yin BC, Ye BC. A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters. Analyst 2017; 141:1301-6. [PMID: 26814697 DOI: 10.1039/c5an02446c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is well-known that proximity-dependent probes containing an analyte recognization site and a signal formation domain could be assembled specifically into a sandwich-like structure (probe-analyte-probe) via introducing an analyte. In this work, using the design for zirconium ion (Zr(4+)) detection as the model, we develop a novel and reliable proximity-dependent DNA-scaffolded silver nanocluster (DNA/AgNC) probe for Zr(4+) detection via target-induced emitter proximity. The proposed strategy undergoes the two following processes: target-mediated emitter pair proximity as target recognition implement and the synthesis of DNA/AgNCs with fluorescence as a signal reporter. Upon combination of the rationally designed probe with Zr(4+), the intact templates were obtained according to the -PO3(2-)-Zr(4+)-PO3(2-)- pattern. The resultant structure with an emitter pair serves as a potent template to achieve highly fluorescent DNA/AgNCs. To verify the universality of the proposed proximity-dependent DNA/AgNC probe, we extend the application of the proximity-dependent probe to DNA and adenosine triphosphate (ATP) detection by virtue of a specific DNA complementary sequence and ATP aptamer as a recognition unit, respectively. The produced fluorescence enhancement of the DNA/AgNCs in response to the analyte concentration allows a quantitative evaluation of the target, including Zr(4+), DNA, and ATP with detection limits of ∼3.00 μM, ∼9.83 nM, and ∼0.81 mM, respectively. The proposed probe possesses good performance with simple operation, cost-effectiveness, good selectivity, and without separation procedures.
Collapse
Affiliation(s)
- Jin-Liang Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
6
|
Ou M, Huang J, Yang X, Quan K, Yang Y, Xie N, Wang K. MnO 2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA. Chem Sci 2017; 8:668-673. [PMID: 28451215 PMCID: PMC5297934 DOI: 10.1039/c6sc03162e] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 01/03/2023] Open
Abstract
The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn2+ ions by intracellular GSH. The results indicated that the MnO2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.
Collapse
Affiliation(s)
- Min Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| | - Yanjing Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| | - Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China . ;
| |
Collapse
|
7
|
Wang S, Ye J, Li X, Liu Z. Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules. Anal Chem 2016; 88:5088-96. [PMID: 27089186 DOI: 10.1021/acs.analchem.5b04507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Förster resonance energy transfer (FRET) has been essential for many applications, in which an appropriate donor-acceptor pair is the key. Traditional dye-to-dye combinations remain the working horses but are rather nonspecifically susceptive to environmental factors (such as ionic strength, pH, oxygen, etc.). Besides, to obtain desired selectivity, functionalization of the donor or acceptor is essential but usually tedious. Herein, we present fluorescent poly(m-aminophenylboronic acid) nanoparticles (poly(mAPBA) NPs) synthesized via a simple procedure and demonstrate a FRET scheme with suppressed environmental effects for the selective sensing of cis-diol biomolecules. The NPs exhibited stable fluorescence properties, resistance to environmental factors, and a Förster distance comparable size, making them ideal donor for FRET applications. By using poly(mAPBA) NPs and adenosine 5'-monophosphate modified graphene oxide (AMP-GO) as a donor and an acceptor, respectively, an environmental effects-suppressed boronate affinity-mediated FRET system was established. The fluorescence of poly(mAPBA) NPs was quenched by AMP-GO while it was restored when a competing cis-diol compounds was present. The FRET system exhibited excellent selectivity and improved sensitivity toward cis-diol compounds. Quantitative inhibition assay of glucose in human serum was demonstrated. As many cis-diol compounds such as sugars and glycoproteins are biologically and clinically significant, the FRET scheme presented herein could find more promising applications.
Collapse
Affiliation(s)
- Shuangshou Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Jin Ye
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xinglin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
8
|
Fritz BR, Jamil OK, Jewett MC. Implications of macromolecular crowding and reducing conditions for in vitro ribosome construction. Nucleic Acids Res 2015; 43:4774-84. [PMID: 25897121 PMCID: PMC4482083 DOI: 10.1093/nar/gkv329] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
In vitro construction of Escherichia coli ribosomes could elucidate a deeper understanding of these complex molecular machines and make possible the production of synthetic variants with new functions. Toward this goal, we recently developed an integrated synthesis, assembly and translation (iSAT) system that allows for co-activation of ribosomal RNA (rRNA) transcription and ribosome assembly, mRNA transcription and protein translation without intact cells. Here, we discovered that macromolecular crowding and reducing agents increase overall iSAT protein synthesis; the combination of 6% w/v Ficoll 400 and 2 mM DTBA yielded approximately a five-fold increase in overall iSAT protein synthesis activity. By utilizing a fluorescent RNA aptamer, fluorescent reporter proteins and ribosome sedimentation analysis, we showed that crowding agents increase iSAT yields by enhancing translation while reducing agents increase rRNA transcription and ribosome assembly. Finally, we showed that iSAT ribosomes possess ∼70% of the protein synthesis activity of in vivo-assembled E. coli ribosomes. This work improves iSAT protein synthesis through the addition of crowding and reducing agents, provides a thorough understanding of the effect of these additives within the iSAT system and demonstrates how iSAT allows for manipulation and analysis of ribosome biogenesis in the context of an in vitro transcription-translation system.
Collapse
Affiliation(s)
- Brian R Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Osman K Jamil
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
9
|
van Nies P, Canton AS, Nourian Z, Danelon C. Monitoring mRNA and Protein Levels in Bulk and in Model Vesicle-Based Artificial Cells. Methods Enzymol 2015; 550:187-214. [DOI: 10.1016/bs.mie.2014.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
van Nies P, Nourian Z, Kok M, van Wijk R, Moeskops J, Westerlaken I, Poolman JM, Eelkema R, van Esch JH, Kuruma Y, Ueda T, Danelon C. Unbiased Tracking of the Progression of mRNA and Protein Synthesis in Bulk and in Liposome-Confined Reactions. Chembiochem 2013; 14:1963-6. [DOI: 10.1002/cbic.201300449] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 12/18/2022]
|
11
|
Niederholtmeyer H, Xu L, Maerkl SJ. Real-time mRNA measurement during an in vitro transcription and translation reaction using binary probes. ACS Synth Biol 2013; 2:411-7. [PMID: 23654250 DOI: 10.1021/sb300104f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vitro transcription and translation reactions have become popular for a bottom-up approach to synthetic biology. Concentrations of the mRNA intermediate are rarely determined, although knowledge of synthesis and degradation rates could facilitate rational engineering of in vitro systems. We designed binary probes to measure mRNA dynamics during cell-free protein synthesis by fluorescence resonance energy transfer. We tested different mRNA variants and show that the location and sequence environment of the probe target sites are important parameters for probe association kinetics and output signal. Best suited for sensitive real-time quantitation of mRNA was a target site located in the 3' untranslated region, which we designed to reduce secondary structure. We used this probe-target pair to refine our knowledge of mRNA dynamics in the commercially available PURE cell-free protein synthesis system and characterized the effect of TetR repressor on mRNA synthesis rates from a T7 promoter.
Collapse
Affiliation(s)
- Henrike Niederholtmeyer
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ling Xu
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
El-Yazbi AF, Loppnow GR. Chimeric RNA–DNA Molecular Beacons for Quantification of Nucleic Acids, Single Nucleotide Polymophisms, and Nucleic Acid Damage. Anal Chem 2013; 85:4321-7. [DOI: 10.1021/ac301669y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amira F. El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB
T6G 2G2 Canada
| | - Glen R. Loppnow
- Department of Chemistry, University of Alberta, Edmonton, AB
T6G 2G2 Canada
| |
Collapse
|
13
|
Zhou H, Wu ZS, Shen GL, Yu RQ. Intermolecular G-quadruplex structure-based fluorescent DNA detection system. Biosens Bioelectron 2013; 41:262-7. [DOI: 10.1016/j.bios.2012.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/05/2012] [Accepted: 08/13/2012] [Indexed: 02/03/2023]
|
14
|
Kellermann SJ, Rath AK, Rentmeister A. Tetramolecular Fluorescence Complementation for Detection of Specific RNAs in Vitro. Chembiochem 2013; 14:200-4. [DOI: 10.1002/cbic.201200734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Indexed: 12/26/2022]
|
15
|
Zhao P, Zhang W, Chen SJ. Cotranscriptional folding kinetics of ribonucleic acid secondary structures. J Chem Phys 2012; 135:245101. [PMID: 22225186 DOI: 10.1063/1.3671644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We develop a systematic helix-based computational method to predict RNA folding kinetics during transcription. In our method, the transcription is modeled as stepwise process, where each step is the transcription of a nucleotide. For each step, the kinetics algorithm predicts the population kinetics, transition pathways, folding intermediates, and the transcriptional folding products. The folding pathways, rate constants, and the conformational populations for cotranscription folding show contrastingly different features than the refolding kinetics for a fully transcribed chain. The competition between the transcription speed and rate constants for the transitions between the different nascent structures determines the RNA folding pathway and the end product of folding. For example, fast transcription favors the formation of branch-like structures than rod-like structures and chain elongation in the folding process may reduce the probability of the formation of misfolded structures. Furthermore, good theory-experiment agreements suggest that our method may provide a reliable tool for quantitative prediction for cotranscriptional RNA folding, including the kinetics for the population distribution for the whole conformational ensemble.
Collapse
Affiliation(s)
- Peinan Zhao
- Department of Physics, Wuhan University, Wuhan, People's Republic of China
| | | | | |
Collapse
|
16
|
Guo J, Ju J, Turro NJ. Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 2012; 402:3115-25. [PMID: 22086400 PMCID: PMC6609299 DOI: 10.1007/s00216-011-5526-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/19/2011] [Indexed: 01/09/2023]
Abstract
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.
Collapse
Affiliation(s)
- Jia Guo
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
17
|
|
18
|
Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 2011; 399:3157-76. [PMID: 21046088 PMCID: PMC3044240 DOI: 10.1007/s00216-010-4304-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022]
Abstract
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.
| |
Collapse
|
19
|
Todoroki K, Yoshida H, Hayama T, Itoyama M, Nohta H, Yamaguchi M. Highly sensitive and selective derivatization-LC method for biomolecules based on fluorescence interactions and fluorous separations. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 879:1325-37. [PMID: 21190905 DOI: 10.1016/j.jchromb.2010.11.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
A fluorescence derivatization LC method is a powerful tool for the analysis with high sensitivity and selectivity of biological compounds. In this review, we introduce new types of fluorescence derivatization LC analysis methods. These are (1) detection-selective derivatization methods based on fluorescence interactions generated from fluorescently labeled analytes: excimer fluorescence derivatization and fluorescence resonance energy transfer (FRET) derivatization; (2) separation-selective derivatization methods using the fluorous separation technique: fluorous derivatization, F-trap fluorescence derivatization, and fluorous scavenging derivatization (FSD).
Collapse
Affiliation(s)
- Kenichiro Todoroki
- Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Tsuji A, Yoshikawa K. ON-OFF switching of transcriptional activity of large DNA through a conformational transition in cooperation with phospholipid membrane. J Am Chem Soc 2010; 132:12464-71. [PMID: 20704293 PMCID: PMC2931404 DOI: 10.1021/ja105154k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Indexed: 01/13/2023]
Abstract
We report that structural transitions of DNA cause the ON-OFF switching of transcriptional activity in cooperation with phospholipid membrane in a reconstituted artificial cell. It has been shown that long DNA of more than 20-30 kilo base-pairs exhibits a discrete conformational transition between a coiled state and highly folded states in aqueous solution, depending on the presence of various condensing agents such as polyamine. Recently, we reported a conformational transition of long DNA through interplay with phospholipid membrane, from a folded state in aqueous phase to an extended coil state on a membrane surface, in a cell-sized water-in-oil microdroplet covered by phosphatidylethanolamine monolayer (Kato, A.; Shindo, E.; Sakaue, T.; Tsuji, A.; Yoshikawa, K. Biophys. J. 2009, 97, 1678-1686). In this study, to elucidate the effects of these conformational changes on the biologically important function of DNA, transcription, we investigated the transcriptional activity of DNA in a microdroplet. Transcriptional activity was evaluated at individual DNA molecule level by a method we developed, in which mRNA molecules are labeled with fluorescent oligonucleotide probes. Transcription proceeded on almost all of the DNA molecules with a coiled conformation in the aqueous phase. In the presence of a tetravalent amine, spermine, the DNA had a folded conformation, and transcription was completely inhibited. When the Mg(2+) concentration was increased, DNA was adsorbed onto the inner surface of the membrane and exhibited an extended conformation. The transcription experiments showed that this conformational transition recovered transcriptional activity; transcription occurred on DNA molecules that were on the membrane.
Collapse
|
22
|
Tsuji A, Yoshikawa K. Real-Time Monitoring of RNA Synthesis in a Phospholipid-Coated Microdroplet as a Live-Cell Model. Chembiochem 2010; 11:351-7. [DOI: 10.1002/cbic.200900603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Gbaj A, Bichenkova E, Walsh L, Savage H, Sardarian A, Etchells L, Gulati A, Hawisa S, Douglas K. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection. Libyan J Med 2009; 4:152-9. [PMID: 21483539 PMCID: PMC3066750 DOI: 10.4176/090801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Collapse
Affiliation(s)
- A Gbaj
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gbaj A, Bichenkova E, Walsh L, Savage H, Sardarian A, Etchells L, Gulati A, Hawisa S, Douglas K. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection. Libyan J Med 2008. [DOI: 10.3402/ljm.v4i4.4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Gbaj
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
- National Centre for Medical Research, Zawia-Libya
| | - E.V. Bichenkova
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | - L. Walsh
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | - H.E. Savage
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | - A.R. Sardarian
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
- Present address; Department of Chemistry, Shiraz University, Shiraz, Iran and
| | - L.L. Etchells
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | - A. Gulati
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | - S. Hawisa
- National Centre for Medical Research, Zawia-Libya
| | - K.T. Douglas
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| |
Collapse
|
25
|
Wang Y, Li X, Liu X, Li T. An i-motif-containing DNA device that breaks certain forms of Watson-Crick interactions. Chem Commun (Camb) 2007:4369-71. [PMID: 17957289 DOI: 10.1039/b710450b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An i-motif-containing DNA device is constructed that is able to break certain forms of Watson-Crick interactions under isothermal conditions.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | | | | | | |
Collapse
|
26
|
Martí AA, Jockusch S, Stevens N, Ju J, Turro NJ. Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc Chem Res 2007; 40:402-9. [PMID: 17458926 DOI: 10.1021/ar600013q] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We outline the different approaches taken by our group in the design of fluorescent hybridization sensors. Molecular beacons (MBs) and binary probes (BPs) using two dyes (2d-MB and 2d-BP, respectively) have been synthesized; these sensors serve as switches in emission upon binding to target biomolecules, such as DNA. These sensors allow for ratiometric fluorescence detection of polynucleotides (PNs) by visualization of the probes when bound to a target PN. Additionally, three-dye MBs (3d-MB) and BPs (3d-BP) have been developed, where an energy-transfer cascade is employed to decrease the overlap between the fluorophore emission spectra, resulting in a low direct excitation of the acceptor fluorophore. Pyrene-based MB (Py-MB) and BP (Py-BP), which possess the advantage of long fluorescence lifetimes, have also been synthesized. Time-resolved fluorescence spectra (TRES) can be used to discriminate between short-lived background fluorescence and long-lived fluorescence of the pyrene probes. This technique was demonstrated by time-resolving the signal of a Py-BP from the background fluorescence in Aplysia californica cell extracts.
Collapse
Affiliation(s)
- Angel A Martí
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
27
|
Martí AA, Li X, Jockusch S, Stevens N, Li Z, Raveendra B, Kalachikov S, Morozova I, Russo JJ, Akins DL, Ju J, Turro NJ. Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection. Tetrahedron 2007; 63:3591-3600. [PMID: 19907676 PMCID: PMC2775546 DOI: 10.1016/j.tet.2006.08.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the design, synthesis and characterization of binary oligonucleotide probes for mRNA detection. The probes were designed to avoid common problems found in standard binary probes such as direct excitation of the acceptor fluorophore and overlap between the donor and acceptor emission spectra. Two different probes were constructed that contained an array of either two or three dyes and that were characterized using steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy and fluorescence depolarization measurements. The three-dye binary probe (BP-3d) consists of a Fam fluorophore which acts as a donor, collecting light and transferring it as energy to Tamra, which subsequently transfers energy to Cy5 when the two probes are hybridized to mRNA. This design allows the use of 488 nm excitation, which avoids the direct excitation of Cy5 and at the same time provides a good fluorescence resonance energy transfer (FRET) efficiency. The two-dye binary probe system (BP-2d) was constructed of Alexa488 and Cy5 fluorophores. Although the overlap between the fluorescence of Alexa488 and the absorption of Cy5 is relatively low, FRET still occurs due to their close physical proximity when the probes are hybridized to mRNA. This framework also decreases the direct excitation of Cy5 and reduces the fluorescence overlap between the donor and the acceptor. Picosecond time-resolved spectroscopy showed a reduction in the fluorescence lifetime of donor fluorophores after the formation of the hybrid between the probes and target mRNA. Interestingly, BP-2d in the presence of mRNA shows a slow rise in the fluorescence decay of Cy5 due to a relatively low FRET rate, which together with the reduction in the Alexa488 lifetime provides a way to improve the signal to background ratio using time-resolved fluorescence spectra (TRES). In addition, fluorescence depolarization measurements showed complete depolarization of the acceptor dyes (Cy5) for both BP-3d (due to sequential FRET steps) and BP-2d (due to the relatively low FRET rate) in the presence of the mRNA target.
Collapse
Affiliation(s)
- Angel A Martí
- Department of Chemistry, Columbia University, New York, NY, 10027
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Robertson KL, Yu L, Armitage BA, Lopez AJ, Peteanu LA. Fluorescent PNA probes as hybridization labels for biological RNA. Biochemistry 2006; 45:6066-74. [PMID: 16681379 DOI: 10.1021/bi052050s] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent labeling of biological RNA is complicated by the narrow range of nucleoside triphosphates that can be used for biological synthesis (i.e., transcription) as well as the inability to site-specifically incorporate them into long RNA transcripts. Noncovalent strategies for labeling RNA rely on attaching fluorescent dyes to hybridization probes which deliver the dye to a specific region of the RNA through Watson-Crick base pairing. This report demonstrates the use of high-affinity peptide nucleic acid (PNA) probes in labeling mRNA transcripts with thiazole orange donor and Alexa-594 acceptor fluorophores. The PNA probes were targeted to sequences flanking splice sites in a pre-mRNA such that before splicing the PNAs were separated by >300 nucleotides (nts) whereas after splicing the separation decreased to <or=12 nts. The decreased separation led to enhanced Förster resonance energy transfer (FRET) for the spliced RNA. Bulk solution and single-molecule fluorescence experiments gave consistent results.
Collapse
Affiliation(s)
- Kelly L Robertson
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The evolution of RNA sequence needs to satisfy three requirements: folding, structure, and function. Studies on folding during transcription are related directly to folding in the cell. Understanding RNA folding during transcription requires the elucidation of structure formation and structural changes of the RNA, and the consideration of intrinsic properties of the RNA polymerase and other proteins that interact with the RNA. This review summarizes the research progress in this area and outlines the enormous challenges facing this field. Significant advancement requires the development of new experimental methods and theoretical considerations in all aspects of transcription and RNA folding.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
30
|
Martí AA, Li X, Jockusch S, Li Z, Raveendra B, Kalachikov S, Russo JJ, Morozova I, Puthanveettil SV, Ju J, Turro NJ. Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucleic Acids Res 2006; 34:3161-8. [PMID: 16769776 PMCID: PMC1477857 DOI: 10.1093/nar/gkl406] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/01/2006] [Accepted: 04/27/2006] [Indexed: 12/28/2022] Open
Abstract
We report here the design, synthesis and application of pyrene binary oligonucleotide probes for selective detection of cellular mRNA. The detection strategy is based on the formation of a fluorescent excimer when two pyrene groups are brought into close proximity upon hybridization of the probes with the target mRNA. The pyrene excimer has a long fluorescence lifetime (>40 ns) compared with that of cellular extracts (approximately 7 ns), allowing selective detection of the excimer using time-resolved emission spectra (TRES). Optimized probes were used to target a specific region of sensorin mRNA yielding a strong excimer emission peak at 485 nm in the presence of the target and no excimer emission in the absence of the target in buffer solution. While direct fluorescence measurement of neuronal extracts showed a strong fluorescent background, obscuring the detection of the excimer signal, time-resolved emission measurements indicated that the emission decay of the cellular extracts is approximately 8 times faster than that of the pyrene excimer probes. Thus, using TRES of the pyrene probes, we are able to selectively detect mRNA in the presence of cellular extracts, demonstrating the potential for application of pyrene excimer probes for imaging mRNAs in cellular environments that have background fluorescence.
Collapse
Affiliation(s)
- Angel A. Martí
- Department of Chemistry, Columbia UniversityNew York, NY 10027, USA
| | - Xiaoxu Li
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia UniversityNew York, NY 10027, USA
| | - Zengmin Li
- Department of Chemical Engineering, Columbia UniversityNew York, NY 10027, USA
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | - Bindu Raveendra
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | - Sergey Kalachikov
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | - James J. Russo
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | - Irina Morozova
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | | | - Jingyue Ju
- Department of Chemical Engineering, Columbia UniversityNew York, NY 10027, USA
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY 10032, USA
| | - Nicholas J. Turro
- Department of Chemistry, Columbia UniversityNew York, NY 10027, USA
- Department of Chemical Engineering, Columbia UniversityNew York, NY 10027, USA
| |
Collapse
|
31
|
Wahlroos R, Toivonen J, Tirri M, Hänninen P. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers. J Fluoresc 2006; 16:379-86. [PMID: 16791502 DOI: 10.1007/s10895-006-0084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/21/2006] [Indexed: 11/29/2022]
Abstract
The use of two-photon excitation of fluorescence for detection of fluorescence resonance energy transfer (FRET) was studied for a selected fluorescent donor-acceptor pair. A method based on labeled DNA was developed for controlling the distance between the donor and the acceptor molecules. The method consists of hybridization of fluorescent oligonucleotides to a complementary single-stranded target DNA. As the efficiency of FRET is strongly distance dependent, energy transfer does not occur unless the fluorescent oligonucleotides and the target DNA are hybridized. A high degree of DNA hybridization and an excellent FRET efficiency were verified with one-photon excited fluorescence studies. Excitation spectra of fluorophores are usually wider in case of two-photon excitation than in the case of one-photon excitation. This makes the selective excitation of donor difficult and might cause errors in detection of FRET with two-photon excited fluorescence. Different techniques to analyze the FRET efficiency from two-photon excited fluorescence data are discussed. The quenching of the donor fluorescence intensity turned to be the most consistent way to detect the FRET efficiency. The two-photon excited FRET is shown to give a good response to the distance between the donor and the acceptor molecules.
Collapse
Affiliation(s)
- Rina Wahlroos
- Laboratory of Biophysics, Institute of Biomedicine, University of Turku, P.O. Box 123, 20521 Turku, Finland.
| | | | | | | |
Collapse
|
32
|
Yoshitake M, Nohta H, Yoshida H, Yoshitake T, Todoroki K, Yamaguchi M. Selective Determination of Native Fluorescent Bioamines through Precolumn Derivatization and Liquid Chromatography Using Intramolecular Fluorescence Resonance Energy Transfer Detection. Anal Chem 2005; 78:920-7. [PMID: 16448069 DOI: 10.1021/ac051414j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we introduce a novel approach for the highly selective and sensitive analysis of native fluorescent bioamines (indoleamines and catecholamines). This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the bioamines' amino groups. In this detection process, we monitored the FRET from the native fluorescent moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 15 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated the FRET most effectively. The OPA derivatives of the native fluorescent bioamines emitted OPA fluorescence (445 nm) through an intermolecular FRET process when they were excited at the excitation maximum wavelengths of the native fluorescent bioamines (280 nm). The generation of FRET was confirmed through comparison with the analysis of a nonfluorescent amine (isoleucine) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the indoleamines and catecholamines when performing LC on an ODS column. The detection limits (signal-to-noise ratio, 3) for the indoleamines and catecholamines, at a 20-muL injection volume, were 17-120 and 28-200 fmol, respectively. The sensitivity of the intramolecular FRET-forming derivatization method is higher than those of systems that take advantage of both native fluorescence detection (i.e., without derivatization) and the conventional detection of OPA derivatives. Furthermore, this method provides enough selectivity and sensitivity for the determination of the indoleamines present in the urine of healthy humans.
Collapse
Affiliation(s)
- Makoto Yoshitake
- Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Johnan, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Ichinose H, Kitaoka M, Okamura N, Maruyama T, Kamiya N, Goto M. Detection of Single-Base Mutations by Fluorogenic Ribonuclease Protection Assay. Anal Chem 2005; 77:7047-53. [PMID: 16255608 DOI: 10.1021/ac050782k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ribonuclease protection assay is a generally applicable technique for the detection of known mutations. We have developed a simple and rapid method for mutation detection based on the ribonuclease protection assay using fluorescently labeled oligodeoxyribonucleotide probes. The fluorogenic ribonuclease protection (FRAP) assay uses two differently labeled oligodeoxyribonucleotides, a donor probe and an acceptor probe, to obtain a fluorescence resonance energy transfer (FRET) signal. We have utilized the FRAP assay for the detection of a single-base mutation in the YMDD motif of the hepatic B virus DNA polymerase gene. The occurrence of mismatch-selective RNA cleavage was successfully discriminated by measuring the FRET signal between the donor and acceptor probes. Moreover, mutation sensing was successfully visualized by a UV transillumination. This simple and rapid mutation sensing method should facilitate a high-throughput mutation analysis.
Collapse
|
34
|
Nomura Y, Kinjo M. Real-time monitoring of in vitro transcriptional RNA by using fluorescence correlation spectroscopy. Chembiochem 2005; 5:1701-3. [PMID: 15526332 DOI: 10.1002/cbic.200400046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasutomo Nomura
- Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa 992-8510, Japan.
| | | |
Collapse
|
35
|
Tsourkas A, Behlke MA, Xu Y, Bao G. Spectroscopic Features of Dual Fluorescence/Luminescence Resonance Energy-Transfer Molecular Beacons. Anal Chem 2003; 75:3697-703. [PMID: 14572032 DOI: 10.1021/ac034295l] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular beacons have the potential to become a powerful tool in gene detection and quantification in living cells. Here we report a novel dual molecular beacons approach to reduce false-positive signals in detecting target nucleic acids in homogeneous assays. A pair of molecular beacons, each containing a fluorescence quencher and a reporter fluorophore, one with a donor and a second with an acceptor fluorophore, hybridize to adjacent regions on the same target resulting in fluorescence resonance energy transfer (FRET). The detection of a FRET signal leads to a substantially increased signal-to-background ratio compared with that seen in single molecular beacon assays and enables discrimination between fluorescence due to specific probe/target hybridization and a variety of possible false-positive events. Further, when a lanthanide chelate is used as a donor in a dual-probe assay, extremely high signal-to-background ratios can be achieved owing to the long lifetime and sharp emission peaks of the donor and the time-gated detection of acceptor fluorescence emission. These new approaches allow for the ultrasensitive detection of target molecules in a way that could be readily applied to real-time imaging of gene expression in living cells.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
36
|
Ishibashi K, Tsuji A. IL-2 or IL-4 mRNA as a potential flow cytometric marker molecule for selective collection of living T helper 1 or T helper 2 lymphocytes. Anal Chem 2003; 75:2715-23. [PMID: 12948141 DOI: 10.1021/ac0206824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flow cytometry has been widely used to analyze and sort out particular types of living cells that have specific marker molecules. In many cases, marker proteins are present on the cell surface and are detected by monoclonal antibodies against them. However, there are some cases in which cells do not have specific marker molecules on their surface. In this situation, it would be useful if mRNA that is expressed specifically in the particular cell could be used as a marker molecule. We previously reported that mRNA can be detected in living cells by hybridizing a pair of fluoreophore (donor or acceptor)-labeled oligonucleotides to adjacent locations on the target mRNA in the cytoplasm of cells (Tsuji, A.; Koshimoto, H.; Sato, Y.; Hirano, M.; Sei-Iida, Y.; Kondo, S.; Ishibashi, K. Biophys. J. 2000, 78, 3260-3274). On the formed hybrid of the two fluorescent oligonucleotides with the target mRNA, the distance between the two fluorophores becomes very close, which results in fluorescence resonance energy transfer (FRET). Combining this fluorescent labeling method for mRNA with flow cytometry, we have examined the isolation of living CD4+ T helper lymphocytes expressing IL-2 mRNA (Th1) or IL-4 mRNA (Th2). A pair of fluorescent oligonucleotides for hybridizing to IL-2 or IL-4 mRNA were introduced into activated CD4+ T lymphocytes by electroporation. The cells were applied to FACS and analyzed by FRET signals. Th1 or Th2 lymphocytes were exclusively sorted from their mixed populations in activated CD4+ T cells. Our results demonstrate that it is possible to use mRNA as marker molecules to analyze and isolate living cells in flow cytometry.
Collapse
Affiliation(s)
- Kaname Ishibashi
- Laboratory of Molecular Biophotonics, 5000 Hirakuchi, Hamakita 434-8555, Japan
| | | |
Collapse
|
37
|
Yamana K, Iwai T, Ohtani Y, Sato S, Nakamura M, Nakano H. Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer fluorescence changes upon hybridization with DNA. Bioconjug Chem 2002; 13:1266-73. [PMID: 12440862 DOI: 10.1021/bc025530u] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis, and properties of a new pyrene excimer-forming probe of DNA have been described. 2,2-(Aminomethyl)propanediol was converted by the reaction with 1-pyrenebutylic acid to bis-pyrene-modified propanediol as a fluorescent non-nucleosidic linker. The bis-pyrene-modified linker can be incorporated via phosphoramidite chemistry into the 5'-terminal or internal positions of oligonucleotides (ODNs). The terminally modified ODNs showed almost similar affinity for complementary DNA when compared with the corresponding unmodified ODNs. The duplexes containing the bis-pyrene in the main chain exhibited higher melting temperatures relative to the corresponding duplexes containing propanediol linker at the same position. The UV and CD spectral studies indicate that the stacking interactions between the pyrene and DNA bases occur in the internally modified duplex and do not in the terminally modified duplex. The bis-pyrene modified linker itself displays excimer (E at 480 nm) and monomer (M at 380 nm) emission in a quantum yield (QY) of 0.17 and the E/M intensity ratio of 15. Incorporation of this linker into the terminal or internal positions of ODNs reduced the QY (0.003-0.009) and the E/M ratio (0.3-0.8). While small changes in the QY and E/M ratio was obtained in binding of the internally labeled ODNs to DNA, up to 27-fold increase in the QY and 17-fold increase in the E/M ratio was observed upon hybridization of the terminally labeled ODNs with DNA. The excimer and monomer fluorescence changes were found to be sensitive to a mismatch base present in the target DNA. The bis-pyrene-modified ODNs thus provide a sequence-sepcific fluorescent probe of DNA.
Collapse
Affiliation(s)
- Kazushige Yamana
- Department of Applied Chemistry, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Tsourkas A, Behlke MA, Bao G. Structure-function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Res 2002; 30:4208-15. [PMID: 12364599 PMCID: PMC140536 DOI: 10.1093/nar/gkf536] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular beacons are oligonucleotide probes capable of forming a stem-loop hairpin structure with a reporter dye at one end and a quencher at the other end. Conventional molecular beacons are designed with a target-binding domain flanked by two complementary short arm sequences that are independent of the target sequence. Here we report the design of shared-stem molecular beacons with one arm participating in both stem formation when the beacon is closed and target hybridization when it is open. We performed a systematic study to compare the behavior of conventional and shared-stem molecular beacons by conducting thermodynamic and kinetic analyses. Shared-stem molecular beacons form more stable duplexes with target molecules than conventional molecular beacons; however, conventional molecular beacons may discriminate between targets with a higher specificity. For both conventional and shared-stem molecular beacons, increasing stem length enhanced the ability to differentiate between wild-type and mutant targets over a wider range of temperatures. Interestingly, probe-target hybridization kinetics were similar for both classes of molecular beacons and were influenced primarily by the length and sequence of the stem. These findings should enable better design of molecular beacons for various applications.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive, Suite 2306, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
39
|
Lye GJ, Dalby PA, Woodley JM. Better Biocatalytic Processes Faster: New Tools for the Implementation of Biocatalysis in Organic Synthesis. Org Process Res Dev 2002. [DOI: 10.1021/op025542a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gary J. Lye
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Paul A. Dalby
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - John M. Woodley
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
40
|
Didenko VV. DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 2001; 31:1106-16, 1118, 1120-1. [PMID: 11730017 PMCID: PMC1941713 DOI: 10.2144/01315rv02] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is widely used in biomedical research as a reporter method. Oligonucleotides with a DNA backbone and one or several chromophore tags have found multiple applications as FRET probes. They are especially advantageous for the real-time monitoring of biochemical reactions and in vivo studies. This paper reviews the design and applications of various DNA-based probes that use FRET The approaches used in the design of new DNA FRET probes are discussed.
Collapse
Affiliation(s)
- V V Didenko
- Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
41
|
Molenaar C, Marras SA, Slats JC, Truffert JC, Lemaître M, Raap AK, Dirks RW, Tanke HJ. Linear 2' O-Methyl RNA probes for the visualization of RNA in living cells. Nucleic Acids Res 2001; 29:E89-9. [PMID: 11522845 PMCID: PMC55901 DOI: 10.1093/nar/29.17.e89] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
U1snRNA, U3snRNA, 28 S ribosomal RNA, poly(A) RNA and a specific messenger RNA were visualized in living cells with microinjected fluorochrome-labeled 2' O-Methyl oligoribonucleotides (2' OMe RNA). Antisense 2' OMe RNA probes showed fast hybridization kinetics, whereas conventional oligodeoxyribonucleotide (DNA) probes did not. The nuclear distributions of the signals in living cells were similar to those found in fixed cells, indicating specific hybridization. Cytoplasmic ribosomal RNA, poly(A) RNA and mRNA could hardly be visualized, mainly due to a rapid entrapment of the injected probes in the nucleus. The performance of linear probes was compared with that of molecular beacons, which due to their structure should theoretically fluoresce only upon hybridization. No improvements were achieved however with the molecular beacons used in this study, suggesting opening of the beacons by mechanisms other than hybridization. The results show that linear 2' OMe RNA probes are well suited for RNA detection in living cells, and that these probes can be applied for dynamic studies of highly abundant nuclear RNA. Furthermore, it proved feasible to combine RNA detection with that of green fluorescent protein-labeled proteins in living cells. This was applied to show co-localization of RNA with proteins and should enable RNA-protein interaction studies.
Collapse
MESH Headings
- Animals
- Cell Line
- Chromosomal Proteins, Non-Histone/genetics
- Cytomegalovirus/genetics
- Fluorescent Dyes/chemistry
- Green Fluorescent Proteins
- Humans
- In Situ Hybridization, Fluorescence
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microinjections
- Microscopy, Fluorescence/methods
- Nuclear Proteins/genetics
- Poly A/genetics
- Poly A/metabolism
- RNA/genetics
- RNA/metabolism
- RNA Probes/administration & dosage
- RNA Probes/chemistry
- RNA Probes/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Serine-Arginine Splicing Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Molenaar
- Department of Molecular Cell Biology, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsuji A, Sato Y, Hirano M, Suga T, Koshimoto H, Taguchi T, Ohsuka S. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophys J 2001; 81:501-15. [PMID: 11423432 PMCID: PMC1301529 DOI: 10.1016/s0006-3495(01)75717-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells.
Collapse
Affiliation(s)
- A Tsuji
- Laboratory of Molecular Biophotonics, Hamakita 434-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Schmidt A, Sivaraman J, Li Y, Larocque R, Barbosa JA, Smith C, Matte A, Schrag JD, Cygler M. Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism. Biochemistry 2001; 40:5151-60. [PMID: 11318637 DOI: 10.1021/bi002204y] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Amino-3-ketobutyrate CoA ligase (KBL, EC 2.3.1.29) is a pyridoxal phosphate (PLP) dependent enzyme, which catalyzes the second reaction step on the main metabolic degradation pathway for threonine. It acts in concert with threonine dehydrogenase and converts 2-amino-3-ketobutyrate, the product of threonine dehydrogenation by the latter enzyme, with the participation of cofactor CoA, to glycine and acetyl-CoA. The enzyme has been well conserved during evolution, with 54% amino acid sequence identity between the Escherichia coli and human enzymes. We present the three-dimensional structure of E. coli KBL determined at 2.0 A resolution. KBL belongs to the alpha family of PLP-dependent enzymes, for which the prototypic member is aspartate aminotransferase. Its closest structural homologue is E. coli 8-amino-7-oxononanoate synthase. Like many other members of the alpha family, the functional form of KBL is a dimer, and one such dimer is found in the asymmetric unit in the crystal. There are two active sites per dimer, located at the dimer interface. Both monomers contribute side chains to each active/substrate binding site. Electron density maps indicated the presence in the crystal of the Schiff base intermediate of 2-amino-3-ketobutyrate and PLP, an external aldimine, which remained bound to KBL throughout the protein purification procedure. The observed interactions between the aldimine and the side chains in the substrate binding site explain the specificity for the substrate and provide the basis for a detailed proposal of the reaction mechanism of KBL. A putative binding site of the CoA cofactor was assigned, and implications for the cooperation with threonine dehydrogenase were considered.
Collapse
Affiliation(s)
- A Schmidt
- Biotechnology Research Institute and Montréal Joint Centre for Structural Biology, National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|