1
|
Lada AG, Krick CF, Kozmin SG, Mayorov VI, Karpova TS, Rogozin IB, Pavlov YI. Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:131-46. [PMID: 21568845 PMCID: PMC3906858 DOI: 10.1134/s0006297911010135] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymatic deamination of bases in DNA or RNA leads to an alteration of flow of genetic information. Adenosine deaminases edit RNA (ADARs, TADs). Specialized cytidine deaminases are involved in RNA/DNA editing in lipid metabolism (APOBEC1) and in innate (APOBEC3 family) and humoral (AID) immunity. APOBEC2 is required for proper muscle development and, along with AID, was implicated in demethylation of DNA. The functions of APOBEC4, APOBEC5, and other deaminases recently discovered by bioinformatics approaches are unknown. What is the basis for the diverse biological functions of enzymes with similar enzyme structure and the same principal enzymatic reaction? AID, APOBEC1, lamprey CDA1, and APOBEC3G enzymes cause uracil DNA glycosylase-dependent induction of mutations when overproduced ectopically in bacteria or yeast. APOBEC2, on the contrary, is nonmutagenic. We studied the effects of the expression of various deaminases in yeast and bacteria. The mutagenic specificities of four deaminases, hAID, rAPOBEC1, hAPOBEC3G, and lamprey CDA1, are strikingly different. This suggests the existence of an intrinsic component of deaminase targeting. The expression of yeast CDD1 and TAD2/TAD3, human APOBEC4, Xanthomonas oryzae APOBEC5, and deaminase encoded by Micromonas sp. gene MICPUN_56782 was nonmutagenic. A lack of a mutagenic effect for Cdd1 is expected because the enzyme functions in the salvage of pyrimidine nucleotides, and it is evolutionarily distant from RNA/DNA editing enzymes. The reason for inactivity of deaminases grouped with APOBEC2 is not obvious from their structures. This can not be explained by protein insolubility and peculiarities of cellular distribution and requires further investigation.
Collapse
Affiliation(s)
- A. G. Lada
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - C. Frahm Krick
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - S. G. Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - V. I. Mayorov
- Mercer University School of Medicine, Macon, GA 31207, USA
| | - T. S. Karpova
- National Cancer Institute, Center for Cancer Research Core Imaging Facility, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, 20892, USA
| | - I. B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Y. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Smith HC. Measuring editing activity and identifying cytidine-to-uridine mRNA editing factors in cells and biochemical isolates. Methods Enzymol 2007; 424:389-416. [PMID: 17662851 DOI: 10.1016/s0076-6879(07)24018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytidine deaminases with the capacity to act on nucleic acids play a critical role in regulating the proteome through diversification of expressed sequence beyond that encoded in the genome. A family of these enzymes, known as the APOBEC family of cytidine deaminases, has been identified in mammalian cells. APOBEC-1 edits messenger RNA, whereas other family members affect mRNA coding capacity by editing single-stranded DNA in expressed regions of the genomes. Biochemical isolation and analysis of APOBEC proteins and their interacting factors have led to an understanding of the diverse cellular processes including lipoprotein metabolism, antibody production, viral infectivity, and cancer. Practical approaches will be described for the measurement of editing activity and the analysis of proteins involved in C-to-U and dC-to-dU editing.
Collapse
Affiliation(s)
- Harold C Smith
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
3
|
Krause K, Marcu KB, Greeve J. The cytidine deaminases AID and APOBEC-1 exhibit distinct functional properties in a novel yeast selectable system. Mol Immunol 2005; 43:295-307. [PMID: 15963568 PMCID: PMC1307530 DOI: 10.1016/j.molimm.2005.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Indexed: 11/20/2022]
Abstract
Activation-induced cytidine deaminase (AID) is indispensable for immunoglobulin maturation by somatic hypermutations and class switch recombination and is supposed to deaminate cytidines in DNA, while its homolog APOBEC-1 edits apolipoprotein (apo) B mRNA by cytidine deamination. We studied the editing activity of APOBEC-1 and AID in yeast using the selectable marker Gal4 linked to its specific inhibitor protein Gal80 via an apo B cassette (Gal4-C) or via the variable region of a mouse immunoglobulin heavy chain gene (Gal4-VH). Expression of APOBEC-1 induced C to U editing in up to 15% of the Gal4-C transcripts, while AID was inactive in this reaction even in the presence of the APOBEC-1 complementation factor. After expression of APOBEC-1 as well as AID approximately 10(-3) of yeast cells survived low stringency selection and expressed beta-galactosidase. Neither AID nor APOBEC-1 mutated the VH sequence of Gal4-VH, and consequently the yeast colonies did not escape high stringent selection. AID, however, induced frequent plasmid recombinations that were only rarely observed with APOBEC-1. In conclusion, AID cannot substitute APOBEC-1 to edit the apo B mRNA, and the expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed Gal4-VH sequence. Cofactors for AID induced somatic hypermutations of immunoglobulin variable regions, that are present in B cells and a variety of non-B cells, appear to be missing in yeast. In contrast to APOBEC-1, AID alone does not exhibit an intrinsic specificity for its target sequences.
Collapse
Affiliation(s)
- Kristina Krause
- From the Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Kenneth B. Marcu
- Biochemistry and Cell Biology Department, Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, USA and CRBA Laboratory, S. Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Jobst Greeve
- From the Department of Clinical Research, University of Berne, Berne, Switzerland
- Department of General Internal Medicine, Inselspital-University Hospital Berne, Berne, Switzerland
- * Correspondence: Jobst Greeve, Department of Internal Medicine, Inselspital-University Hospital Berne, CH-3010 Berne, Switzerland, Tel: 0041-31-6320146 Fax: 0041-31-6328885 E-mail:
| |
Collapse
|
4
|
Sowden MP, Lehmann DM, Lin X, Smith CO, Smith HC. Identification of novel alternative splice variants of APOBEC-1 complementation factor with different capacities to support apolipoprotein B mRNA editing. J Biol Chem 2003; 279:197-206. [PMID: 14570923 DOI: 10.1074/jbc.m307920200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel mRNA transcripts have been identified that result from species- and tissue-specific, alternative polyadenylation and splicing of the pre-mRNA encoding the apolipoprotein B (apoB) editing catalytic subunit 1 (APOBEC-1) complementation factor (ACF) family of related proteins. The alternatively processed mRNAs encode 43- and 45-kDa proteins that are components of the previously identified p44 cluster of apoB RNA binding, editosomal proteins. Recombinant ACF45 displaced ACF64 and ACF43 in mooring sequence RNA binding but did not demonstrate strong binding to APOBEC-1. In contrast, ACF43 bound strongly to APOBEC-1 but demonstrated weak binding to mooring sequence RNA. Consequently ACF45/43 complemented APOBEC-1 in apoB mRNA editing with less efficiency than full-length ACF64. These data, together with the finding that all ACF variants were co-expressed in rat liver nuclei (the site of apoB mRNA editing), suggested that ACF variants might compete with one another for APOBEC-1 and apoB mRNA binding and thereby contribute to the regulation of apoB mRNA editing. In support for this hypothesis, the ratio of nuclear ACF65/64 to ACF45/43 decreased when hepatic editing was inhibited by fasting and increased when editing was re-stimulated by refeeding. These findings suggested a new model for the regulation of apoB mRNA editing in which the catalytic potential of editosomes is modulated at the level of their assembly by alterations in the relative abundance of multiple related RNA-binding auxiliary proteins and the expression level of APOBEC-1.
Collapse
Affiliation(s)
- Mark P Sowden
- Department of Biochemistry and Biophysics, University of Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
5
|
Thompson FJ, Britton C, Wheatley I, Maitland K, Walker G, Anant S, Davidson NO, Devaney E. Biochemical and molecular characterization of two cytidine deaminases in the nematode Caenorhabditis elegans. Biochem J 2002; 365:99-107. [PMID: 12071843 PMCID: PMC1222660 DOI: 10.1042/bj20011814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two cytidine deaminases (CDDs) from the free-living nematode Caenorhabditis elegans have been cloned and characterized. Both Ce-CDD-1 and Ce-CDD-2 are authentic deaminases and both exhibit RNA-binding activity towards AU-rich templates. In order to study their temporal and spatial expression patterns in the worm, reporter gene constructs were made using approx. 2 kb of upstream sequence. Transfection of C. elegans revealed that both genes localized to the cells of the intestine, although their temporal expression patterns were different. Expression of Ce-cdd-1 peaked in the early larval stages, whereas Ce-cdd-2 was expressed in all life cycle stages examined. RNA-interference (RNAi) assays were performed for both genes, either alone or in combination, but only cdd-2 RNAi produced a consistent visible phenotype. A proportion of eggs laid from these worms were swollen and distorted in shape.
Collapse
Affiliation(s)
- Fiona J Thompson
- Department of Veterinary Parasitology, University of Glasgow, Bearsden Road, Glasgow G61 1QH, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lellek H, Welker S, Diehl I, Kirsten R, Greeve J. Reconstitution of mRNA editing in yeast using a Gal4-apoB-Gal80 fusion transcript as the selectable marker. J Biol Chem 2002; 277:23638-44. [PMID: 11976346 DOI: 10.1074/jbc.m203517200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a fusion transcript of Gal4 linked to its specific inhibitor protein Gal80 by 276 nucleotides of apolipoprotein (apo) B sequence as a selectable marker for mRNA editing. Editing of apoB mRNA is catalyzed by an editing enzyme complex that introduces a stop codon by deamination of C to U. The catalytic subunit APOBEC-1 is a cytidine deaminase and requires a second essential component recently cloned and termed APOBEC-1 complementing factor (ACF) or APOBEC-1-stimulating protein (ASP). The aim of this study was to demonstrate that APOBEC-1 plus ACF/ASP comprise all that is required for editing of apoB mRNA in vivo. Expression of APOBEC-1 and Gal4 fused to its inhibitor Gal80 by an intervening unedited apoB sequence (Gal4-apoB(C)-Gal80) did not result in the Gal4-dependent expression of HIS3 and beta-galactosidase in the yeast strain CG1945. Co-expression of APOBEC-1 and ACF/ASP induced editing of the apoB site in up to 13% of the Gal4-apoB(C)-Gal80 transcripts and enabled selection of yeast cells for robust expression of HIS3 and beta-galactosidase. Additional expression of the alternative splicing regulatory protein KSRP increased the editing of the apoB site by APOBEC-1 and ACF/ASP to 21%. Thus, APOBEC-1 and ACF/ASP represent the core apoB mRNA editing enzyme in vivo. This study demonstrates for the first time the successful use of a selectable marker for mRNA editing. The Gal4-Gal80 system is analogous to the two-hybrid assay and may have broader applications for the study of other mRNA processing reactions.
Collapse
Affiliation(s)
- Heinrich Lellek
- Klinik und Poliklinik für Innere Medizin, Kernklinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Sowden MP, Smith HC. Commitment of apolipoprotein B RNA to the splicing pathway regulates cytidine-to-uridine editing-site utilization. Biochem J 2001; 359:697-705. [PMID: 11672445 PMCID: PMC1222192 DOI: 10.1042/0264-6021:3590697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A tripartite motif located in the centre of the 7.5 kb exon 26 of apolipoprotein B (apoB) mRNA directs editosome assembly and site-specific cytidine-to-uridine editing at nucleotide 6666. apoB mRNA editing is a post-transcriptional event, occurring primarily at the time exon 26 is spliced or at a time after splicing, but before nuclear export. We show, through reporter RNA constructs, that RNA splice sites suppress editing of precursor RNAs when placed proximal or distal to the editing site. Processed RNAs were edited more efficiently than precursor RNAs. Mutation of both the splice donor and acceptor sites was necessary for RNAs to be edited efficiently. The results suggested that commitment of pre-mRNA to the splicing and/or nuclear-export pathways may play a role in regulating editing-site utilization. The HIV-1 Rev-Rev response element ('RRE') interaction was utilized to uncouple the commitment of precursor RNAs to the spliceosome assembly pathway and associated nuclear-export pathway. Under these conditions, unspliced reporter RNAs were edited efficiently. We propose that pre-mRNA passage through the temporal or spatial restriction point where they become committed to spliceosome assembly contributes regulatory information for subsequent editosome activity.
Collapse
Affiliation(s)
- M P Sowden
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
8
|
Abstract
Long-chain fatty acids are a vital metabolic energy source and are building blocks of membrane lipids. The yeast Saccharomyces cerevisiae is a valuable model system for elucidation of gene-function relationships in such eukaryotic processes as fatty acid metabolism. Yeast degrades fatty acids only in the peroxisome, and recently, genes encoding core and auxiliary enzymes of peroxisomal beta-oxidation have been identified. Mechanisms involved in fatty acid induction of gene expression have been described, and novel fatty acid-responsive genes have been discovered via yeast genome analysis. In addition, a number of genes essential for synthesis of the variety of fatty acids in yeast have been cloned. Advances in understanding such processes in S. cerevisiae will provide helpful insights to functional genomics approaches in more complex organisms.
Collapse
Affiliation(s)
- P J Trotter
- The Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
9
|
Dance GS, Beemiller P, Yang Y, Mater DV, Mian IS, Smith HC. Identification of the yeast cytidine deaminase CDD1 as an orphan C-->U RNA editase. Nucleic Acids Res 2001; 29:1772-80. [PMID: 11292850 PMCID: PMC31303 DOI: 10.1093/nar/29.8.1772] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yeast co-expressing rat APOBEC-1 and a fragment of human apolipoprotein B (apoB) mRNA assembled functional editosomes and deaminated C6666 to U in a mooring sequence-dependent fashion. The occurrence of APOBEC-1-complementing proteins suggested a naturally occurring mRNA editing mechanism in yeast. Previously, a hidden Markov model identified seven yeast genes encoding proteins possessing putative zinc-dependent deaminase motifs. Here, only CDD1, a cytidine deaminase, is shown to have the capacity to carry out C-->U editing on a reporter mRNA. This is only the second report of a cytidine deaminase that can use mRNA as a substrate. CDD1-dependent editing was growth phase regulated and demonstrated mooring sequence-dependent editing activity. Candidate yeast mRNA substrates were identified based on their homology with the mooring sequence-containing tripartite motif at the editing site of apoB mRNA and their ability to be edited by ectopically expressed APOBEC-1. Naturally occurring yeast mRNAs edited to a significant extent by CDD1 were, however, not detected. We propose that CDD1 be designated an orphan C-->U editase until its native RNA substrate, if any, can be identified and that it be added to the CDAR (cytidine deaminase acting on RNA) family of editing enzymes.
Collapse
Affiliation(s)
- G S Dance
- Department of Biochemistry and Biophysics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
A site-specific post-transcriptional cytidine to uridine deamination reaction is responsible for the production of apolipoprotein B48 in the mammalian small intestine. The molecular machinery responsible for apolipoprotein B RNA editing consists of apobec-1, an RNA-specific cytidine deaminase that functions in conjunction with a recently identified protein referred to as ACF/ASP. These proteins together represent the minimal editing enzyme, although other proteins may associate with the enzyme complex. Apobec-1 is a member of a supergene family of cytidine deaminases, with several homologs recently identified in the human genome. ACF/ASP is novel, and emerging information reveals interesting clues to its role in the apolipoprotein B RNA editing enzyme complex.
Collapse
Affiliation(s)
- S Anant
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
11
|
Chester A, Scott J, Anant S, Navaratnam N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:1-13. [PMID: 11072063 DOI: 10.1016/s0167-4781(00)00219-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA editing is a post-transcriptional process that changes the informational capacity within the RNA. These processes include alterations made by nucleotide deletion, insertion and base conversion. A to I and C to U conversion occurs in mammals and these editing events are catalysed by RNA binding deaminases. C to U editing of apoB mRNA was the first mammalian editing event to be identified. The minimal protein complex necessary for apoB mRNA editing has been determined and consists of APOBEC-1 and ACF. Overexpression of APOBEC-1 in transgenic animals caused liver dysplasia and APOBEC-1 has been identified in neurofibromatosis type 1 tumours, suggesting that RNA editing may be another mechanism for tumourigenesis. Several APOBEC-1-like proteins have been identified, including a family of APOBEC-1-related proteins with unknown function on chromosome 22. This review summarises the different types of RNA editing and discusses the current status of C to U apoB mRNA editing. This knowledge is very important in understanding the structure and function of these related proteins and their role in biology.
Collapse
Affiliation(s)
- A Chester
- MRC Molecular Medicine, Clinical Science Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|