1
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Zhang Q, Tretyakova N. Incorporation of inosine into DNA by human polymerase eta (Polη): kinetics of nucleotide misincorporation and structural basis for the mutagenicity. Biochem J 2023; 480:1479-1483. [PMID: 37746864 PMCID: PMC10586757 DOI: 10.1042/bcj20230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Inosine, a purine nucleoside containing the hypoxanthine (HX) nucleobase, can form in DNA via hydrolytic deamination of adenine. Due to its structural similarity to guanine and the geometry of Watson-Crick base pairs, inosine can mispair with cytosine upon catalysis by DNA polymerases, leading to AT → GC mutations. Additionally, inosine plays an essential role in purine nucleotide biosynthesis, and inosine triphosphate is present in living cells. In a recent publication, Averill and Jung examined the possibility of polη catalyzed incorporation of deoxyinosine triphosphate (dITP) across dC and dT in a DNA template. They found that dITP can be incorporated across C or T, with the ratio of 13.7. X ray crystallography studies revealed that the mutagenic incorporation of dITP by human polη was affected by several factors including base pair geometry in the active site of the polymerase, tautomerization of nucleobases, and the interaction of the incoming dITP nucleotide with active site residues of polη. This study demonstrates that TLS incorporation of inosine monophosphate (IMP) into growing DNA chains contributes to its mutagenic potential in cells.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, U.S.A
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, U.S.A
| |
Collapse
|
3
|
Broderick K, Moutaoufik MT, Aly KA, Babu M. Sanitation enzymes: Exquisite surveillance of the noncanonical nucleotide pool to safeguard the genetic blueprint. Semin Cancer Biol 2023; 94:11-20. [PMID: 37211293 DOI: 10.1016/j.semcancer.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are common products of normal cellular metabolism, but their elevated levels can result in nucleotide modifications. These modified or noncanonical nucleotides often integrate into nascent DNA during replication, causing lesions that trigger DNA repair mechanisms such as the mismatch repair machinery and base excision repair. Four superfamilies of sanitization enzymes can effectively hydrolyze noncanonical nucleotides from the precursor pool and eliminate their unintended incorporation into DNA. Notably, we focus on the representative MTH1 NUDIX hydrolase, whose enzymatic activity is ostensibly nonessential under normal physiological conditions. Yet, the sanitization attributes of MTH1 are more prevalent when ROS levels are abnormally high in cancer cells, rendering MTH1 an interesting target for developing anticancer treatments. We discuss multiple MTH1 inhibitory strategies that have emerged in recent years, and the potential of NUDIX hydrolases as plausible targets for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
4
|
Valli AA, García López R, Ribaya M, Martínez FJ, Gómez DG, García B, Gonzalo I, Gonzalez de Prádena A, Pasin F, Montanuy I, Rodríguez-Gonzalo E, García JA. Maf/ham1-like pyrophosphatases of non-canonical nucleotides are host-specific partners of viral RNA-dependent RNA polymerases. PLoS Pathog 2022; 18:e1010332. [PMID: 35180277 PMCID: PMC8893687 DOI: 10.1371/journal.ppat.1010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/03/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups. Cassava is one the most important staple food around the world in term of caloric intake. The cassava brown streak disease, caused by cassava brown streak virus (CBSV) and Ugandan (U)CBSV–Ipomovirus genus, Potyviridae family-, produces massive losses in cassava production. Curiously, these two viruses, unlike the vast majority of members of the family, encode a Maf1/ham1-like pyrophosphatase (HAM1) of non-canonical nucleotides with unknown relevance and function in viruses. This study aims to fill this gap in our knowledge by using reverse genetics, biochemistry, metabolomics and directed virus evolution. Hence, we found that HAM1 is required for UCBSV to infect cassava, where its pyrophosphatase activity resulted critical, but not to propagate in the model plant Nicotiana benthamiana. In addition, we demonstrated that HAM1 works in partnership with the viral RdRP during infection. Unexpected high levels of ITP/XTP non-canonical nucleotides found in cassava, and the known flexibility of RNA viruses to incorporate additional factors when required, supports the idea that the high concentration of ITP/XTP worked as a selection pressure to promote the acquisition of HAM1 into the virus in order to promote a successful infection.
Collapse
Affiliation(s)
- Adrian A. Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| | | | - María Ribaya
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Diego García Gómez
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Salamanca, Salamanca, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Irene Gonzalo
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Inmaculada Montanuy
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | |
Collapse
|
5
|
Kumar H, Kehrer J, Singer M, Reinig M, Santos JM, Mair GR, Frischknecht F. Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in Plasmodium berghei but ITPase and NDH are dispensable. Expert Opin Ther Targets 2019; 23:251-261. [PMID: 30700216 DOI: 10.1080/14728222.2019.1575810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cellular metabolism generates reactive oxygen species. The oxidation and deamination of the deoxynucleoside triphosphate (dNTP) pool results in the formation of non-canonical, toxic dNTPs that can cause mutations, genome instability, and cell death. House-cleaning or sanitation enzymes that break down and detoxify non-canonical nucleotides play major protective roles in nucleotide metabolism and constitute key drug targets for cancer and various pathogens. We hypothesized that owing to their protective roles in nucleotide metabolism, these house-cleaning enzymes are key drug targets in the malaria parasite. METHODS Using the rodent malaria parasite Plasmodium berghei we evaluate here, by gene targeting, a group of conserved proteins with a putative function in the detoxification of non-canonical nucleotides as potential antimalarial drug targets: they are inosine triphosphate pyrophosphatase (ITPase), deoxyuridine triphosphate pyrophosphatase (dUTPase) and two NuDiX hydroxylases, the diadenosine tetraphosphate (Ap4A) hydrolase and the nucleoside triphosphate hydrolase (NDH). RESULTS While all four proteins are expressed constitutively across the intraerythrocytic developmental cycle, neither ITPase nor NDH are required for parasite viability. dutpase and ap4ah null mutants, on the other hand, are not viable suggesting an essential function for these proteins for the malaria parasite. CONCLUSIONS Plasmodium dUTPase and Ap4A could be drug targets in the malaria parasite.
Collapse
Affiliation(s)
- Hirdesh Kumar
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Jessica Kehrer
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Mirko Singer
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Miriam Reinig
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Jorge M Santos
- b Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Lisbon , Portugal
| | - Gunnar R Mair
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
- b Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Lisbon , Portugal
- c Department of Biomedical Sciences , 2008 College of Veterinary Medicine, Iowa State University , Ames , IA USA
| | - Friedrich Frischknecht
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| |
Collapse
|
6
|
Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci 2016; 23:73. [PMID: 27770805 PMCID: PMC5075207 DOI: 10.1186/s12929-016-0291-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Human ITPase (encoded by the ITPA gene) is a protective enzyme which acts to exclude noncanonical (deoxy)nucleoside triphosphates ((d)NTPs) such as (deoxy)inosine 5′-triphosphate ((d)ITP), from (d)NTP pools. Until the last few years, the importance of ITPase in human health and disease has been enigmatic. In 2009, an article was published demonstrating that ITPase deficiency in mice is lethal. All homozygous null offspring died before weaning as a result of cardiomyopathy due to a defect in the maintenance of quality ATP pools. More recently, a whole exome sequencing project revealed that very rare, severe human ITPA mutation results in early infantile encephalopathy and death. It has been estimated that nearly one third of the human population has an ITPA status which is associated with decreased ITPase activity. ITPA status has been linked to altered outcomes for patients undergoing thiopurine or ribavirin therapy. Thiopurine therapy can be toxic for patients with ITPA polymorphism, however, ITPA polymorphism is associated with improved outcomes for patients undergoing ribavirin treatment. ITPA polymorphism has also been linked to early-onset tuberculosis susceptibility. These data suggest a spectrum of ITPA-related disease exists in human populations. Potentially, ITPA status may affect a large number of patient outcomes, suggesting that modulation of ITPase activity is an important emerging avenue for reducing the number of negative outcomes for ITPA-related disease. Recent biochemical studies have aimed to provide rationale for clinical observations, better understand substrate selectivity and provide a platform for modulation of ITPase activity.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry and Biochemistry, Eastern Washington University, 226 Science Building, Cheney, WA, 99004, USA.
| |
Collapse
|
7
|
Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR. Biotechnol Lett 2013; 36:985-92. [DOI: 10.1007/s10529-013-1441-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
8
|
Awwad K, Desai A, Smith C, Sommerhalter M. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:184-93. [PMID: 23385455 PMCID: PMC3565439 DOI: 10.1107/s0907444912044630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/29/2012] [Indexed: 11/11/2022]
Abstract
The hyperthermophilic bacterium Thermotoga maritima has a noncanonical nucleoside triphosphatase that catalyzes the conversion of inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) into inosine monophosphate (IMP), deoxyinosine monophosphate (IMP) and xanthosine monophosphate (XMP), respectively. The k(cat)/K(m) values determined at 323 and 353 K fall between 1.31 × 10(4) and 7.80 × 10(4) M(-1) s(-1). ITP and dITP are slightly preferred over XTP. Activity towards canonical nucleoside triphosphates (ATP and GTP) was not detected. The enzyme has an absolute requirement for Mg(2+) as a cofactor and has a preference for alkaline conditions. A protein X-ray structure of the enzyme with bound IMP was obtained at 2.15 Å resolution. The active site houses a well conserved network of residues that are critical for substrate recognition and catalysis. The crystal structure shows a tetramer with two possible dimer interfaces. One of these interfaces strongly resembles the dimer interface that is found in the structures of other noncanonical nucleoside pyrophosphatases from human (human ITPase) and archaea (Mj0226 and PhNTPase).
Collapse
Affiliation(s)
- Khaldeyah Awwad
- Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Anna Desai
- Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Clyde Smith
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monika Sommerhalter
- Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| |
Collapse
|
9
|
Chen Y, Apolinario E, Brachova L, Kelman Z, Li Z, Nikolau BJ, Showman L, Sowers K, Orban J. A nuclear magnetic resonance based approach to accurate functional annotation of putative enzymes in the methanogen Methanosarcina acetivorans. BMC Genomics 2011; 12 Suppl 1:S7. [PMID: 21810209 PMCID: PMC3223730 DOI: 10.1186/1471-2164-12-s1-s7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Correct annotation of function is essential if one is to take full advantage of the vast amounts of genomic sequence data. The accuracy of sequence-based functional annotations is often variable, particularly if the sequence homology to a known function is low. Indeed recent work has shown that even proteins with very high sequence identity can have different folds and functions, and therefore caution is needed in assigning functions by sequence homology in the absence of experimental validation. Experimental methods are therefore needed to efficiently evaluate annotations in a way that complements current high throughput technologies. Here, we describe the use of nuclear magnetic resonance (NMR)-based ligand screening as a tool for testing functional assignments of putative enzymes that may be of variable reliability. Results The target genes for this study are putative enzymes from the methanogenic archaeon Methanosarcina acetivorans (MA) that have been selected after manual genome re-annotation and demonstrate detectable in vivo expression at the level of the transcriptome. The experimental approach begins with heterologous E. coli expression and purification of individual MA gene products. An NMR-based ligand screen of the purified protein then identifies possible substrates or products from a library of candidate compounds chosen from the putative pathway and other related pathways. These data are used to determine if the current sequence-based annotation is likely to be correct. For a number of case studies, additional experiments (such as in vivo genetic complementation) were performed to determine function so that the reliability of the NMR screen could be independently assessed. Conclusions In all examples studied, the NMR screen was indicative of whether the functional annotation was correct. Thus, the case studies described demonstrate that NMR-based ligand screening is an effective and rapid tool for confirming or negating the annotated gene function of putative enzymes. In particular, no protein-specific assay needs to be developed, which makes the approach broadly applicable for validating putative functions using an automated pipeline strategy.
Collapse
Affiliation(s)
- Yihong Chen
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sakumi K, Abolhassani N, Behmanesh M, Iyama T, Tsuchimoto D, Nakabeppu Y. ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat Res 2010; 703:43-50. [PMID: 20601097 DOI: 10.1016/j.mrgentox.2010.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/13/2010] [Indexed: 12/14/2022]
Abstract
Inosine triphosphate pyrophosphatase (ITPA protein) (EC 3.6.1.19) hydrolyzes deaminated purine nucleoside triphosphates, such as ITP and dITP, to their corresponding purine nucleoside monophosphate and pyrophosphate. In mammals, this enzyme is encoded by the Itpa gene. Using the Itpa gene-disrupted mouse as a model, we have elucidated the biological significance of the ITPA protein and its substrates, ITP and dITP. Itpa(-/-) mice exhibited peri- or post-natal lethality dependent on the genetic background. The heart of the Itpa(-/-) mouse was found to be structurally and functionally abnormal. Significantly higher levels of deoxyinosine and inosine were detected in nuclear DNA and RNA prepared from Itpa(-/-) embryos compared to wild type embryos. In addition, an accumulation of ITP was observed in the erythrocytes of Itpa(-/-) mice. We found that Itpa(-/-) primary mouse embryonic fibroblasts (MEFs), which have no detectable ability to generate IMP from ITP in whole cell extracts, exhibited a prolonged population-doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in their nuclear DNA, in comparison to primary MEFs prepared from wild type embryos. These results revealed that (1) ITP and dITP are spontaneously produced in vivo and (2) accumulation of ITP and dITP is responsible for the harmful effects observed in the Itpa(-/-) mouse. In addition to its effect as the precursor nucleotide for RNA transcription, ITP has the potential to influence the activity of ATP/GTP-binding proteins. The biological significance of ITP and dITP in the nucleotide pool remains to be elucidated.
Collapse
Affiliation(s)
- Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Behmanesh M, Sakumi K, Abolhassani N, Toyokuni S, Oka S, Ohnishi YN, Tsuchimoto D, Nakabeppu Y. ITPase-deficient mice show growth retardation and die before weaning. Cell Death Differ 2009; 16:1315-22. [PMID: 19498443 DOI: 10.1038/cdd.2009.53] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inosine triphosphate pyrophosphatase (ITPase), the enzyme that hydrolyzes ITP and other deaminated purine nucleoside triphosphates to the corresponding purine nucleoside monophosphate and pyrophosphate, is encoded by the Itpa gene. In this study, we established Itpa knockout (KO) mice and used them to show that ITPase is required for the normal organization of sarcomeres in the heart. Itpa(-/-) mice died about 2 weeks after birth with features of growth retardation and cardiac myofiber disarray, similar to the phenotype of the cardiac alpha-actin KO mouse. Inosine nucleotides were found to accumulate in both the nucleotide pool and RNA of Itpa(-/-) mice. These data suggest that the role of ITPase in mice is to exclude ITP from the ATP pool, and the main target substrate of this enzyme is rITP. Our data also suggest that cardiomyopathy, which is mainly caused by mutations in sarcomeric protein-encoding genes, is also caused by a defect in maintaining the quality of the ATP pool, which is an essential requirement for sarcomere function.
Collapse
Affiliation(s)
- M Behmanesh
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Stepchenkova EI, Tarakhovskaya ER, Spitler K, Frahm C, Menezes MR, Simone PD, Kolar C, Marky LA, Borgstahl GEO, Pavlov YI. Functional study of the P32T ITPA variant associated with drug sensitivity in humans. J Mol Biol 2009; 392:602-13. [PMID: 19631656 PMCID: PMC2745931 DOI: 10.1016/j.jmb.2009.07.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
Sanitization of the cellular nucleotide pools from mutagenic base analogues is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic, and toxic incorporation of purine base analogues [i.e., ITP, dITP, XTP, dXTP, or 6-hydroxylaminopurine (HAP) deoxynucleoside triphosphate] into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele, 94C-->A, encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analogue drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by Western blot is severely diminished in a human fibroblast cell line with the 94C-->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability, and availability.
Collapse
Affiliation(s)
- Elena I Stepchenkova
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, 68198-6805, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mega R, Kondo N, Nakagawa N, Kuramitsu S, Masui R. Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities. FEBS J 2009; 276:3211-21. [PMID: 19438719 DOI: 10.1111/j.1742-4658.2009.07035.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nucleotide hydrolases are known to hydrolyze not only noncanonical dNTPs to reduce the risk of mutation, but also canonical dNTPs to maintain the dNTP concentrations in the cell. dGTP triphosphohydrolase from Escherichia coli is known as an enzyme that hydrolyzes dGTP. Recently, we identified a triphosphohydrolase from Thermus thermophilus HB8 that hydrolyzes all canonical dNTPs through a complex activation mechanism. These dNTP triphosphohydrolases are widely distributed in eubacteria, but it is difficult to predict whether they possess hydrolytic activity for dGTP or dNTP. To obtain information concerning the structure-function relationships of this protein family, we characterized two dNTP triphosphohydrolases, PA1124 and PA3043, from Pseudomonas aeruginosa. Molecular phylogenic analysis showed that dNTP triphosphohydrolases can be classified into three groups. Experimentally, PA1124 had a preference for dGTP, similar to the E. coli enzyme, whereas PA3043 displayed a broad substrate specificity. Both enzymes hydrolyzed substrates in the absence of additional dNTP as an activating effector. These kinetic data suggest that PA3043 is a novel type distinct from both the E. coli and T. thermophilus enzymes. On the basis of these results, we propose that the dNTP triphosphohydrolase family should be classified into at least three subfamilies.
Collapse
Affiliation(s)
- Ryosuke Mega
- Graduate School of Frontier Biological Sciences, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
14
|
Stirrett KL, Ferreras JA, Rossi SM, Moy RL, Fonseca FV, Quadri LE. A multicopy suppressor screening approach as a means to identify antibiotic resistance determinant candidates in Yersinia pestis. BMC Microbiol 2008; 8:122. [PMID: 18644132 PMCID: PMC2500020 DOI: 10.1186/1471-2180-8-122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/21/2008] [Indexed: 11/29/2022] Open
Abstract
Background Yersinia pestis is the causative agent of plague and a potential agent of bioterrorism and biowarfare. The plague biothreat and the emergence of multidrug-resistant plague underscore the need to increase our understanding of the intrinsic potential of Y. pestis for developing antimicrobial resistance and to anticipate the mechanisms of resistance that may emerge in Y. pestis. Identification of Y. pestis genes that, when overexpressed, are capable of reducing antibiotic susceptibility is a useful strategy to expose genes that this pathogen may rely upon to evolve antibiotic resistance via a vertical modality. In this study, we explored the use of a multicopy suppressor, Escherichia coli host-based screening approach as a means to expose antibiotic resistance determinant candidates in Y. pestis. Results We constructed a multicopy plasmid-based, Y. pestis genome-wide expression library of nearly 16,000 clones in E. coli and screened the library for suppressors of the antimicrobial activity of ofloxacin, a fluoroquinolone antibiotic. The screen permitted the identification of a transcriptional regulator-encoding gene (robAYp) that increased the MIC99 of ofloxacin by 23-fold when overexpressed from a multicopy plasmid in Y. pestis. Additionally, we found that robAYp overexpression in Y. pestis conferred low-level resistance to many other antibiotics and increased organic solvent tolerance. Overexpression of robAYp also upregulated the expression of several efflux pumps in Y. pestis. Conclusion Our study provides proof of principle for the use of multicopy suppressor screening based on the tractable and easy-to-manipulate E. coli host as a means to identify antibiotic resistance determinant candidates of Y. pestis.
Collapse
Affiliation(s)
- Karen L Stirrett
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Characterization of a dITPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in PCR amplification. Appl Microbiol Biotechnol 2008; 79:571-8. [PMID: 18438658 DOI: 10.1007/s00253-008-1467-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 03/19/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
Abstract
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.
Collapse
|
16
|
Vincent F, Cook SP, Johnson EO, Emmert D, Shah K. Engineering unnatural nucleotide specificity to probe G protein signaling. ACTA ACUST UNITED AC 2007; 14:1007-18. [PMID: 17884633 DOI: 10.1016/j.chembiol.2007.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
G proteins comprise approximately 0.5% of proteins encoded by mammalian genomes. To date, there exists a lack of small-molecule modulators that could contribute to their functional study. In this report, we present the use of H-Ras to develop a system that answers this need. Small molecules that allow for the highly specific inhibition or activation of the engineered G protein were developed. The rational design preserved binding of the natural substrates to the G protein, and the mutations were functionally innocuous in a cellular context. This tool can be used for isolating specific G protein effectors, as we demonstrate with the identification of Nol1 as a putative effector of H-Ras. Finally, the generalization of this system was confirmed by applying it to Rap1B, suggesting that this method will be applicable to other G proteins.
Collapse
Affiliation(s)
- Fabien Vincent
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
17
|
Rotman E, Kuzminov A. The mutT defect does not elevate chromosomal fragmentation in Escherichia coli because of the surprisingly low levels of MutM/MutY-recognized DNA modifications. J Bacteriol 2007; 189:6976-88. [PMID: 17616589 PMCID: PMC2045204 DOI: 10.1128/jb.00776-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleotide pool sanitizing enzymes Dut (dUTPase), RdgB (dITPase), and MutT (8-oxo-dGTPase) of Escherichia coli hydrolyze noncanonical DNA precursors to prevent incorporation of base analogs into DNA. Previous studies reported dramatic AT-->CG mutagenesis in mutT mutants, suggesting a considerable density of 8-oxo-G in DNA that should cause frequent excision and chromosomal fragmentation, irreparable in the absence of RecBCD-catalyzed repair and similar to the lethality of dut recBC and rdgB recBC double mutants. In contrast, we found mutT recBC double mutants viable with no signs of chromosomal fragmentation. Overproduction of the MutM and MutY DNA glycosylases, both acting on DNA containing 8-oxo-G, still yields no lethality in mutT recBC double mutants. Plasmid DNA, extracted from mutT mutM double mutant cells and treated with MutM in vitro, shows no increased relaxation, indicating no additional 8-oxo-G modifications. Our DeltamutT allele elevates the AT-->CG transversion rate 27,000-fold, consistent with published reports. However, the rate of AT-->CG transversions in our mutT(+) progenitor strain is some two orders of magnitude lower than in previous studies, which lowers the absolute rate of mutagenesis in DeltamutT derivatives, translating into less than four 8-oxo-G modifications per genome equivalent, which is too low to cause the expected effects. Introduction of various additional mutations in the DeltamutT strain or treatment with oxidative agents failed to increase the mutagenesis even twofold. We conclude that, in contrast to the previous studies, there is not enough 8-oxo-G in the DNA of mutT mutants to cause elevated excision repair that would trigger chromosomal fragmentation.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801-3709, USA
| | | |
Collapse
|
18
|
Burgis NE, Cunningham RP. Substrate specificity of RdgB protein, a deoxyribonucleoside triphosphate pyrophosphohydrolase. J Biol Chem 2006; 282:3531-8. [PMID: 17090528 DOI: 10.1074/jbc.m608708200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported the identification of a DNA repair system in Escherichia coli for the prevention of the stable incorporation of noncanonical purine dNTPs into DNA. We hypothesized that the RdgB protein is active on 2'-deoxy-N-6-hydroxylaminopurine triphosphate (dHAPTP) as well as deoxyinosine triphosphate. Here we show that RdgB protein and RdgB homologs from Saccharomyces cerevisiae, mouse, and human all possess deoxyribonucleoside triphosphate pyrophosphohydrolase activity and that all four RdgB homologs have high specificity for dHAPTP and deoxyinosine triphosphate compared with the four canonical dNTPs and several other noncanonical (d)NTPs. Kinetic analysis reveals that the major source of the substrate specificity lies in changes in K(m) for the various substrates. The expression of these enzymes in E. coli complements defects that are caused by the incorporation of HAP and an endogenous noncanonical purine into DNA. Our data support a preemptive role for the RdgB homologs in excluding endogenous and exogenous modified purine dNTPs from incorporation into DNA.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
19
|
Porta J, Kolar C, Kozmin SG, Pavlov YI, Borgstahl GEO. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1076-81. [PMID: 17077483 PMCID: PMC2225220 DOI: 10.1107/s1744309106041790] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/09/2006] [Indexed: 11/10/2022]
Abstract
The structure of human inosine triphosphate pyrophosphohydrolase (ITPA) has been determined using diffraction data to 1.6 A resolution. ITPA contributes to the accurate replication of DNA by cleansing cellular dNTP pools of mutagenic nucleotide purine analogs such as dITP or dXTP. A similar high-resolution unpublished structure has been deposited in the Protein Data Bank from a monoclinic and pseudo-merohedrally twinned crystal. Here, cocrystallization of ITPA with a molar ratio of XTP appears to have improved the crystals by eliminating twinning and resulted in an orthorhombic space group. However, there was no evidence for bound XTP in the structure. Comparison with substrate-bound NTPase from a thermophilic organism predicts the movement of residues within helix alpha1, the loop before alpha6 and helix alpha7 to cap off the active site when substrate is bound.
Collapse
Affiliation(s)
- Jason Porta
- The Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Carol Kolar
- The Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Stanislav G. Kozmin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Department of Genetics, Sankt-Petersburg State University, Sankt-Petersburg 199034, Russia
| | - Youri I. Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| |
Collapse
|
20
|
Abstract
Endonuclease V, encoded by the nfi gene, initiates removal of the base analogs hypoxanthine and xanthine from DNA, acting to prevent mutagenesis from purine base deamination within the DNA. On the other hand, the RdgB nucleotide hydrolase in Escherichia coli is proposed to prevent hypoxanthine and xanthine incorporation into DNA by intercepting the noncanonical DNA precursors dITP and dXTP. Because many base analogs are mutagenic when incorporated into DNA, it is intuitive to think of RdgB as acting to prevent similar mutagenesis from deaminated purines in the DNA precursor pools. To test this idea, we used a set of Claire Cupples' strains to detect changes in spontaneous mutagenesis spectra, as well as in nitrous acid-induced mutagenesis spectra, in wild-type cells and in rdgB single, nfi single, and rdgB nfi double mutants. We found neither a significant increase in spontaneous mutagenesis in rdgB and nfi single mutants or the double mutant nor any changes in nitrous acid-induced mutagenesis for rdgB mutant strains. We conclude that incorporation of deaminated purines into DNA is nonmutagenic.
Collapse
Affiliation(s)
- Brian Budke
- B103 C&LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA
| | | |
Collapse
|
21
|
Abstract
Cellular metabolism constantly generates by-products that are wasteful or even harmful. Such compounds are excreted from the cell or are removed through hydrolysis to normal cellular metabolites by various 'house-cleaning' enzymes. Some of the most important contaminants are non-canonical nucleoside triphosphates (NTPs) whose incorporation into the nascent DNA leads to increased mutagenesis and DNA damage. Enzymes intercepting abnormal NTPs from incorporation by DNA polymerases work in parallel with DNA repair enzymes that remove lesions produced by modified nucleotides. House-cleaning NTP pyrophosphatases targeting non-canonical NTPs belong to at least four structural superfamilies: MutT-related (Nudix) hydrolases, dUTPase, ITPase (Maf/HAM1) and all-alpha NTP pyrophosphatases (MazG). These enzymes have high affinity (Km's in the micromolar range) for their natural substrates (8-oxo-dGTP, dUTP, dITP, 2-oxo-dATP), which allows them to select these substrates from a mixture containing a approximately 1000-fold excess of canonical NTPs. To date, many house-cleaning NTPases have been identified only on the basis of their side activity towards canonical NTPs and NDP derivatives. Integration of growing structural and biochemical data on these superfamilies suggests that their new family members cleanse the nucleotide pool of the products of oxidative damage and inappropriate methylation. House-cleaning enzymes, such as 6-phosphogluconolactonase, are also part of normal intermediary metabolism. Genomic data suggest that house-cleaning systems are more abundant than previously thought and include numerous analogous enzymes with overlapping functions. We discuss the structural diversity of these enzymes, their phylogenetic distribution, substrate specificity and the problem of identifying their true substrates.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
22
|
Lukas L, Kuzminov A. Chromosomal fragmentation is the major consequence of the rdgB defect in Escherichia coli. Genetics 2005; 172:1359-62. [PMID: 16322510 PMCID: PMC1456232 DOI: 10.1534/genetics.105.051144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rdgB mutants depend on recombinational repair of double-strand breaks. To assess other consequences of rdgB inactivation in Escherichia coli, we isolated RdgB-dependent mutants. All transposon inserts making cells dependent on RdgB inactivate genes of double-strand break repair, indicating that chromosomal fragmentation is the major consequence of RdgB inactivation.
Collapse
Affiliation(s)
- Lisa Lukas
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
23
|
Zheng J, Singh VK, Jia Z. Identification of an ITPase/XTPase in Escherichia coli by structural and biochemical analysis. Structure 2005; 13:1511-20. [PMID: 16216582 DOI: 10.1016/j.str.2005.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/14/2005] [Accepted: 07/17/2005] [Indexed: 01/13/2023]
Abstract
Inosine triphosphate (ITP) and xanthosine triphosphate (XTP) are formed upon deamination of ATP and GTP as a result of exposure to chemical mutagens and oxidative damage. Nucleic acid synthesis requires safeguard mechanisms to minimize undesired lethal incorporation of ITP and XTP. Here, we present the crystal structure of YjjX, a protein of hitherto unknown function. The three-dimensional fold of YjjX is similar to those of Mj0226 from Methanococcus janschii, which possesses nucleotidase activity, and of Maf from Bacillus subtilis, which can bind nucleotides. Biochemical analyses of YjjX revealed it to exhibit specific phosphatase activity for inosine and xanthosine triphosphates and have a possible interaction with elongation factor Tu. The enzymatic activity of YjjX as an inosine/xanthosine triphosphatase provides evidence for a plausible protection mechanism by clearing the noncanonical nucleotides from the cell during oxidative stress in E. coli.
Collapse
Affiliation(s)
- Jimin Zheng
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
24
|
Kouzminova EA, Kuzminov A. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol Microbiol 2004; 51:1279-95. [PMID: 14982624 DOI: 10.1111/j.1365-2958.2003.03924.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C & LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA
| | | |
Collapse
|
25
|
Grúz P, Shimizu M, Pisani FM, De Felice M, Kanke Y, Nohmi T. Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus. Nucleic Acids Res 2003; 31:4024-30. [PMID: 12853619 PMCID: PMC165962 DOI: 10.1093/nar/gkg447] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80 degrees C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed mutations. The hyperthermophilic crenarchaeon Sulfolobus solfataricus has two functional DNA polymerases, PolB1 and PolY1. We have found that the replicative DNA polymerase PolB1 specifically recognizes the presence of the deaminated bases hypoxanthine and uracil in the template by stalling DNA polymerization 3-4 bases upstream of these lesions and strongly associates with oligonucleotides containing them. PolB1 also stops at 8-oxoguanine and is unable to bypass an abasic site in the template. PolY1 belongs to the family of lesion bypass DNA polymerases and readily bypasses hypoxanthine, uracil and 8-oxoguanine, but not an abasic site, in the template. The specific recognition of deaminated bases by PolB1 may represent an initial step in their repair while PolY1 may be involved in damage tolerance at the replication fork. Additionally, we reveal that the deaminated bases can be introduced into DNA enzymatically, since both PolB1 and PolY1 are able to incorporate the aberrant DNA precursors dUTP and dITP.
Collapse
Affiliation(s)
- Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Zhang J, Zhang Y, Inouye M. Thermotoga maritima MazG protein has both nucleoside triphosphate pyrophosphohydrolase and pyrophosphatase activities. J Biol Chem 2003; 278:21408-14. [PMID: 12657645 DOI: 10.1074/jbc.m213294200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MazG proteins form a widely conserved family among bacteria, but their cellular function is still unknown. Here we report that Thermotoga maritima MazG protein (Tm-MazG), the product of the TM0913 gene, has both nucleoside triphosphate pyrophosphohydrolase (NTPase) and pyrophosphatase activities. Tm-MazG catalyzes the hydrolysis of all eight canonical ribo- and deoxyribonucleoside triphosphates to their corresponding nucleoside monophosphates and PPi and subsequently hydrolyzes the resultant PPi to Pi. The NTPase activity with deoxyribonucleoside triphosphates as substrate is higher than corresponding ribonucleoside triphosphates. dGTP is the best substrate among the deoxyribonucleoside triphosphates, and GTP is the best among the ribonucleoside triphosphates. Both NTPase and pyrophosphatase activities were enhanced at higher temperatures and blocked by the alpha,beta-methyleneadenosine triphosphate, which cannot be hydrolyzed by Tm-MazG. Furthermore, PPi is an inhibitor for the Tm-MazG NTPase activity. Significant decreases in the NTPase activity and concomitant increases in the pyrophosphatase activity were observed when mutations were introduced at the highly conserved amino acid residues in Tm-MazG N-terminal region (E41Q/E42Q, E45Q, E61Q, R97A/R98A, and K118A). These results demonstrated that Tm-MazG has dual enzymatic functions, NTPase and pyrophosphatase, and that these two enzymatic activities are coordinated.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
27
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
28
|
Abstract
Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York 12222, USA
| | | | | |
Collapse
|
29
|
Poznanski J, Kierdaszuk B, Shugar D. Structural properties of the neutral and monoanionic forms of xanthosine, highly relevant to their substrate properties with various enzyme systems. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:249-63. [PMID: 12816384 DOI: 10.1081/ncn-120021425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The monoanions of the 6-oxopurines guanine (Gua) and hypoxanthine (Hx), and their nucleosides, pKa approximately 9 due to dissociation of the N(1)-H, are predominantly in their neutral forms at physiological pH. By contrast, the monoanions of the 6-oxopurine xanthine (Xan) and xanthosine (Xao), were long ago proposed to involve dissociation of the N(3)-H, with pKa values of 7.5 and 5.7, respectively, so that, at physiological pH, the former is mixture of the neutral and monoanionic species, and the latter predominantly the monoanion. We have employed multi-dimensional heteronuclear NMR spectroscopy, which fully confirms the proposed mode of monoanion formation in Xao (and, by implication, in Xan), further supported by the results of ab initio quantum mechanical calculations, and additionally extended to determination of the preferred conformational parameters in solution for the neutral and monoanionic species. These findings are highly relevant to the modes of binding, and to the substrate properties, of Xan, Xao and its 5'-phosphate (XMP) in numerous enzyme systems, hitherto virtually ignored, and illustrated by several concrete examples.
Collapse
Affiliation(s)
- Jarosław Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland.
| | | | | |
Collapse
|
30
|
Stoychev G, Kierdaszuk B, Shugar D. Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4048-57. [PMID: 12180982 DOI: 10.1046/j.1432-1033.2002.03097.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substrate properties of xanthine (Xan) and xanthosine (Xao) for purine nucleoside phosphorylases (PNP) of mammalian origin have been reported previously, but only at a single arbitrarily selected pH and with no kinetic constants. Additionally, studies have not taken into account the fact that, at physiological pH, Xao (pKa = 5.7) is a monoanion, while Xan (pKa = 7.7) is an equilibrium mixture of the neutral and monoanionic forms. Furthermore the monoanionic forms, unlike those of guanosine (Guo) and inosine (Ino), and guanine (Gua) and hypoxanthine (Hx), are still 6-oxopurines. The optimum pH for PNP from human erythrocytes and calf spleen with both Xao and Xan is in the range 5-6, whereas those with Guo and Gua, and Ino and Hx, are in the range 7-8. The pH-dependence of substrate properties of Xao and Xan points to both neutral and anionic forms as substrates, with a marked preference for the neutral species. Both neutral and anionic forms of 6-thioxanthine (pKa = 6.5 +/- 0.1), but not of 2-thioxanthine (pKa = 5.9 +/- 0.1), are weaker substrates. Phosphorolysis of Xao to Xan by calf spleen PNP at pH 5.7 levels off at 83% conversion, due to equilibrium with the reverse synthetic pathway (equilibrium constant 0.05), and not by product inhibition. Replacement of Pi by arsenate led to complete arsenolysis of Xao. Kinetic parameters are reported for the phosphorolytic and reverse synthetic pathways at several selected pH values. Phosphorolysis of 200 micro m Xao by the human enzyme at pH 5.7 is inhibited by Guo (IC50 = 10 +/- 2 micro m), Hx (IC50 = 7 +/- 1 micro m) and Gua (IC50 = 4.0 +/- 0.2 micro m). With Gua, inhibition was shown to be competitive, with Ki = 2.0 +/- 0.3 micro m. By contrast, Xao and its products of phosphorolysis (Xan and R1P), were poor inhibitors of phosphorolysis of Guo, and Xan did not inhibit the reverse reaction with Gua. Possible modes of binding of the neutral and anionic forms of Xan and Xao by mammalian PNPs are proposed. Attention is directed to the fact that the structural properties of the neutral and ionic forms of XMP, Xao and Xan are also of key importance in many other enzyme systems, such as IMP dehydrogenase, some nucleic acid polymerases, biosynthesis of caffeine and phosphoribosyltransferases.
Collapse
Affiliation(s)
- Gerasim Stoychev
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Poland
| | | | | |
Collapse
|