1
|
Antoine-Lorquin A, Arensburger P, Arnaoty A, Asgari S, Batailler M, Beauclair L, Belleannée C, Buisine N, Coustham V, Guyetant S, Helou L, Lecomte T, Pitard B, Stévant I, Bigot Y. Two repeated motifs enriched within some enhancers and origins of replication are bound by SETMAR isoforms in human colon cells. Genomics 2021; 113:1589-1604. [PMID: 33812898 DOI: 10.1016/j.ygeno.2021.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Setmar is a gene specific to simian genomes. The function(s) of its isoforms are poorly understood and their existence in healthy tissues remains to be validated. Here we profiled SETMAR expression and its genome-wide binding landscape in colon tissue. We found isoforms V3 and V6 in healthy and tumour colon tissues as well as incell lines. In two colorectal cell lines SETMAR binds to several thousand Hsmar1 and MADE1 terminal ends, transposons mostly located in non-genic regions of active chromatin including in enhancers. It also binds to a 12-bp motifs similar to an inner motif in Hsmar1 and MADE1 terminal ends. This motif is interspersed throughout the genome and is enriched in GC-rich regions as well as in CpG islands that contain constitutive replication origins. It is also found in enhancers other than those associated with Hsmar1 and MADE1. The role of SETMAR in the expression of genes, DNA replication and in DNA repair are discussed.
Collapse
Affiliation(s)
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, - United States
| | - Ahmed Arnaoty
- EA GICC, 7501, CHRU de Tours, 37044 TOURS, Cedex 09, France
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martine Batailler
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Nicolas Buisine
- UMR CNRS 7221, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Serge Guyetant
- Tumorothèque du CHRU de Tours, 37044 Tours, Cedex, France
| | - Laura Helou
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Bruno Pitard
- Université de Nantes, CNRS ERL6001, Inserm 1232, CRCINA, F-44000 Nantes, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, 1, 46 allée d'Italie, 69364 Lyon, France
| | - Yves Bigot
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
2
|
Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, Feschotte C. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 2021; 371:eabc6405. [PMID: 33602827 PMCID: PMC8186458 DOI: 10.1126/science.abc6405] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured-primarily via alternative splicing-to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruiling Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Alan Zhong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nathaniel Garry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
3
|
Mérel V, Boulesteix M, Fablet M, Vieira C. Transposable elements in Drosophila. Mob DNA 2020; 11:23. [PMID: 32636946 PMCID: PMC7334843 DOI: 10.1186/s13100-020-00213-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Drosophila has been studied as a biological model for many years and many discoveries in biology rely on this species. Research on transposable elements (TEs) is not an exception. Drosophila has contributed significantly to our knowledge on the mechanisms of transposition and their regulation, but above all, it was one of the first organisms on which genetic and genomic studies of populations were done. In this review article, in a very broad way, we will approach the TEs of Drosophila with a historical hindsight as well as recent discoveries in the field.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
4
|
Mackey AS, Redd PS, DeLaurier A, Hancock CN. Codon optimized Tol2 transposase results in increased transient expression of a crystallin-GFP transgene in zebrafish. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000268. [PMID: 32626847 PMCID: PMC7326334 DOI: 10.17912/micropub.biology.000268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Allison S. Mackey
- University of South Carolina Aiken, Department of Biology and Geology, Aiken, SC
- University of Utah Bioscience Program, Salt Lake City, UT
| | - Priscilla S. Redd
- University of South Carolina Aiken, Department of Biology and Geology, Aiken, SC
| | - April DeLaurier
- University of South Carolina Aiken, Department of Biology and Geology, Aiken, SC
| | - C. Nathan Hancock
- University of South Carolina Aiken, Department of Biology and Geology, Aiken, SC
| |
Collapse
|
5
|
Ramakrishnan M, Zhou M, Pan C, Hänninen H, Yrjälä K, Vinod KK, Tang D. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element. Int J Mol Sci 2019; 20:ijms20153692. [PMID: 31357686 PMCID: PMC6696609 DOI: 10.3390/ijms20153692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mariner-like elements (MLE) are a super-family of DNA transposons widespread in animal and plant genomes. Based on their transposition characteristics, such as random insertions and high-frequency heterogeneous transpositions, several MLEs have been developed to be used as tools in gene tagging and gene therapy. Two active MLEs, Ppmar1 and Ppmar2, have previously been identified in moso bamboo (Phyllostachys edulis). Both of these have a preferential insertion affinity to AT-rich region and their insertion sites are close to random in the host genome. In Ppmar2 element, we studied the affinities of terminal inverted repeats (TIRs) to DNA binding domain (DBD) and their influence on the transposition activity. We could identify two putative boxes in the TIRs which play a significant role in defining the TIR's affinities to the DBD. Seven mutated TIRs were constructed, differing in affinities based on similarities with those of other plant MLEs. Gel mobility shift assays showed that the TIR mutants with mutation sites G669A-C671A had significantly higher affinities than the mutants with mutation sites C657T-A660T. The high-affinity TIRs indicated that their transposition frequency was 1.5-2.0 times higher than that of the wild type TIRs in yeast transposition assays. The MLE mutants with low-affinity TIRs had relatively lower transposition frequency from that of wild types. We conclude that TIR affinity to DBD significantly affects the transposition activity of Ppmar2. The mutant MLEs highly active TIRs constructed in this study can be used as a tool for bamboo genetic studies.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| | - Chunfang Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Rice Breeding and Genetics Research Centre, Aduthurai, Tamil Nadu 612101, India
| | - Dingqin Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
6
|
Blundell-Hunter G, Tellier M, Chalmers R. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes. Nucleic Acids Res 2019; 46:9637-9646. [PMID: 30184164 PMCID: PMC6182136 DOI: 10.1093/nar/gky794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cut-and-paste transposons are important tools for mutagenesis, gene-delivery and DNA sequencing applications. At the molecular level, the most thoroughly understood are Tn5 and Tn10 in bacteria, and mariner and hAT elements in eukaryotes. All bacterial cut-and-paste transposases characterized to date are monomeric prior to interacting with the transposon end, while all eukaryotic transposases are multimers. Although there is a limited sample size, we proposed that this defines two pathways for transpososome assembly which distinguishes the mechanism of the bacterial and eukaryotic transposons. We predicted that the respective pathways would dictate how the rate of transposition is related to transposase concentration and genome size. Here, we have tested these predictions by creating a single-chain dimer version of the bacterial Tn5 transposase. We show that artificial dimerization switches the transpososome assembly pathway from the bacterial-style to the eukaryotic-style. Although this had no effect in vitro, where the transposase does not have to search far to locate the transposon ends, it increased the rate of transposition in bacterial and HeLa cell assays. However, in contrast to the mariner elements, the Tn5 single-chain dimer remained unaffected by over-production inhibition, which is an emergent property of the transposase subunit structure in the mariner elements.
Collapse
Affiliation(s)
- George Blundell-Hunter
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
7
|
Prokaryotic expression of goldfish Tgf2 transposase with optimal codons and its enzyme activity. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Amorim IC, Costa RGC, Xavier C, de Moura RDC. Characterization and chromosomal mapping of the DgmarMITE transposon in populations of Dichotomius (Luederwaldtinia) sericeus species complex (Coleoptera: Scarabaeidae). Genet Mol Biol 2018; 41:419-425. [PMID: 29870572 PMCID: PMC6082228 DOI: 10.1590/1678-4685-gmb-2017-0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023] Open
Abstract
Transposable elements are dispersed repetitive DNA sequences that can move within the genome and are related to genome and chromosome evolution, adaptation, and speciation. The aim of this study was to characterize and determine the chromosomal location and accumulation of a Mariner-like element in populations of four phylogenetically related species of the Dichotomius (Luederwaldtinia) sericeus complex. Mapping of the isolated element was performed by fluorescent in situ hybridization in different populations of analyzed species. Characterization of the isolated element revealed a degenerated transposon, named DgmarMITE. This transposon is 496-bp-long, AT rich (57%), and contains 24 bp terminal inverted repeats. In situ mapping revealed presence of this element only in two out of four species analyzed. DgmarMITE sites were located in heterochromatic and euchromatic regions and varied in location and number on the karyotypes of Dichotomius (L.) gilletti and D. (L.) guaribensis across different populations. These results demonstrate differential accumulation of the DgmarMITE in genomes of these species, which is probably due to the occurrence of ectopic recombination and cross-mobilization of the element mediated by the transposase of closely related or unrelated transposable elements.
Collapse
Affiliation(s)
- Igor Costa Amorim
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
- Universidade Federal de
PernambucoUniversidade Federal de
PernambucoCentro de BiociênciasDepartamento de GenéticaRecifePEBrazilDepartamento de Genética, Centro de
Biociências, Universidade Federal de Pernambuco, Recife, PE,
Brazil
| | - Rafaelle Grazielle Coelho Costa
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
| | - Crislaine Xavier
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
- Universidade Federal de
PernambucoUniversidade Federal de
PernambucoCentro de BiociênciasDepartamento de GenéticaRecifePEBrazilDepartamento de Genética, Centro de
Biociências, Universidade Federal de Pernambuco, Recife, PE,
Brazil
| | - Rita de Cássia de Moura
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
| |
Collapse
|
9
|
Claeys Bouuaert C, Chalmers R. A single active site in the mariner transposase cleaves DNA strands of opposite polarity. Nucleic Acids Res 2017; 45:11467-11478. [PMID: 29036477 PMCID: PMC5714172 DOI: 10.1093/nar/gkx826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hairpin mechanism. In the mariner transposons, the hairpin intermediate is absent and key aspects of the mechanism by which the transposon ends are cleaved remained unknown. Here, we characterize complexes involved prior to catalysis, which define an asymmetric pathway for transpososome assembly. Using mixtures of wild-type and catalytically inactive transposases, we show that all the catalytic steps of transposition occur within the context of a dimeric transpososome. Crucially, we find that each active site of a transposase dimer is responsible for two hydrolysis and one transesterification reaction at the same transposon end. These results provide the first strong evidence that a DDE/D active site can hydrolyze DNA strands of opposite polarity, a mechanism that has rarely been observed with any type of nuclease.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Dussaussois-Montagne A, Jaillet J, Babin L, Verrelle P, Karayan-Tapon L, Renault S, Rousselot-Denis C, Zemmoura I, Augé-Gouillou C. SETMAR isoforms in glioblastoma: A matter of protein stability. Oncotarget 2017; 8:9835-9848. [PMID: 28038463 PMCID: PMC5354774 DOI: 10.18632/oncotarget.14218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023] Open
Abstract
Glioblastomas (GBMs) are the most frequent and the most aggressive brain tumors, known for their chemo- and radio-resistance, making them often incurable. We also know that SETMAR is a protein involved in chromatin dynamics and genome plasticity, of which overexpression confers chemo- and radio-resistance to some tumors. The relationships between SETMAR and GBM have never been explored. To fill this gap, we define the SETMAR status of 44 resected tumors and of GBM derived cells, at both the mRNA and the protein levels. We identify a new, small SETMAR protein (so called SETMAR-1200), enriched in GBMs and GBM stem cells as compared to the regular enzyme (SETMAR-2100). We show that SETMAR-1200 is able to increase DNA repair by non-homologous end-joining, albeit with a lower efficiency than the regular SETMAR protein. Interestingly, the regular/small ratio of SETMAR in GBM cells changes depending on cell type, providing evidence that SETMAR expression is regulated by alternative splicing. We also demonstrate that SETMAR expression can be regulated by the use of an alternative ATG. In conclusion, various SETMAR proteins can be synthesized in human GBM that may each have specific biophysical and/or biochemical properties and characteristics. Among them, the small SETMAR may play a role in GBMs biogenesis. On this basis, we would like to consider SETMAR-1200 as a new potential therapeutic target to investigate, in addition to the regular SETMAR protein already considered by others.
Collapse
Affiliation(s)
| | - Jérôme Jaillet
- EA 6306 IGC, University François Rabelais, 37200 Tours, France
| | - Laetitia Babin
- EA 6306 IGC, University François Rabelais, 37200 Tours, France
- UMR CNRS 7292 GICC, University François Rabelais, 37000 Tours, France
| | - Pierre Verrelle
- EA 7283 CREaT, Université d′Auvergne, BP 10448, 63000 Clermont-Ferrand, France
- Institut Curie, Dpt d'Oncologie Radiothérapique, 75005 Paris, France
- Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, 63000 Clermont-Ferrand, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86021 Poitiers, France
- University of Poitiers, F-86022 Poitiers, France
- CHU of Poitiers, Laboratoire de Cancérologie Biologique, F-86021 Poitiers, France
| | | | | | - Ilyess Zemmoura
- INSERM U930 Imagerie & Cerveau, University François Rabelais, 37000 Tours, France
- CHRU of Tours, Service de Neurochirurgie, 37000 Tours, France
| | | |
Collapse
|
11
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
12
|
Abstract
The IS630-Tc1-mariner (ITm) family of transposons is one of the most widespread in nature. The phylogenetic distribution of its members shows that they do not persist for long in a given lineage, but rely on frequent horizontal transfer to new hosts. Although they are primarily selfish genomic-parasites, ITm transposons contribute to the evolution of their hosts because they generate variation and contribute protein domains and regulatory regions. Here we review the molecular mechanism of ITm transposition and its regulation. We focus mostly on the mariner elements, which are understood in the greatest detail owing to in vitro reconstitution and structural analysis. Nevertheless, the most important characteristics are probably shared across the grouping. Members of the ITm family are mobilized by a cut-and-paste mechanism and integrate at 5'-TA dinucleotide target sites. The elements encode a single transposase protein with an N-terminal DNA-binding domain and a C-terminal catalytic domain. The phosphoryl-transferase reactions during the DNA-strand breaking and joining reactions are performed by the two metal-ion mechanism. The metal ions are coordinated by three or four acidic amino acid residues located within an RNase H-like structural fold. Although all of the strand breaking and joining events at a given transposon end are performed by a single molecule of transposase, the reaction is coordinated by close communication between transpososome components. During transpososome assembly, transposase dimers compete for free transposon ends. This helps to protect the host by dampening an otherwise exponential increase in the rate of transposition as the copy number increases.
Collapse
|
13
|
Xu HL, Shen XD, Hou F, Cheng LD, Zou SM, Jiang XY. Prokaryotic expression and purification of soluble goldfish Tgf2 transposase with transposition activity. Mol Biotechnol 2015; 57:94-100. [PMID: 25370823 DOI: 10.1007/s12033-014-9805-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Goldfish Tgf2 transposon of Hobo/Activator/Tam3 (hAT) family can mediate gene insertion in a variety of aquacultural fish species by transposition; however, the protein structure of Tgf2 transposase (TPase) is still poorly understood. To express the goldfish Tgf2 TPase in Escherichia coli, the 2061-bp coding region was cloned into pET-28a(+) expression vector containing an N-terminal (His)6-tag. The pET-28a(+)-Tgf2 TPase expression cassette was transformed into Rosetta 1 (DE3) E. coli lines. A high yield of soluble proteins with molecular weight of ~80 kDa was obtained by optimized cultures including low-temperature (22 °C) incubation and early log phase (OD600 = 0.3-0.4) induction. Mass spectrometry analysis following trypsin digestion of the recombinant proteins confirmed a Tgf2 TPase component in the eluate of Ni(2+)-affinity chromatography. When co-injected into 1-2 cell embryos with a donor plasmid harboring a Tgf2 cis-element, the prokaryotic expressed Tgf2 TPase can mediate high rates (45 %) of transposition in blunt snout bream (Megalobrama amblycephala). Transposition was proved by the presence of 8-bp random direct repeats at the target sites, which is the signature of hAT family transposons. Production of the Tgf2 Tpase protein in a soluble and active form not only allows further investigation of its structure, but provides an alternative tool for fish transgenesis and insertional mutagenesis.
Collapse
Affiliation(s)
- Hai-Li Xu
- College of Food Science and Technology, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | | | | | | | | | | |
Collapse
|
14
|
Gilbert DM, Bridges MC, Strother AE, Burckhalter CE, Burnette JM, Hancock CN. Precise repair of mPing excision sites is facilitated by target site duplication derived microhomology. Mob DNA 2015; 6:15. [PMID: 26347803 PMCID: PMC4561436 DOI: 10.1186/s13100-015-0046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A key difference between the Tourist and Stowaway families of miniature inverted repeat transposable elements (MITEs) is the manner in which their excision alters the genome. Upon excision, Stowaway-like MITEs and the associated Mariner elements usually leave behind a small duplication and short sequences from the end of the element. These small insertions or deletions known as "footprints" can potentially disrupt coding or regulatory sequences. In contrast, Tourist-like MITEs and the associated PIF/Pong/Harbinger elements generally excise precisely, returning the genome to its original state. The purpose of this study was to determine the mechanisms underlying these excision differences, including the role of the host DNA repair mechanisms. RESULTS The transposition of the Tourist-like element, mPing, and the Stowaway-like element, 14T32, were evaluated using yeast transposition assays. Assays performed in yeast strains lacking non-homologous end joining (NHEJ) enzymes indicated that the excision sites of both elements were primarily repaired by NHEJ. Altering the target site duplication (TSD) sequences that flank these elements reduced the transposition frequency. Using yeast strains with the ability to repair the excision site by homologous repair showed that some TSD changes disrupt excision of the element. Changing the ends of mPing to produce non-matching TSDs drastically reduced repair of the excision site and resulted in increased generation of footprints. CONCLUSIONS Together these results indicate that the difference in Tourist and Stowaway excision sites results from transposition mechanism characteristics. The TSDs of both elements play a role in element excision, but only the mPing TSDs actively participate in excision site repair. Our data suggests that Tourist-like elements excise with staggered cleavage of the TSDs, which provides microhomology that facilitates precise repair. This slight modification in the transposition mechanism results in more efficient repair of the double stranded break, and thus, may be less harmful to host genomes by disrupting fewer genes.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| | - M Catherine Bridges
- Present Address: Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Ashley E Strother
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| | - Courtney E Burckhalter
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| | - James M Burnette
- Present Address: College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521 USA
| | - C Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| |
Collapse
|
15
|
Abstract
Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance.
Collapse
|
16
|
Trubitsyna M, Grey H, Houston DR, Finnegan DJ, Richardson JM. Structural Basis for the Inverted Repeat Preferences of mariner Transposases. J Biol Chem 2015; 290:13531-40. [PMID: 25869132 PMCID: PMC4505599 DOI: 10.1074/jbc.m115.636704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.
Collapse
Affiliation(s)
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - Douglas R Houston
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | | | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
17
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Dornan J, Grey H, Richardson JM. Structural role of the flanking DNA in mariner transposon excision. Nucleic Acids Res 2015; 43:2424-32. [PMID: 25662605 PMCID: PMC4344528 DOI: 10.1093/nar/gkv096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/23/2023] Open
Abstract
During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.
Collapse
Affiliation(s)
- Jacqueline Dornan
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
19
|
Xavier C, Cabral-de-Mello DC, de Moura RC. Heterochromatin and molecular characterization of DsmarMITE transposable element in the beetle Dichotomius schiffleri (Coleoptera: Scarabaeidae). Genetica 2014; 142:575-81. [DOI: 10.1007/s10709-014-9805-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
|
20
|
First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist 2014; 165:730-44. [PMID: 25250954 DOI: 10.1016/j.protis.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Mariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula. Full-length MLEs of 2,100bp delimited by imperfect Terminal Inverted Repeats revealed an intact Open Reading Frame, suggesting that the MLEs could be active. The DNA binding domain of the corresponding putative transposase could have two Helix-Turn-Helix and a Nuclear Location Site motifs, and its catalytic domain includes a particular triad of aspartic acids DD43D not previously reported. The number of copies was estimated to be 38, including approximately 20 full-length elements. Phylogenetic analysis shows that these peculiar MLEs differ from plant and other stramenopile MLEs and that they could constitute a new sub-family of Tc1-mariner elements.
Collapse
|
21
|
Claeys Bouuaert C, Walker N, Liu D, Chalmers R. Crosstalk between transposase subunits during cleavage of the mariner transposon. Nucleic Acids Res 2014; 42:5799-808. [PMID: 24623810 PMCID: PMC4027188 DOI: 10.1093/nar/gku172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
Mariner transposition is a complex reaction that involves three recombination sites and six strand breaking and joining reactions. This requires precise spatial and temporal coordination between the different components to ensure a productive outcome and minimize genomic instability. We have investigated how the cleavage events are orchestrated within the mariner transpososome. We find that cleavage of the non-transferred strand is completed at both transposon ends before the transferred strand is cleaved at either end. By introducing transposon-end mutations that interfere with cleavage, but leave transpososome assembly unaffected, we demonstrate that a structural transition preceding transferred strand cleavage is coordinated between the two halves of the transpososome. Since mariner lacks the DNA hairpin intermediate, this transition probably reflects a reorganization of the transpososome to allow the access of different monomers onto the second pair of strands, or the relocation of the DNA within the same active site between two successive hydrolysis events. Communication between transposase subunits also provides a failsafe mechanism that restricts the generation of potentially deleterious double-strand breaks at isolated sites. Finally, we identify transposase mutants that reveal that the conserved WVPHEL motif provides a structural determinant of the coordination mechanism.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Neil Walker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Danxu Liu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
22
|
Wolkowicz U, Morris ER, Robson M, Trubitsyna M, Richardson JM. Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. ACS Chem Biol 2014; 9:743-51. [PMID: 24397848 PMCID: PMC3977574 DOI: 10.1021/cb400791u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
DNA transposases catalyze the movement of transposons around genomes by a cut-and-paste mechanism related to retroviral integration. Transposases and retroviral integrases share a common RNaseH-like domain with a catalytic DDE/D triad that coordinates the divalent cations required for DNA cleavage and integration. The anti-retroviral drugs Raltegravir and Elvitegravir inhibit integrases by displacing viral DNA ends from the catalytic metal ions. We demonstrate that Raltegravir, but not Elvitegravir, binds to Mos1 transposase in the presence of Mg(2+) or Mn(2+), without the requirement for transposon DNA, and inhibits transposon cleavage and DNA integration in biochemical assays. Crystal structures at 1.7 Å resolution show Raltegravir, in common with integrases, coordinating two Mg(2+) or Mn(2+) ions in the Mos1 active site. However, in the absence of transposon ends, the drug adopts an unusual, compact binding mode distinct from that observed in the active site of the prototype foamy virus integrase.
Collapse
Affiliation(s)
- Urszula
M. Wolkowicz
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Elizabeth R. Morris
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Michael Robson
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Maryia Trubitsyna
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Julia M. Richardson
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
23
|
Trubitsyna M, Morris ER, Finnegan DJ, Richardson JM. Biochemical characterization and comparison of two closely related active mariner transposases. Biochemistry 2014; 53:682-9. [PMID: 24404958 PMCID: PMC3922039 DOI: 10.1021/bi401193w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
![]()
Most DNA transposons move from one
genomic location to another
by a cut-and-paste mechanism and are useful tools for genomic manipulations.
Short inverted repeat (IR) DNA sequences marking each end of the transposon
are recognized by a DNA transposase (encoded by the transposon itself).
This enzyme cleaves the transposon ends and integrates them at a new
genomic location. We report here a comparison of the biophysical and
biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own
IR sequences, as well as cross-recognition of their inverted repeat
sequences. We found that, like Mos1, untagged recombinant Mboumar-9
transposase is a dimer and forms a stable complex with inverted repeat
DNA in the presence of Mg2+ ions. Mboumar-9 transposase
cleaves its inverted repeat DNA in the manner observed for Mos1 transposase.
There was minimal cross-recognition of IR sequences between Mos1 and
Mboumar-9 transposases, despite these enzymes having 68% identical
amino acid sequences. Transposases sharing common biophysical and
biochemical properties, but retaining recognition specificity toward
their own IR, are a promising platform for the design of chimeric
transposases with predicted and improved sequence recognition.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- School of Biological Sciences, University of Edinburgh , The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
24
|
Liu D, Chalmers R. Hyperactive mariner transposons are created by mutations that disrupt allosterism and increase the rate of transposon end synapsis. Nucleic Acids Res 2013; 42:2637-45. [PMID: 24319144 PMCID: PMC3936726 DOI: 10.1093/nar/gkt1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
New applications for transposons in vertebrate genetics have spurred efforts to develop hyperactive variants. Typically, a genetic screen is used to identify several hyperactive point mutations, which are then incorporated in a single transposase gene. However, the mechanisms responsible for the increased activity are unknown. Here we show that several point mutations in the mariner transposase increase their activities by disrupting the allostery that normally serves to downregulate transposition by slowing synapsis of the transposon ends. We focused on the conserved WVPHEL amino acid motif, which forms part of the mariner transposase dimer interface. We generated almost all possible single substitutions of the W, V, E and L residues and found that the majority are hyperactive. Biochemical analysis of the mutations revealed that they disrupt signals that pass between opposite sides of the developing transpososome in response to transposon end binding. In addition to their role in allostery, the signals control the initiation of catalysis, thereby preventing non-productive double-strand breaks. Finally, we note that such breaks may explain the puzzling ‘self-inflicted wounds’ at the ends of the Mos1 transposon in Drosophila.
Collapse
Affiliation(s)
- Danxu Liu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
25
|
Gil E, Bosch A, Lampe D, Lizcano JM, Perales JC, Danos O, Chillon M. Functional characterization of the human mariner transposon Hsmar2. PLoS One 2013; 8:e73227. [PMID: 24039890 PMCID: PMC3770610 DOI: 10.1371/journal.pone.0073227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022] Open
Abstract
DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to hotspots for homologous recombination involved in human genetic disorders as Charcot–Marie–Tooth, Prader-Willi/Angelman, and Williams syndromes. This manuscript describes the functional characterization of the human HSMAR2 transposase generated from fossil sequences and shows that the native HSMAR2 is active in human cells, but also in bacteria, with an efficiency similar to other mariner elements. We observe that the sub-cellular localization of HSMAR2 is dependent on the host cell type, and is cytotoxic when overexpressed in HeLa cells. Finally, we also demonstrate that the binding of HSMAR2 to its own ITRs is specific, and that the excision reaction leaves non-canonical footprints both in bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- Estel Gil
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpcio Bosch
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Lampe
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jose M. Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose C. Perales
- Department of Physiological Sciences II, IDIBELL, University of Barcelona, Campus de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Olivier Danos
- Institut National de la Sante et de la recherche Medicale U845, Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Miguel Chillon
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
26
|
Esnault C, Chénais B, Casse N, Delorme N, Louarn G, Pilard JF. Electrochemically Modified Carbon and Chromium Surfaces for AFM Imaging of Double-Strand DNA Interaction with Transposase Protein. Chemphyschem 2013; 14:338-45. [DOI: 10.1002/cphc.201200885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Indexed: 11/08/2022]
|
27
|
Cuypers MG, Trubitsyna M, Callow P, Forsyth VT, Richardson JM. Solution conformations of early intermediates in Mos1 transposition. Nucleic Acids Res 2012; 41:2020-33. [PMID: 23262225 PMCID: PMC3561948 DOI: 10.1093/nar/gks1295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end. Using a combination of solution scattering and biochemical techniques, we have determined the solution conformations and stoichiometries of DNA-free Mos1 transposase and of the transposase bound to a single transposon end. We show that Mos1 transposase is an elongated homodimer in the absence of DNA and that the N-terminal 55 residues, containing the first helix-turn-helix motif, are required for dimerization. This arrangement is remarkably different from the compact, crossed architecture of the dimer in the Mos1 paired-end complex (PEC). The transposase remains elongated when bound to a single-transposon end in a pre-cleavage complex, and the DNA is bound predominantly to one transposase monomer. We propose that a conformational change in the single-end complex, involving rotation of one half of the transposase along with binding of a second transposon end, could facilitate PEC assembly.
Collapse
Affiliation(s)
- Maxime G Cuypers
- Life Sciences Group, Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | |
Collapse
|
28
|
Jaillet J, Genty M, Cambefort J, Rouault JD, Augé-Gouillou C. Regulation of mariner transposition: the peculiar case of Mos1. PLoS One 2012; 7:e43365. [PMID: 22905263 PMCID: PMC3419177 DOI: 10.1371/journal.pone.0043365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition. Principal Findings We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones. Conclusions We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.
Collapse
Affiliation(s)
- Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Murielle Genty
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jeanne Cambefort
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation – CNRS UPR9034, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
- * E-mail:
| |
Collapse
|
29
|
Demattei MV, Hedhili S, Sinzelle L, Bressac C, Casteret S, Moiré N, Cambefort J, Thomas X, Pollet N, Gantet P, Bigot Y. Nuclear importation of Mariner transposases among eukaryotes: motif requirements and homo-protein interactions. PLoS One 2011; 6:e23693. [PMID: 21876763 PMCID: PMC3158080 DOI: 10.1371/journal.pone.0023693] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022] Open
Abstract
Mariner-like elements (MLEs) are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS) in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174), and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm.
Collapse
Affiliation(s)
| | - Sabah Hedhili
- CIRAD, UMR 1098 Développement et Amélioration des Plantes, Montpellier, France
| | - Ludivine Sinzelle
- Metamorphosys, CNRS UPS3201-Université d'Evry Val d'Essonne, Genavenir 3 - Genopole Campus 1, Evry, France
| | | | - Sophie Casteret
- PRC, UMR INRA-CNRS 6175, Nouzilly, France
- GICC, UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | | | - Jeanne Cambefort
- GICC, UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | - Xavier Thomas
- GICC, UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | - Nicolas Pollet
- Metamorphosys, CNRS UPS3201-Université d'Evry Val d'Essonne, Genavenir 3 - Genopole Campus 1, Evry, France
| | - Pascal Gantet
- CIRAD, UMR 1098 Développement et Amélioration des Plantes, Montpellier, France
| | - Yves Bigot
- PRC, UMR INRA-CNRS 6175, Nouzilly, France
- * E-mail:
| |
Collapse
|
30
|
Beck BD, Lee SS, Williamson E, Hromas RA, Lee SH. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 2011; 50:4360-70. [PMID: 21491884 PMCID: PMC3388547 DOI: 10.1021/bi200333k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metnase (SETMAR) is a SET-transposase fusion protein that promotes nonhomologous end joining (NHEJ) repair in humans. Although both SET and the transposase domains were necessary for its function in DSB repair, it is not clear what specific role Metnase plays in the NHEJ. In this study, we show that Metnase possesses a unique endonuclease activity that preferentially acts on ssDNA and ssDNA-overhang of a partial duplex DNA. Cell extracts lacking Metnase poorly supported DNA end joining, and addition of wt-Metnase to cell extracts lacking Metnase markedly stimulated DNA end joining, while a mutant (D483A) lacking endonuclease activity did not. Given that Metnase overexpression enhanced DNA end processing in vitro, our finding suggests a role for Metnase's endonuclease activity in promoting the joining of noncompatible ends.
Collapse
Affiliation(s)
- Brian D. Beck
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sung-Sook Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
31
|
Carpentier G, Jaillet J, Pflieger A, Adet J, Renault S, Augé-Gouillou C. Transposase-transposase interactions in MOS1 complexes: a biochemical approach. J Mol Biol 2010; 405:892-908. [PMID: 21110982 DOI: 10.1016/j.jmb.2010.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.
Collapse
Affiliation(s)
- Guillaume Carpentier
- Université François Rabelais de Tours, GICC, CNRS, UMR 6239, UFR Sciences & Techniques, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
32
|
Claeys Bouuaert C, Chalmers R. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res 2009; 38:190-202. [PMID: 19858101 PMCID: PMC2800235 DOI: 10.1093/nar/gkp891] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hsmar1 is a member of the mariner family of DNA transposons. Although widespread in nature, their molecular mechanism remains obscure. Many other cut-and-paste elements use a hairpin intermediate to cleave the two strands of DNA at each transposon end. However, this intermediate is absent in mariner, suggesting that these elements use a fundamentally different mechanism for second-strand cleavage. We have taken advantage of the faithful and efficient in vitro reaction provided by Hsmar1 to characterize the products and intermediates of transposition. We report different factors that particularly affect the reaction, which are the reaction pH and the transposase concentration. Kinetic analysis revealed that first-strand nicking and integration are rapid. The rate of the reaction is limited in part by the divalent metal ion-dependent assembly of a complex between transposase and the transposon end(s) prior to the first catalytic step. Second-strand cleavage is the rate-limiting catalytic step of the reaction. We discuss our data in light of a model for the two metal ion catalytic mechanism and propose that mariner excision involves a significant conformational change between first- and second-strand cleavage at each transposon end. Furthermore, this conformational change requires specific contacts between transposase and the flanking TA dinucleotide.
Collapse
|
33
|
Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element. Mol Genet Genomics 2009; 282:531-46. [PMID: 19774400 DOI: 10.1007/s00438-009-0484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.
Collapse
|
34
|
Lampe DJ. Bacterial genetic methods to explore the biology of mariner transposons. Genetica 2009; 138:499-508. [PMID: 19711186 DOI: 10.1007/s10709-009-9401-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Mariners are small DNA mediated transposons of eukaryotes that fortuitously function in bacteria. Using bacterial genetics, it is possible to study a variety of properties of mariners, including transpositional ability, dominant-negative regulation, overexpresson inhibition, and the function of cis-acting sequences like the inverted terminal repeats. In conjunction with biochemical techniques, the structure of the transposase can be elucidated and the activity of the elements can be improved for genetic tool use. Finally, it is possible to uncover functional transposase genes directly from genomes given a suitable bacterial genetic screen.
Collapse
Affiliation(s)
- David J Lampe
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15116, USA.
| |
Collapse
|
35
|
Germon S, Bouchet N, Casteret S, Carpentier G, Adet J, Bigot Y, Augé-Gouillou C. Mariner Mos1 transposase optimization by rational mutagenesis. Genetica 2009; 137:265-76. [PMID: 19533383 DOI: 10.1007/s10709-009-9375-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/25/2009] [Indexed: 11/28/2022]
Abstract
Mariner transposons are probably the most widespread transposable element family in animal genomes. To date, they are believed not to require species-specific host factors for transposition. Despite this, Mos1, one of the most-studied mariner elements (with Himar1), has been shown to be active in insects, but inactive in mammalian genomes. To circumvent this problem, one strategy consists of both enhancing the activity of the Mos1 transposase (MOS1), and making it insensitive to activity-altering post-translational modifications. Here, we report rational mutagenesis studies performed to obtain hyperactive and non-phosphorylable MOS1 variants. Transposition assays in bacteria have made it possible to isolate numerous hyperactive MOS1 variants. The best mutant combinations, named FETY and FET, are 60- and 800-fold more active than the wild-type MOS1 version, respectively. However, there are serious difficulties in using them, notably because they display severe cytotoxicity. On the other hand, three positions lying within the HTH motif, T88, S99, and S104 were found to be sensitive to phosphorylation. Our efforts to obtain active non-phosphorylable mutants at S99 and S104 positions were unsuccessful, as these residues, like the co-linear amino acids in their close vicinity, are critical for MOS1 activity. Even if host factors are not essential for transposition, our data demonstrate that the host machinery is essential in regulating MOS1 activity.
Collapse
Affiliation(s)
- Stéphanie Germon
- GICC, Université François Rabelais de Tours, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Bias between the left and right inverted repeats during IS911 targeted insertion. J Bacteriol 2008; 190:6111-8. [PMID: 18586933 DOI: 10.1128/jb.00452-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3'-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.
Collapse
|
37
|
Yang HP, Barbash DA. Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 2008; 9:R39. [PMID: 18291035 PMCID: PMC2374699 DOI: 10.1186/gb-2008-9-2-r39] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/17/2007] [Accepted: 02/21/2008] [Indexed: 02/08/2023] Open
Abstract
Evidence is presented that DINE-1 is a highly abundant miniature inverted-repeat transposable element (MITE) family present in all 12 Drosophila species with whole-genome sequence available. Background Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA-mediated transposable elements (TEs) derived from autonomous TEs. Unlike in many plants or animals, MITEs and other types of DNA-mediated TEs were previously thought to be either rare or absent in Drosophila. Most other TE families in Drosophila exist at low or intermediate copy number (around < 100 per genome). Results We present evidence here that the dispersed repeat Drosophila interspersed element 1 (DINE-1; also named INE-1 and DNAREP1) is a highly abundant DNA-mediated TE containing inverted repeats found in all 12 sequenced Drosophila genomes. All DINE-1s share a similar sequence structure, but are more homogeneous within species than they are among species. The inferred phylogenetic relationship of the DINE-1 consensus sequence from each species is generally consistent with the known species phylogeny, suggesting vertical transmission as the major mechanism for DINE-1 propagation. Exceptions observed in D. willistoni and D. ananassae could be due to either horizontal transfer or reactivation of ancestral copies. Our analysis of pairwise percentage identity of DINE-1 copies within species suggests that the transpositional activity of DINE-1 is extremely dynamic, with some lineages showing evidence for recent transpositional bursts and other lineages appearing to have silenced their DINE-1s for long periods of time. We also find that all species have many DINE-1 insertions in introns and adjacent to protein-coding genes. Finally, we discuss our results in light of a recent proposal that DINE-1s belong to the Helitron family of TEs. Conclusion We find that all 12 Drosophila species with whole-genome sequence contain the high copy element DINE-1. Although all DINE-1s share a similar structure, species-specific variation in the distribution of average pairwise divergence suggests that DINE-1 has gone through multiple independent cycles of activation and suppression. DINE-1 also has had a significant impact on gene structure evolution.
Collapse
Affiliation(s)
- Hsiao-Pei Yang
- Institute of Genetics, National Yang-Ming University, Taipei 112, Taiwan.
| | | |
Collapse
|
38
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
39
|
Roman Y, Oshige M, Lee YJ, Goodwin K, Georgiadis MM, Hromas RA, Lee SH. Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity. Biochemistry 2007; 46:11369-76. [PMID: 17877369 PMCID: PMC3374406 DOI: 10.1021/bi7005477] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metnase (SETMAR) is a SET and transposase fusion protein that promotes in vivo end joining activity and mediates genomic integration of foreign DNA. Recent studies showed that Metnase retained most of the transposase activities, including 5'-terminal inverted repeat (TIR)-specific binding and assembly of a paired end complex, and cleavage of the 5'-end of the TIR element. Here we show that R432 within the helix-turn-helix motif is critical for sequence-specific recognition, as the R432A mutation abolishes its TIR-specific DNA binding activity. Metnase possesses a unique DNA nicking and/or endonuclease activity that mediates cleavage of duplex DNA in the absence of the TIR sequence. While the HTH motif is essential for the Metnase-TIR interaction, it is not required for its DNA cleavage activity. The DDE-like motif is crucial for its DNA cleavage action as a point mutation at this motif (D483A) abolished its DNA cleavage activity. Together, our results suggest that Metnase's DNA cleavage activity, unlike those of other eukaryotic transposases, is not coupled to its sequence-specific DNA binding.
Collapse
Affiliation(s)
- Yaritzabel Roman
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Masahiko Oshige
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Young-Ju Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Kristie Goodwin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Millie M. Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Robert A. Hromas
- Department of Internal Medicine and the Cancer Treatment and Research Center, the University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Corresponding author: Suk-Hee Lee, IU Cancer Research Institute (Rm153), 1044 W. Walnut St., Indianapolis, Indiana 46202. Phone: +1-317-278-3464, Fax: +1-317-274-8046;
| |
Collapse
|
40
|
Feng X, Colloms SD. In vitro transposition of ISY100, a bacterial insertion sequence belonging to the Tc1/mariner family. Mol Microbiol 2007; 65:1432-43. [PMID: 17680987 PMCID: PMC2170065 DOI: 10.1111/j.1365-2958.2007.05842.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix–turn–helix motifs. Transposase is the only protein required for excision and integration of ISY100. Transposase made double-strand breaks on a supercoiled DNA molecule containing a mini-ISY100 transposon, cleaving exactly at the transposon 3′ ends and two nucleotides inside the 5′ ends. Cleavage of short linear substrates containing a single transposon end was less precise. Transposase also catalysed strand transfer, covalently joining the transposon 3′ end to the target DNA. When a donor plasmid carrying a mini-ISY100 was incubated with a target plasmid and transposase, the most common products were insertions of one transposon end into the target DNA, but insertions of both ends at a single target site could be recovered after transformation into Escherichia coli. Insertions were almost exclusively into TA dinucleotides, and the target TA was duplicated on insertion. Our results demonstrate that there are no fundamental differences between the transposition mechanisms of IS630 family elements in bacteria and Tc1/mariner elements in higher eukaryotes.
Collapse
Affiliation(s)
| | - Sean D Colloms
- E-mail ; Tel. (+44) 141 330 6236; Fax (+44) 141 330 4878
| |
Collapse
|
41
|
Tang M, Cecconi C, Bustamante C, Rio DC. Analysis of P element transposase protein-DNA interactions during the early stages of transposition. J Biol Chem 2007; 282:29002-29012. [PMID: 17644523 DOI: 10.1074/jbc.m704106200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P elements are a family of transposable elements found in Drosophila that move by using a cut-and-paste mechanism and that encode a transposase protein that uses GTP as a cofactor for transposition. Here we used atomic force microscopy to visualize the initial interaction of transposase protein with P element DNA. The transposase first binds to one of the two P element ends, in the presence or absence of GTP, prior to synapsis. In the absence of GTP, these complexes remain stable but do not proceed to synapsis. In the presence of GTP or nonhydrolyzable GTP analogs, synapsis happens rapidly, whereas DNA cleavage is slow. Both atomic force microscopy and standard biochemical methods have been used to show that the P element transposase exists as a pre-formed tetramer that initially binds to either one of the two P element ends in the absence of GTP prior to synapsis. This initial single end binding may explain some of the aberrant P element-induced rearrangements observed in vivo, such as hybrid end insertion. The allosteric effect of GTP in promoting synapsis by P element transposase may be to orient a second site-specific DNA binding domain in the tetramer allowing recognition of a second high affinity transposase-binding site at the other transposon end.
Collapse
Affiliation(s)
- Mei Tang
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development and Division of Biochemistry and Molecular Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720
| | - Ciro Cecconi
- CNR-INFM-S3 University of Modena e Reggio Emilia, 41100 Modena, Italy
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development and Division of Biochemistry and Molecular Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720; Department of Physics, University of California, Berkeley, California 94720; Howard Hughes Medical Institute, Berkeley, California 94720; Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Donald C Rio
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development and Division of Biochemistry and Molecular Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720.
| |
Collapse
|
42
|
Richardson JM, Finnegan DJ, Walkinshaw MD. Crystallization of a Mos1 transposase-inverted-repeat DNA complex: biochemical and preliminary crystallographic analyses. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:434-7. [PMID: 17565190 PMCID: PMC2335011 DOI: 10.1107/s1744309107019045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/17/2007] [Indexed: 11/10/2022]
Abstract
A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 A resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 A, beta = 99.3 degrees . The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at approximately 3.3 A. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland.
| | | | | |
Collapse
|
43
|
Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 2007; 27:1125-32. [PMID: 17130240 PMCID: PMC1800679 DOI: 10.1128/mcb.01899-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 11/06/2006] [Accepted: 11/10/2006] [Indexed: 12/11/2022] Open
Abstract
Transposons have contributed protein coding sequences to a unexpectedly large number of human genes. Except for the V(D)J recombinase and telomerase, all remain of unknown function. Here we investigate the activity of the human SETMAR protein, a highly expressed fusion between a histone H3 methylase and a mariner family transposase. Although SETMAR has demonstrated methylase activity and a DNA repair phenotype, its mode of action and the role of the transposase domain remain obscure. As a starting point to address this problem, we have dissected the activity of the transposase domain in the context of the full-length protein and the isolated transposase domain. Complete transposition of an engineered Hsmar1 transposon by the transposase domain was detected, although the extent of the reaction was limited by a severe defect for cleavage at the 3' ends of the element. Despite this problem, SETMAR retains robust activity for the other stages of the Hsmar1 transposition reaction, namely, site-specific DNA binding to the transposon ends, assembly of a paired-ends complex, cleavage of the 5' end of the element in Mn(2+), and integration at a TA dinucleotide target site. SETMAR is unlikely to catalyze transposition in the human genome, although the nicking activity may have a role in the DNA repair phenotype. The key activity for the mariner domain is therefore the robust DNA-binding and looping activity which has a high potential for targeting the histone methylase domain to the many thousands of specific binding sites in the human genome provided by copies of the Hsmar1 transposon.
Collapse
Affiliation(s)
- Danxu Liu
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Butler MG, Chakraborty SA, Lampe DJ. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition. Genetica 2006; 127:351-66. [PMID: 16850239 DOI: 10.1007/s10709-006-6250-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of "average" transposons.
Collapse
Affiliation(s)
- Matthew G Butler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
45
|
Yang G, Weil CF, Wessler SR. A rice Tc1/mariner-like element transposes in yeast. THE PLANT CELL 2006; 18:2469-78. [PMID: 17041148 PMCID: PMC1626630 DOI: 10.1105/tpc.106.045906] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Tc1/mariner transposable element superfamily is widely distributed in animal and plant genomes. However, no active plant element has been previously identified. Nearly identical copies of a rice (Oryza sativa) Tc1/mariner element called Osmar5 in the genome suggested potential activity. Previous studies revealed that Osmar5 encoded a protein that bound specifically to its own ends. In this report, we show that Osmar5 is an active transposable element by demonstrating that expression of its coding sequence in yeast promotes the excision of a nonautonomous Osmar5 element located in a reporter construct. Element excision produces transposon footprints, whereas element reinsertion occurs at TA dinucleotides that were either tightly linked or unlinked to the excision site. Several site-directed mutations in the transposase abolished activity, whereas mutations in the transposase binding site prevented transposition of the nonautonomous element from the reporter construct. This report of an active plant Tc1/mariner in yeast will provide a foundation for future comparative analyses of animal and plant elements in addition to making a new wide host range transposable element available for plant gene tagging.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
46
|
Loot C, Santiago N, Sanz A, Casacuberta JM. The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs. Nucleic Acids Res 2006; 34:5238-46. [PMID: 17003053 PMCID: PMC1636448 DOI: 10.1093/nar/gkl688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MITEs (miniature inverted-repeated transposable elements) are a particular class of defective DNA transposons usually present within genomes as high copy number populations of highly homogeneous elements. Although an active MITE, the mPing element, has recently been characterized in rice, the transposition mechanism of MITEs remains unknown. It has been proposed that transposases of related transposons could mobilize MITEs in trans. Moreover, it has also been proposed that the presence of conserved terminal inverted-repeated (TIR) sequences could be the only requirement of MITEs for mobilization, allowing divergent or unrelated elements to be mobilized by a particular transposase. We present here evidence for a recent mobility of the Arabidopsis Emigrant MITE and we report on the capacity of the proteins encoded by the related Lemi1 transposon, a pogo-related element, to specifically bind Emigrant elements. This suggests that Lemi1 could mobilize Emigrant elements and makes the Lemi1/Emigrant couple an ideal system to study the transposition mechanism of MITEs. Our results show that Lemi1 proteins bind Emigrant TIRs but also bind cooperatively to subterminal repeated motifs. The requirement of internal sequences for the formation of proper DNA/protein structure could affect the capacity of divergent MITEs to be mobilized by distantly related transposases.
Collapse
Affiliation(s)
| | | | | | - Josep M. Casacuberta
- To whom correspondence should be addressed. Tel: +34 93 4006142; Fax: +34 93 2045904;
| |
Collapse
|
47
|
Brillet B, Benjamin B, Bigot Y, Yves B, Augé-Gouillou C, Corinne AG. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 2006; 130:105-20. [PMID: 16912840 DOI: 10.1007/s10709-006-0025-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/02/2006] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the assembly of DNA/protein complexes that trigger transposition in eukaryotic members of the IS630-Tc1-mariner (ITm) super-family, the Tc1- and mariner-like elements (TLEs and MLEs). Elements belonging to this super-family encode transposases with DNA binding domains of different origins, and recent data indicate that the chimerization of functional domains has been an important evolutionary aspect in the generation of new transposons within the ITm super-family. These data also reveal that the inverted terminal repeats (ITRs) at the ends of transposons contain three kinds of motif within their sequences. The first two are well known and correspond to the cleavage site on the outer ITR extremities, and the transposase DNA binding site. The organization of ITRs and of the transposase DNA binding domains implies that differing pathways are used by MLEs and TLEs to regulate transposition initiation. These differences imply that the ways ITRs are recognized also differ leading to the formation of differently organized synaptic complexes. The third kind of motif is the transposition enhancers, which have been found in almost all the functional MLEs and TLEs analyzed to date. Finally, in vitro and in vivo assays of various elements all suggest that the transposition initiation complex is not formed randomly, but involves a mechanism of oriented transposon scanning.
Collapse
Affiliation(s)
- Benjamin Brillet
- Laboratoire d'Etudes des Parasites Génétiques, Université François Rabelais, FRE CNRS 2969, UFR Sciences & Techniques, Parc Grandmont, 37200, Tours, France
| | | | | | | | | | | |
Collapse
|
48
|
Cordaux R, Udit S, Batzer MA, Feschotte C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci U S A 2006; 103:8101-6. [PMID: 16672366 PMCID: PMC1472436 DOI: 10.1073/pnas.0601161103] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of new genes and functions is of central importance to the evolution of species. The contribution of various types of duplications to genetic innovation has been extensively investigated. Less understood is the creation of new genes by recycling of coding material from selfish mobile genetic elements. To investigate this process, we reconstructed the evolutionary history of SETMAR, a new primate chimeric gene resulting from fusion of a SET histone methyltransferase gene to the transposase gene of a mobile element. We show that the transposase gene was recruited as part of SETMAR 40-58 million years ago, after the insertion of an Hsmar1 transposon downstream of a preexisting SET gene, followed by the de novo exonization of previously noncoding sequence and the creation of a new intron. The original structure of the fusion gene is conserved in all anthropoid lineages, but only the N-terminal half of the transposase is evolving under strong purifying selection. In vitro assays show that this region contains a DNA-binding domain that has preserved its ancestral binding specificity for a 19-bp motif located within the terminal-inverted repeats of Hsmar1 transposons and their derivatives. The presence of these transposons in the human genome constitutes a potential reservoir of approximately 1,500 perfect or nearly perfect SETMAR-binding sites. Our results not only provide insight into the conditions required for a successful gene fusion, but they also suggest a mechanism by which the circuitry underlying complex regulatory networks may be rapidly established.
Collapse
Affiliation(s)
- Richard Cordaux
- *Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803; and
| | - Swalpa Udit
- Department of Biology, University of Texas, Arlington, TX 76019
| | - Mark A. Batzer
- *Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803; and
| | - Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Richardson JM, Dawson A, O'hagan N, Taylor P, Finnegan DJ, Walkinshaw MD. Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 2006; 25:1324-34. [PMID: 16511570 PMCID: PMC1422158 DOI: 10.1038/sj.emboj.7601018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 02/01/2006] [Indexed: 11/09/2022] Open
Abstract
We present the crystal structure of the catalytic domain of Mos1 transposase, a member of the Tc1/mariner family of transposases. The structure comprises an RNase H-like core, bringing together an aspartic acid triad to form the active site, capped by N- and C-terminal alpha-helices. We have solved structures with either one Mg2+ or two Mn2+ ions in the active site, consistent with a two-metal mechanism for catalysis. The lack of hairpin-stabilizing structural motifs is consistent with the absence of a hairpin intermediate in Mos1 excision. We have built a model for the DNA-binding domain of Mos1 transposase, based on the structure of the bipartite DNA-binding domain of Tc3 transposase. Combining this with the crystal structure of the catalytic domain provides a model for the paired-end complex formed between a dimer of Mos1 transposase and inverted repeat DNA. The implications for the mechanisms of first and second strand cleavage are discussed.
Collapse
Affiliation(s)
| | - Angela Dawson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Natasha O'hagan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Taylor
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David J Finnegan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
50
|
Palomeque T, Antonio Carrillo J, Muñoz-López M, Lorite P. Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. Gene 2006; 371:194-205. [PMID: 16507338 DOI: 10.1016/j.gene.2005.11.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 11/27/2022]
Abstract
The satellite DNA of ants Messor bouvieri, M. barbarus and M. structor, studied in a previous paper, is organized as tandemly repeated 79-bp monomers in the three species showing high sequence similarity. In the present paper, a mariner-like element (Mboumar) and a new MITE (miniature inverted-repeat transposable element) called IRE-130, inserted into satellite DNA from M. bouvieri, are analyzed. The study of Mboumar element, of its transcription and the putative transposase that it would encode, suggests that it could be an active element. Mboumar elements inserted into IRE-130 elements have also been detected. It is the first time, to our knowledge, that a MITE has been described in Hymenoptera and it is also the first time that a mariner-like element inserted into a MITE has been detected. A mariner-like element, inserted into satellite DNA from M. structor and in M. barbarus, also has been found. The results seem to indicate that transposition events have participated in the satellite DNA mobilization and evolution.
Collapse
Affiliation(s)
- Teresa Palomeque
- Departamento de Biología Experimental. Area de Genética. Universidad de Jaén. 23071, Jaén, Spain.
| | | | | | | |
Collapse
|