1
|
Was the Last Bacterial Common Ancestor a Monoderm after All? Genes (Basel) 2022; 13:genes13020376. [PMID: 35205421 PMCID: PMC8871954 DOI: 10.3390/genes13020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The very nature of the last bacterial common ancestor (LBCA), in particular the characteristics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge of the relationships between bacterial phyla has made progress with the advent of phylogenomics, many questions remain, including on the appearance or disappearance of the outer membrane of diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between monoderm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis (dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches were carried out to determine the phylogenetic distribution of the genes involved with the biosynthesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not a unique event and that selective forces have led to the repeated adoption of such an architecture. Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria. Consequently, our conclusion might change once enough information is made available to allow the use of an even more diverse organism selection.
Collapse
|
2
|
Brandis G. Reconstructing the Evolutionary History of a Highly Conserved Operon Cluster in Gammaproteobacteria and Bacilli. Genome Biol Evol 2021; 13:6156628. [PMID: 33677562 PMCID: PMC8046335 DOI: 10.1093/gbe/evab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/01/2022] Open
Abstract
The evolution of gene order rearrangements within bacterial chromosomes is a fast process. Closely related species can have almost no conservation in long-range gene order. A prominent exception to this rule is a >40 kb long cluster of five core operons (secE-rpoBC-str-S10-spc-alpha) and three variable adjacent operons (cysS, tufB, and ecf) that together contain 57 genes of the transcriptional and translational machinery. Previous studies have indicated that at least part of this operon cluster might have been present in the last common ancestor of bacteria and archaea. Using 204 whole genome sequences, ∼2 Gy of evolution of the operon cluster were reconstructed back to the last common ancestors of the Gammaproteobacteria and of the Bacilli. A total of 163 independent evolutionary events were identified in which the operon cluster was altered. Further examination showed that the process of disconnecting two operons generally follows the same pattern. Initially, a small number of genes is inserted between the operons breaking the concatenation followed by a second event that fully disconnects the operons. While there is a general trend for loss of gene synteny over time, there are examples of increased alteration rates at specific branch points or within specific bacterial orders. This indicates the recurrence of relaxed selection on the gene order within bacterial chromosomes. The analysis of the alternation events indicates that segmental genome duplications and/or transposon-directed recombination play a crucial role in rearrangements of the operon cluster.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Sweden
| |
Collapse
|
3
|
Brandis G, Hughes D. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation. PLoS Genet 2020; 16:e1008615. [PMID: 32130223 PMCID: PMC7055797 DOI: 10.1371/journal.pgen.1008615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes. All life on earth has evolved from a universal common ancestor with a specific order of genes on the chromosome. This order is not maintained in modern species and the standard hypothesis is that changes reflect a lack of strong selection on gene order. Here, we propose an alternative hypothesis, SNAP. The occupation of a novel environment by bacteria is generally a trade-off situation. For example, while the bacteria may not be adapted to grow well under the new conditions, they may benefit by not having to share available resources with other microorganisms. Bacterial populations frequently acquire duplications of chromosomal segments containing genes that can help them adapt to a new environment. Other genes that are also duplicated are not required in two copies so that over time a superfluous copy can be lost. Eventually, the process of duplication and gene loss can lead to the rearrangement of the gene order in the chromosomal segment. The major benefit of this model over the standard hypothesis is that the process is driven by positive selection and can reach fixation rapidly.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
4
|
Brandis G, Cao S, Hughes D. Operon Concatenation Is an Ancient Feature That Restricts the Potential to Rearrange Bacterial Chromosomes. Mol Biol Evol 2020; 36:1990-2000. [PMID: 31132113 PMCID: PMC6735719 DOI: 10.1093/molbev/msz129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The last common ancestor of the Gammaproteobacteria carried an important 40-kb chromosome section encoding 51 proteins of the transcriptional and translational machinery. These genes were organized into eight contiguous operons (rrnB-tufB-secE-rpoBC-str-S10-spc-alpha). Over 2 Gy of evolution, in different lineages, some of the operons became separated by multigene insertions. Surprisingly, in many Enterobacteriaceae, much of the ancient organization is conserved, indicating a strong selective force on the operons to remain colinear. Here, we show for one operon pair, tufB-secE in Salmonella, that an interruption of contiguity significantly reduces growth rate. Our data show that the tufB-secE operons are concatenated by an interoperon terminator–promoter overlap that plays a significant role regulating gene expression. Interrupting operon contiguity interferes with this regulation, reducing cellular fitness. Six operons of the ancestral chromosome section remain contiguous in Salmonella (tufB-secE-rpoBC and S10-spc-alpha) and, strikingly, each of these operon pairs is also connected by an interoperon terminator–promoter overlap. Accordingly, we propose that operon concatenation is an ancient feature that restricts the potential to rearrange bacterial chromosomes and can select for the maintenance of a colinear operon organization over billions of years.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
5
|
Flandrois JP, Brochier-Armanet C, Briolay J, Abrouk D, Schwob G, Normand P, Fernandez MP. Taxonomic assignment of uncultured prokaryotes with long range PCR targeting the spectinomycin operon. Res Microbiol 2019; 170:280-287. [PMID: 31279085 DOI: 10.1016/j.resmic.2019.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/02/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
The taxonomic assignment of uncultured prokaryotes to known taxa is a major challenge in microbial systematics. This relies usually on the phylogenetic analysis of the ribosomal small subunit RNA or a few housekeeping genes. Recent works have disclosed ribosomal proteins as valuable markers for systematics and, due to the boom in complete genome sequencing, their use has become widespread. Yet, in the case of uncultured strains, for which complete genome sequences cannot be easily obtained, sequencing many markers is complicated and time consuming. Taking the advantage of the organization of ribosomal protein coding genes in large gene clusters, we amplified a 32 kb conserved region encompassing the spectinomycin (spc) operon using long range PCR from isolated and from uncultured nodular endophytic Frankia strains. The phylogenetic analysis of the 27 ribosomal protein genes contained in this region provided a robust phylogenetic tree consistent with phylogenies based on larger set of markers, indicating that this subset of ribosomal proteins contains enough phylogenetic signal to address systematic issues. This work shows that using long range PCR could break down the barrier preventing the use of ribosomal proteins as phylogenetic markers when complete genome sequences cannot be easily obtained.
Collapse
Affiliation(s)
- Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France.
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France.
| | - Jérôme Briolay
- Université de Lyon, Université Lyon 1, DTAMB, Villeurbanne, France.
| | - Danis Abrouk
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| | - Guillaume Schwob
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| | - Maria P Fernandez
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| |
Collapse
|
6
|
Metabolic networks for nitrogen utilization in Prevotella ruminicola 23. Sci Rep 2017; 7:7851. [PMID: 28798330 PMCID: PMC5552732 DOI: 10.1038/s41598-017-08463-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Nitrogen metabolism in gut systems remains poorly studied in spite of its importance for microbial growth and its implications for the metabolism of the host. Prevotella spp. are the most predominant bacteria detected in the rumen, but their presence has also been related to health and disease states in the human gut and oral cavity. To explore the metabolic networks for nitrogen assimilation in this bacterium, changes in gene expression profiles in response to variations in the available nitrogen source and to different concentrations of ammonium were analyzed by microarray and reverse transcription quantitative PCR, and linked with function by further proteomic analysis. The observed patterns of transcript abundances for genes involved in ammonium assimilation differed from the classical “enteric paradigm” for nitrogen utilization. Expression of genes encoding high substrate affinity nitrogen assimilation enzymes (GS-GOGAT system) was similar in growth-limiting and non-limiting nitrogen concentrations in P. ruminicola 23, whereas E. coli and Salmonella spp. responses to excess nitrogen involve only low substrate affinity enzymes. This versatile behavior might be a key feature for ecological success in habitats such as the rumen and human colon where nitrogen is rarely limiting for growth, and might be linked to previously reported Prevotella spp. population imbalances relative to other bacterial species in gut systems.
Collapse
|
7
|
Ojima-Kato T, Yamamoto N, Suzuki M, Fukunaga T, Tamura H. Discrimination of Escherichia coli O157, O26 and O111 from other serovars by MALDI-TOF MS based on the S10-GERMS method. PLoS One 2014; 9:e113458. [PMID: 25411793 PMCID: PMC4239071 DOI: 10.1371/journal.pone.0113458] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 10/26/2014] [Indexed: 11/23/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), causes a potentially life-threatening infection in humans worldwide. Serovar O157:H7, and to a lesser extent serovars O26 and O111, are the most commonly reported EHEC serovars responsible for a large number of outbreaks. We have established a rapid discrimination method for E. coli serovars O157, O26 and O111 from other E. coli serovars, based on the pattern matching of mass spectrometry (MS) differences and the presence/absence of biomarker proteins detected in matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS). Three biomarkers, ribosomal proteins S15 and L25, and acid stress chaperone HdeB, with MS m/z peaks at 10138.6/10166.6, 10676.4/10694.4 and 9066.2, respectively, were identified as effective biomarkers for O157 discrimination. To distinguish serovars O26 and O111 from the others, DNA-binding protein H-NS, with an MS peak at m/z 15409.4/15425.4 was identified. Sequence analysis of the O157 biomarkers revealed that amino acid changes: Q80R in S15, M50I in L25 and one mutation within the start codon ATG to ATA in the encoded HdeB protein, contributed to the specific peak pattern in O157. We demonstrated semi-automated pattern matching using these biomarkers and successfully discriminated total 57 O157 strains, 20 O26 strains and 6 O111 strains with 100% reliability by conventional MALDI-TOF MS analysis, regardless of the sample conditions. Our simple strategy, based on the S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum (S10-GERMS) method, therefore allows for the rapid and reliable detection of this pathogen and may prove to be an invaluable tool both clinically and in the food industry.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Hub of Knowledge Aichi, Aichi Science and Technology Foundation, Yakusa, Toyota, Aichi, Japan
- * E-mail: (TO); (HT)
| | - Naomi Yamamoto
- School of Agriculture, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, Japan
| | - Mayumi Suzuki
- School of Agriculture, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, Japan
| | - Tomohiro Fukunaga
- Japan Food Research Laboratories, Osu, Naka-ku, Nagoya, Aichi, Japan
| | - Hiroto Tamura
- School of Agriculture, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, Japan
- * E-mail: (TO); (HT)
| |
Collapse
|
8
|
MacGregor BJ, Biddle JF, Teske A. Mobile elements in a single-filament orange Guaymas Basin Beggiatoa ("Candidatus Maribeggiatoa") sp. draft genome: evidence for genetic exchange with cyanobacteria. Appl Environ Microbiol 2013; 79:3974-85. [PMID: 23603674 PMCID: PMC3697557 DOI: 10.1128/aem.03821-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/15/2013] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament collected from a microbial mat at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) shows evidence of extensive genetic exchange with cyanobacteria, in particular for sensory and signal transduction genes. A putative homing endonuclease gene and group I intron within the 23S rRNA gene; several group II catalytic introns; GyrB and DnaE inteins, also encoding homing endonucleases; multiple copies of sequences similar to the fdxN excision elements XisH and XisI (required for heterocyst differentiation in some cyanobacteria); and multiple sequences related to an open reading frame (ORF) (00024_0693) of unknown function all have close non-Beggiatoaceae matches with cyanobacterial sequences. Sequences similar to the uncharacterized ORF and Xis elements are found in other Beggiatoaceae genomes, a variety of cyanobacteria, and a few phylogenetically dispersed pleiomorphic or filamentous bacteria. We speculate that elements shared among filamentous bacterial species may have been exchanged in microbial mats and that some of them may be involved in cell differentiation.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA.
| | | | | |
Collapse
|
9
|
Hotta Y, Teramoto K, Sato H, Yoshikawa H, Hosoda A, Tamura H. Classification of Genus Pseudomonas by MALDI-TOF MS Based on Ribosomal Protein Coding in S10−spc−alpha Operon at Strain Level. J Proteome Res 2010; 9:6722-8. [DOI: 10.1021/pr100868d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudai Hotta
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kanae Teramoto
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroaki Sato
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiromichi Yoshikawa
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Akifumi Hosoda
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroto Tamura
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| |
Collapse
|
10
|
Okayasu T, Sorimachi K. Organisms can essentially be classified according to two codon patterns. Amino Acids 2008; 36:261-71. [PMID: 18379857 DOI: 10.1007/s00726-008-0059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 03/12/2008] [Indexed: 11/24/2022]
Abstract
We recently classified 23 bacteria into two types based on their complete genomes; "S-type" as represented by Staphylococcus aureus and "E-type" as represented by Escherichia coli. Classification was characterized by concentrations of Arg, Ala or Lys in the amino acid composition calculated from the complete genome. Based on these previous classifications, not only prokaryotic but also eukaryotic genome structures were investigated by amino acid compositions and nucleotide contents. Organisms consisting of 112 bacteria, 15 archaea and 18 eukaryotes were classified into two major groups by cluster analysis using GC contents at the three codon positions calculated from complete genomes. The 145 organisms were classified into "AT-type" and "GC-type" represented by high A or T (low G or C) and high G or C (low A or T) contents, respectively, at every third codon position. Reciprocal changes between G or C and A or T contents at the third codon position occurred almost synchronously in every codon among the organisms. Correlations between amino acid concentrations (Ala, Ile and Lys) and the nucleotide contents at the codon position were obtained in both "AT-type" and "GC-type" organisms, but with different regression coefficients. In certain correlations of amino acid concentrations with GC contents, eukaryotes, archaea and bacteria showed different behaviors; thus these kingdoms evolved differently. All organisms are basically classifiable into two groups having characteristic codon patterns; organisms with low GC and high AT contents at the third codon position and their derivatives, and organisms with an inverse relationship.
Collapse
Affiliation(s)
- T Okayasu
- Center of Medical Informatics, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | | |
Collapse
|
11
|
Luc N, Risler JL, Bergeron A, Raffinot M. Gene teams: a new formalization of gene clusters for comparative genomics. Comput Biol Chem 2003; 27:59-67. [PMID: 12798040 DOI: 10.1016/s1476-9271(02)00097-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This paper describes an efficient algorithm based on a new concept called gene team for detecting conserved gene clusters among an arbitrary number of chromosomes. Within the clusters, neither the order of the genes nor their orientation need be conserved. In addition, insertion of foreign genes within the clusters are permitted to a user-defined extent. This algorithm has been implemented in a publicly available TEAM software that proves to be an efficient tool for systematic searches of conserved gene clusters. Examples of actual biological results are provided. The software is downloadable from http://www-igm.univ-mlv.fr/ approximately raffinot/geneteam.html.
Collapse
Affiliation(s)
- Nicolas Luc
- CNRS - Laboratoire Génome et Informatique, Tour Evry 2, 523, Place des Terrasses de 1'Agora, 91034 Evry, France
| | | | | | | |
Collapse
|
12
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447231 DOI: 10.1002/cfg.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|