1
|
Zhao JJ, Sun XY, Tian SN, Zhao ZZ, Yin MD, Zhao M, Zhang F, Li SA, Yang ZX, Wen W, Cheng T, Gong A, Zhang JP, Zhang XB. Decoding the complexity of on-target integration: characterizing DNA insertions at the CRISPR-Cas9 targeted locus using nanopore sequencing. BMC Genomics 2024; 25:189. [PMID: 38368357 PMCID: PMC10874558 DOI: 10.1186/s12864-024-10050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.
Collapse
Affiliation(s)
- Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xin-Yu Sun
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | | | - Zong-Ze Zhao
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266000, China
| | - Meng-Di Yin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Si-Ang Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - An Gong
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266000, China.
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Namasivayam S, Sun C, Bah AB, Oberstaller J, Pierre-Louis E, Etheridge RD, Feschotte C, Pritham EJ, Kissinger JC. Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma. Proc Natl Acad Sci U S A 2023; 120:e2308569120. [PMID: 37917792 PMCID: PMC10636329 DOI: 10.1073/pnas.2308569120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.
Collapse
Affiliation(s)
| | - Cheng Sun
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Assiatu B. Bah
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | | | - Edwin Pierre-Louis
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
| | - Cedric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Ellen J. Pritham
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Jessica C. Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
| |
Collapse
|
3
|
Namasivayam S, Sun C, Bah AB, Oberstaller J, Pierre-Louis E, Etheridge RD, Feschotte C, Pritham EJ, Kissinger JC. Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.539837. [PMID: 37293002 PMCID: PMC10245829 DOI: 10.1101/2023.05.22.539837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Toxoplasma gondii is a zoonotic protist pathogen that infects up to 1/3 of the human population. This apicomplexan parasite contains three genome sequences: nuclear (63 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear DNA of mitochondrial origin) and NUPTs (nuclear DNA of plastid origin) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome; the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 MY ago, revealed that the movement and fixation of 5 NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb) and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.
Collapse
Affiliation(s)
- Sivaranjani Namasivayam
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Present address: Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD 20892, USA
| | - Cheng Sun
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA; Present address: College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Assiatu B Bah
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| | - Jenna Oberstaller
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Present address: Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Edwin Pierre-Louis
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Cedric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Ellen J. Pritham
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| | - Jessica C. Kissinger
- Department of Genetics, Institute of Bioinformatics, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Asoshina M, Myo G, Tada N, Tajino K, Shimizu N. Targeted amplification of a sequence of interest in artificial chromosome in mammalian cells. Nucleic Acids Res 2019; 47:5998-6006. [PMID: 31062017 PMCID: PMC6582328 DOI: 10.1093/nar/gkz343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
A plasmid with a replication initiation region (IR) and a matrix attachment region (MAR) initiates gene amplification in mammalian cells at a random chromosomal location. A mouse artificial chromosome (MAC) vector can stably carry a large genomic region. In this study we combined these two technologies with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)9 strategy to achieve targeted amplification of a sequence of interest. We previously showed that the IR/MAR plasmid was amplified up to the extrachromosomal tandem repeat; here we demonstrate that cleavage of these tandem plasmids and MAC by Cas9 facilitates homologous recombination between them. The plasmid array on the MAC could be further extended to form a ladder structure with high gene expression by a breakage–fusion–bridge cycle involving breakage at mouse major satellites. Amplification of genes on the MAC has the advantage that the MAC can be transferred between cells. We visualized the MAC in live cells by amplifying the lactose operator array on the MAC in cells expressing lactose repressor-green fluorescent protein fusion protein. This targeted amplification strategy is in theory be applicable to any sequence at any chromosomal site, and provides a novel tool for animal cell technology.
Collapse
Affiliation(s)
- Manami Asoshina
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Genki Myo
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Natsuko Tada
- Chromocenter Inc., Yonago, Tottori 683-0823, Japan
| | - Koji Tajino
- Chromocenter Inc., Yonago, Tottori 683-0823, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
5
|
Dupuy P, Sauviac L, Bruand C. Stress-inducible NHEJ in bacteria: function in DNA repair and acquisition of heterologous DNA. Nucleic Acids Res 2019; 47:1335-1349. [PMID: 30517704 PMCID: PMC6379672 DOI: 10.1093/nar/gky1212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSB) in bacteria can be repaired by non-homologous end-joining (NHEJ), a two-component system relying on Ku and LigD. While performing a genetic characterization of NHEJ in Sinorhizobium meliloti, a representative of bacterial species encoding several Ku and LigD orthologues, we found that at least two distinct functional NHEJ repair pathways co-exist: one is dependent on Ku2 and LigD2, while the other depends on Ku3, Ku4 and LigD4. Whereas Ku2 likely acts as canonical bacterial Ku homodimers, genetic evidences suggest that Ku3-Ku4 form eukaryotic-like heterodimers. Strikingly, we found that the efficiency of both NHEJ systems increases under stress conditions, including heat and nutrient starvation. We found that this stimulation results from the transcriptional up-regulation of the ku and/or ligD genes, and that some of these genes are controlled by the general stress response regulator RpoE2. Finally, we provided evidence that NHEJ not only repairs DSBs, but can also capture heterologous DNA fragments into genomic breaks. Our data therefore suggest that NHEJ could participate to horizontal gene transfer from distantly related species, bypassing the need of homology to integrate exogenous DNA. This supports the hypothesis that NHEJ contributes to evolution and adaptation of bacteria under adverse environmental conditions.
Collapse
Affiliation(s)
- Pierre Dupuy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Laurent Sauviac
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claude Bruand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
6
|
Bertrand C, Thibessard A, Bruand C, Lecointe F, Leblond P. Bacterial NHEJ: a never ending story. Mol Microbiol 2019; 111:1139-1151. [PMID: 30746801 DOI: 10.1111/mmi.14218] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Double-strand breaks (DSBs) are the most detrimental DNA damage encountered by bacterial cells. DBSs can be repaired by homologous recombination thanks to the availability of an intact DNA template or by Non-Homologous End Joining (NHEJ) when no intact template is available. Bacterial NHEJ is performed by sets of proteins of growing complexity from Bacillus subtilis and Mycobacterium tuberculosis to Streptomyces and Sinorhizobium meliloti. Here, we discuss the contribution of these models to the understanding of the bacterial NHEJ repair mechanism as well as the involvement of NHEJ partners in other DNA repair pathways. The importance of NHEJ and of its complexity is discussed in the perspective of regulation through the biological cycle of the bacteria and in response to environmental stimuli. Finally, we consider the role of NHEJ in genome evolution, notably in horizontal gene transfer.
Collapse
Affiliation(s)
- Claire Bertrand
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| | | | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Pierre Leblond
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| |
Collapse
|
7
|
Richardson CD, Ray GJ, Bray NL, Corn JE. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes. Nat Commun 2016; 7:12463. [PMID: 27530320 PMCID: PMC4992056 DOI: 10.1038/ncomms12463] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
The Cas9 endonuclease can be targeted to genomic sequences by programming the sequence of an associated single guide RNA (sgRNA). For unknown reasons, the activity of these Cas9-sgRNA combinations varies widely at different genomic loci and in different cell types. Thus, disrupting genes in polyploid cell lines or when using poorly performing sgRNAs can require extensive downstream screening to identify homozygous clones. Here we find that non-homologous single-stranded DNA greatly stimulates Cas9-mediated gene disruption in the absence of homology-directed repair. This stimulation increases the frequency of clones with homozygous gene disruptions and rescues otherwise ineffective sgRNAs. The molecular outcome of enhanced gene disruption depends upon cellular context, stimulating deletion of genomic sequence or insertion of non-homologous DNA at the edited locus in a cell line specific manner. Non-homologous DNA appears to divert cells towards error-prone instead of error-free repair pathways, dramatically increasing the frequency of gene disruption.
Collapse
Affiliation(s)
- C. D. Richardson
- Innovative Genomics Initiative, University of California, Berkeley 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - G. J. Ray
- Innovative Genomics Initiative, University of California, Berkeley 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - N. L. Bray
- Innovative Genomics Initiative, University of California, Berkeley 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - J. E. Corn
- Innovative Genomics Initiative, University of California, Berkeley 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Activation of endogenous human stem cell-associated retroviruses (SCARs) and therapy-resistant phenotypes of malignant tumors. Cancer Lett 2016; 376:347-59. [PMID: 27084523 DOI: 10.1016/j.canlet.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 02/04/2023]
Abstract
Recent reports revealed consistent activation of specific endogenous retroviral elements in human preimplantation embryos and embryonic stem cells. Activity of stem cell associated retroviruses (SCARs) has been implicated in seeding thousands of human-specific regulatory sequences in the hESC genome. Activation of specific SCARs has been demonstrated in patients diagnosed with multiple types of cancer, autoimmune diseases, and neurodegenerative disorders, and appears associated with clinically lethal therapy resistant death-from-cancer phenotypes in a sub-set of cancer patients diagnosed with different types of malignant tumors. A hallmark feature of human-specific SCAR integration sites is deletions of ancestral DNA. Analysis of human-specific genetic loci of SCARs' stemness networks in tumor samples of TCGA cohorts representing 29 cancer types suggests that this approach may facilitate identification of pan-cancer genomic signatures of clinically-lethal disease defined by the presence of somatic non-silent mutations, gene-level copy number changes, and transcripts and proteins' expression of SCAR-regulated host genes. Present analyses indicate that multiple lines of strong circumstantial evidence support the hypothesis that activation of SCARs' networks may play an important role in cancer progression and metastasis, perhaps contributing to the emergence of clinically-lethal therapy-resistant death-from-cancer phenotypes.
Collapse
|
9
|
Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome Engineering with TALE and CRISPR Systems in Neuroscience. Front Genet 2016; 7:47. [PMID: 27092173 PMCID: PMC4821859 DOI: 10.3389/fgene.2016.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.
Collapse
Affiliation(s)
- Han B Lee
- Neurobiology of Disease Graduate Program, Mayo Graduate School Rochester, MN, USA
| | - Brynn N Sundberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Ashley N Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Karl J Clark
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolRochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
10
|
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 2015; 33:1256-1263. [PMID: 26551060 PMCID: PMC4842001 DOI: 10.1038/nbt.3408] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
Abstract
Genome editing with targeted nucleases and DNA donor templates homologous to the break site has proven challenging in human hematopoietic stem and progenitor cells (HSPCs), and particularly in the most primitive, long-term repopulating cell population. Here we report that combining electroporation of zinc finger nuclease (ZFN) mRNA with donor template delivery by adeno-associated virus (AAV) serotype 6 vectors directs efficient genome editing in HSPCs, achieving site-specific insertion of a GFP cassette at the CCR5 and AAVS1 loci in mobilized peripheral blood CD34+ HSPCs at mean frequencies of 17% and 26%, respectively, and in fetal liver HSPCs at 19% and 43%, respectively. Notably, this approach modified the CD34+CD133+CD90+ cell population, a minor component of CD34+ cells that contains long-term repopulating hematopoietic stem cells (HSCs). Genome-edited HSPCs also engrafted in immune-deficient mice long-term, confirming that HSCs are targeted by this approach. Our results provide a strategy for more robust application of genome-editing technologies in HSPCs.
Collapse
|
11
|
Abstract
The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California 94305;
| |
Collapse
|
12
|
Wang J, DeClercq JJ, Hayward SB, Li PWL, Shivak DA, Gregory PD, Lee G, Holmes MC. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res 2015; 44:e30. [PMID: 26527725 PMCID: PMC4756813 DOI: 10.1093/nar/gkv1121] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8+ T cells and gene targeting of a GFP transgene cassette in >40% of CD8+ and CD4+ T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Jianbin Wang
- Sangamo BioSciences, Inc., Richmond, CA 94804, USA
| | | | | | | | | | | | - Gary Lee
- Sangamo BioSciences, Inc., Richmond, CA 94804, USA
| | | |
Collapse
|
13
|
Abstract
Recent advances in the targeted modification of complex eukaryotic genomes have unlocked a new era of genome engineering. From the pioneering work using zinc-finger nucleases (ZFNs), to the advent of the versatile and specific TALEN systems, and most recently the highly accessible CRISPR/Cas9 systems, we now possess an unprecedented ability to analyze developmental processes using sophisticated designer genetic tools. In this Review, we summarize the common approaches and applications of these still-evolving tools as they are being used in the most popular model developmental systems. Excitingly, these robust and simple genomic engineering tools also promise to revolutionize developmental studies using less well established experimental organisms.
Collapse
Affiliation(s)
- Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Mayo Addiction Research Center, Mayo Clinic, Rochester, MN 55905, USA Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Mayo Addiction Research Center, Mayo Clinic, Rochester, MN 55905, USA Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Magdalena R Panetta
- InSciEd Out and Mayo High School, Rochester Art Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Mayo Addiction Research Center, Mayo Clinic, Rochester, MN 55905, USA Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA InSciEd Out and Mayo High School, Rochester Art Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Wu X, Blackburn PR, Tschumper RC, Ekker SC, Jelinek DF. TALEN-mediated genetic tailoring as a tool to analyze the function of acquired mutations in multiple myeloma cells. Blood Cancer J 2014; 4:e210. [PMID: 24813078 PMCID: PMC4042302 DOI: 10.1038/bcj.2014.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that is initiated by a number of mutations and the process of disease progression is characterized by further acquisition of mutations. The identification and functional characterization of these myelomagenic mutations is necessary to better understand the underlying pathogenic mechanisms in this disease. Recent advancements in next-generation sequencing have made the identification of most of these mutations a reality. However, the functional characterization of these mutations has been hampered by the lack of proper and efficient tools to dissect these mutations. Here we explored the possible utility of transcription activator-like effector nuclease (TALEN) genome engineering technology to tailoring the genome of MM cells. To test this possibility, we targeted the HPRT1 gene and found that TALENs are a very robust and efficient genome-editing tool in MM cells. Using cotransfected green fluorescent protein as an enrichment marker, single-cell subclones with desirable TALEN modifications in the HPRT1 gene were obtained in as little as 3–4 weeks of time. We believe that TALENs will greatly facilitate the functional study of somatic mutations in MM as well as other cancers.
Collapse
Affiliation(s)
- X Wu
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - P R Blackburn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - R C Tschumper
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - D F Jelinek
- 1] Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA [2] Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
15
|
Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proc Natl Acad Sci U S A 2014; 111:E672-81. [PMID: 24469795 DOI: 10.1073/pnas.1313580111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.
Collapse
|
16
|
Abstract
DNA transfer from chloroplasts and mitochondria to the nucleus is ongoing in eukaryotes but the mechanisms involved are poorly understood. Mitochondrial DNA was observed to integrate into the nuclear genome through DNA double-strand break repair in Nicotiana tabacum. Here, 14 nuclear insertions of chloroplast DNA (nupts) that are unique to Oryza sativa subsp. indica were identified. Comparisons with the preinsertion nuclear loci identified in the related subspecies, O. sativa subsp. japonica, which lacked these nupts, indicated that chloroplast DNA had integrated by nonhomologous end joining. Analyzing public DNase-seq data revealed that nupts were significantly more frequent in open chromatin regions of the nucleus. This preference was tested further in the chimpanzee genome by comparing nuclear loci containing integrants of mitochondrial DNA (numts) with their corresponding numt-lacking preinsertion sites in the human genome. Mitochondrial DNAs also tended to insert more frequently into regions of open chromatin revealed by human DNase-seq and Formaldehyde-Assisted Isolation of Regulatory Elements-seq databases.
Collapse
Affiliation(s)
- Dong Wang
- School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia
| | | |
Collapse
|
17
|
Replicative mechanisms for CNV formation are error prone. Nat Genet 2013; 45:1319-26. [PMID: 24056715 PMCID: PMC3821386 DOI: 10.1038/ng.2768] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/27/2013] [Indexed: 01/20/2023]
Abstract
We investigated 67 breakpoint junctions of gene copy number gains (CNVs) in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase-slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex CNVs. These simple nucleotide variants (SNV) were generated concomitantly with the de novo complex genomic rearrangement (CGR) event. Our findings implicate a low fidelity error-prone DNA polymerase in synthesis associated with DNA repair mechanisms that leads to a local increase in point mutation burden associated with human CGR.
Collapse
|
18
|
Repair of chromosomal double-strand breaks by precise ligation in human cells. DNA Repair (Amst) 2013; 12:480-7. [PMID: 23707303 DOI: 10.1016/j.dnarep.2013.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/05/2013] [Accepted: 04/19/2013] [Indexed: 01/19/2023]
Abstract
Double-strand breaks (DSBs), a common type of DNA lesion, occur daily in human cells as a result of both endogenous and exogenous damaging agents. DSBs are repaired in two general ways: by the homology-dependent, error-free pathways of homologous recombination (HR) and by the homology-independent, error-prone pathways of nonhomologous end-joining (NHEJ), with NHEJ predominating in most cells. DSBs with compatible ends can be re-joined in vitro with DNA ligase alone, which raises the question of whether such DSBs require the more elaborate machinery of NHEJ to be repaired in cells. Here we report that chromosomal DSBs with compatible ends introduced by the rare-cutting endonuclease, ISceI, are repaired by precise ligation nearly 100% of the time in human cells. Precise ligation depends on the classical NHEJ components Ku70, XRCC4, and DNA ligase IV, since siRNA knockdowns of these factors significantly reduced the efficiency of precise ligation. Interestingly, knockdown of the tumor suppressors p53 or BRCA1 showed similar effects as the knockdowns of NHEJ factors. In contrast, knockdown of components involved in alternative NHEJ, mismatch repair, nucleotide excision repair, and single-strand break repair did not reduce precise ligation. In summary, our results demonstrate that DSBs in human cells are efficiently repaired by precise ligation, which requires classical NHEJ components and is enhanced by p53 and BRCA1.
Collapse
|
19
|
Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011; 29:816-23. [PMID: 21822255 DOI: 10.1038/nbt.1948] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/19/2011] [Indexed: 11/09/2022]
Abstract
Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.
Collapse
Affiliation(s)
- Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions. Virology 2011; 412:325-32. [DOI: 10.1016/j.virol.2011.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/13/2010] [Accepted: 01/14/2011] [Indexed: 11/22/2022]
|
21
|
Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 2011; 21:599-609. [PMID: 21270172 DOI: 10.1101/gr.115592.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer (LGT) plays a major role in prokaryote evolution with only a few genes that are resistant to it; yet the nature and magnitude of barriers to lateral transfer are still debated. Here, we implement directed networks to investigate donor-recipient events of recent lateral gene transfer among 657 sequenced prokaryote genomes. For 2,129,548 genes investigated, we detected 446,854 recent lateral gene transfer events through nucleotide pattern analysis. Among these, donor-recipient relationships could be specified through phylogenetic reconstruction for 7% of the pairs, yielding 32,028 polarized recent gene acquisition events, which constitute the edges of our directed networks. We find that the frequency of recent LGT is linearly correlated both with genome sequence similarity and with proteome similarity of donor-recipient pairs. Genome sequence similarity accounts for 25% of the variation in gene-transfer frequency, with proteome similarity adding only 1% to the variability explained. The range of donor-recipient GC content similarity within the network is extremely narrow, with 86% of the LGTs occurring between donor-recipient pairs having ≤5% difference in GC content. Hence, genome sequence similarity and GC content similarity are strong barriers to LGT in prokaryotes. But they are not insurmountable, as we detected 1530 recent transfers between distantly related genomes. The directed network revealed that recipient genomes of distant transfers encode proteins of nonhomologous end-joining (NHEJ; a DNA repair mechanism) far more frequently than the recipient lacking that mechanism. This implicates NHEJ in genes spread across distantly related prokaryotes through bypassing the donor-recipient sequence similarity barrier.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
22
|
Ragg H. Intron creation and DNA repair. Cell Mol Life Sci 2011; 68:235-42. [PMID: 20853128 PMCID: PMC11115024 DOI: 10.1007/s00018-010-0532-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
The genesis of the exon-intron patterns of eukaryotic genes persists as one of the most enigmatic questions in molecular genetics. In particular, the origin and mechanisms responsible for creation of spliceosomal introns have remained controversial. Now the issue appears to have taken a turn. The formation of novel introns in eukaryotes, including some vertebrate lineages, is not as rare as commonly assumed. Moreover, introns appear to have been gained in parallel at closely spaced sites and even repeatedly at the same position. Based on these discoveries, novel hypotheses of intron creation have been developed. The new concepts posit that DNA repair processes are a major source of intron formation. Here, after summarizing the current views of intron gain mechanisms, I review findings in support of the DNA repair hypothesis that provides a global mechanistic scenario for intron creation. Some implications on our perception of the mosaic structure of eukaryotic genes are also discussed.
Collapse
Affiliation(s)
- Hermann Ragg
- Department of Biotechnology, University of Bielefeld, Germany.
| |
Collapse
|
23
|
Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 2010; 38:e152. [PMID: 20530528 PMCID: PMC2926620 DOI: 10.1093/nar/gkq512] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously demonstrated high-frequency, targeted DNA addition mediated by the homology-directed DNA repair pathway. This method uses a zinc-finger nuclease (ZFN) to create a site-specific double-strand break (DSB) that facilitates copying of genetic information into the chromosome from an exogenous donor molecule. Such donors typically contain two approximately 750 bp regions of chromosomal sequence required for homology-directed DNA repair. Here, we demonstrate that easily-generated linear donors with extremely short (50 bp) homology regions drive transgene integration into 5-10% of chromosomes. Moreover, we measure the overhangs produced by ZFN cleavage and find that oligonucleotide donors with single-stranded 5' overhangs complementary to those made by ZFNs are efficiently ligated in vivo to the DSB. Greater than 10% of all chromosomes directly incorporate this exogenous DNA via a process that is dependent upon and guided by complementary 5' overhangs on the donor DNA. Finally, we extend this non-homologous end-joining (NHEJ)-based technique by directly inserting donor DNA comprising recombinase sites into large deletions created by the simultaneous action of two separate ZFN pairs. Up to 50% of deletions contained a donor insertion. Targeted DNA addition via NHEJ complements our homology-directed targeted integration approaches, adding versatility to the manipulation of mammalian genomes.
Collapse
|
24
|
Yu AM, McVey M. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 2010; 38:5706-17. [PMID: 20460465 PMCID: PMC2943611 DOI: 10.1093/nar/gkq379] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ku or DNA ligase 4-independent alternative end joining (alt-EJ) repair of DNA double-strand breaks (DSBs) frequently correlates with increased junctional microhomology. However, alt-EJ also produces junctions without microhomology (apparent blunt joins), and the exact role of microhomology in both alt-EJ and classical non-homologous end joining (NHEJ) remains unclear. To better understand the degree to which alt-EJ depends on annealing at pre-existing microhomologies, we examined inaccurate repair of an I-SceI DSB lacking nearby microhomologies of greater than four nucleotides in Drosophila. Lig4 deficiency affected neither frequency nor length of junctional microhomology, but significantly increased insertion frequency. Many insertions appeared to be templated. Based on sequence analysis of repair junctions, we propose a model of synthesis-dependent microhomology-mediated end joining (SD-MMEJ), in which de novo synthesis by an accurate non-processive DNA polymerase creates microhomology. Repair junctions with apparent blunt joins, junctional microhomologies and short indels (deletion with insertion) are often considered to reflect different repair mechanisms. However, a majority of each type had structures consistent with the predictions of our SD-MMEJ model. This suggests that a single underlying mechanism could be responsible for all three repair product types. Genetic analysis indicates that SD-MMEJ is Ku70, Lig4 and Rad51-independent but impaired in mus308 (POLQ) mutants.
Collapse
Affiliation(s)
- Amy Marie Yu
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
25
|
Olsen PA, Gelazauskaite M, Randøl M, Krauss S. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction. BMC Mol Biol 2010; 11:35. [PMID: 20459736 PMCID: PMC2875229 DOI: 10.1186/1471-2199-11-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. RESULTS A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. CONCLUSIONS The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of illegitimate integration emphasizes the importance of careful characterization of ZFN treated cells. In order to reduce off-target events, reversible cell cycle arrest of the target cells in the G2/M phase is an efficient way for increasing the ratio between specific HR and illegitimate integration.
Collapse
Affiliation(s)
- Petter A Olsen
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Monika Gelazauskaite
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Markus Randøl
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Stefan Krauss
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| |
Collapse
|
26
|
Srikanta D, Sen SK, Conlin EM, Batzer MA. Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins. Gene 2009; 448:233-41. [PMID: 19501635 DOI: 10.1016/j.gene.2009.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 01/24/2023]
Abstract
Retrotransposons, specifically Alu and L1 elements, have been especially successful in their expansion throughout primate genomes. While most of these elements integrate through an endonuclease-mediated process termed target primed reverse transcription, a minority integrate using alternative methods. Here we present evidence for one such mechanism, which we term internal priming and demonstrate that loci integrating through this mechanism are qualitatively different from "classical" insertions. Previous examples of this mechanism are limited to cell culture assays, which show that reverse transcription can initiate upstream of the 3' poly-A tail during retrotransposon integration. To detect whether this mechanism occurs in vivo as well as in cell culture, we have analyzed the human genome for internal priming events using recently integrated L1 and Alu elements. Our examination of the human genome resulted in the recovery of twenty events involving internal priming insertions, which are structurally distinct from both classical TPRT-mediated insertions and non-classical insertions. We suggest two possible mechanisms by which these internal priming loci are created and provide evidence supporting a role in staggered DNA double-strand break repair. Also, we demonstrate that the internal priming process is associated with inter-chromosomal duplications and the insertion of filler DNA.
Collapse
Affiliation(s)
- Deepa Srikanta
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
27
|
Srikanta D, Sen SK, Huang CT, Conlin E, Rhodes R, Batzer MA. An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair. Genomics 2009; 93:205-12. [PMID: 18951971 PMCID: PMC2672417 DOI: 10.1016/j.ygeno.2008.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/15/2008] [Accepted: 09/26/2008] [Indexed: 11/18/2022]
Abstract
The Alu family is a highly successful group of non-LTR retrotransposons ubiquitously found in primate genomes. Similar to the L1 retrotransposon family, Alu elements integrate primarily through an endonuclease-dependent mechanism termed target site-primed reverse transcription (TPRT). Recent studies have suggested that, in addition to TPRT, L1 elements occasionally utilize an alternative endonuclease-independent pathway for genomic integration. To determine whether an analogous mechanism exists for Alu elements, we have analyzed three publicly available primate genomes (human, chimpanzee and rhesus macaque) for endonuclease-independent recently integrated or lineage specific Alu insertions. We recovered twenty-three examples of such insertions and show that these insertions are recognizably different from classical TPRT-mediated Alu element integration. We suggest a role for this process in DNA double-strand break repair and present evidence to suggest its association with intra-chromosomal translocations, in-vitro RNA recombination (IVRR), and synthesis-dependent strand annealing (SDSA).
Collapse
Affiliation(s)
- Deepa Srikanta
- Department of Biological Sciences, Biological Computation and Visualization Center,Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shurjo K. Sen
- Department of Biological Sciences, Biological Computation and Visualization Center,Louisiana State University, Baton Rouge, LA 70803, USA
| | - Charles T. Huang
- Department of Biological Sciences, Biological Computation and Visualization Center,Louisiana State University, Baton Rouge, LA 70803, USA
| | - Erin Conlin
- Department of Biological Sciences, Biological Computation and Visualization Center,Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ryan Rhodes
- Department of Biological Sciences, Biological Computation and Visualization Center,Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center,Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet 2008; 4:e1000237. [PMID: 18949041 PMCID: PMC2567098 DOI: 10.1371/journal.pgen.1000237] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/23/2008] [Indexed: 12/21/2022] Open
Abstract
Non-homologous end joining (NHEJ) is the major mechanism of double-strand break repair (DSBR) in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs). Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler DNA, prevents nuclear processing of DSBs that could result in deleterious repair. Changes to DNA sequence are the major source of variation in evolution. Those changes often arise from damage to DNA that is repaired in a way that fails to restore the original sequence. One type of DNA damage is a chromosomal double-strand break. Such breaks are mostly studied experimentally in model systems, because naturally occurring chromosomal breaks are hard to follow. Here, we used an evolutionary approach to study the repair of naturally occurring chromosomal breaks. Throughout evolutionary history, fragments of the mitochondrial genome, known as numts (nuclear sequences of mitochondrial origin), have been inserted into the nuclear genome. Numts are passively captured into random chromosomal breaks, leaving sequence traces in genomes. Humans and chimpanzees share a recent common ancestor and their genomes share high sequence similarity; therefore, their species-specific numts can be used to follow both some of the break structure and repair mechanisms. Comparing naturally occurring break and repair patterns with experimental repair patterns identified similarities but also highlighted a clear difference. Experimental breaks usually involve deletions, while deletions were significantly less frequent in the numt based repair system. We propose that extra-chromosomal DNA sequences, like numts, play a role in maintaining genome integrity by protecting naturally occurring chromosomal breaks from further deleterious processing.
Collapse
|
29
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|
30
|
Haviv-Chesner A, Kobayashi Y, Gabriel A, Kupiec M. Capture of linear fragments at a double-strand break in yeast. Nucleic Acids Res 2007; 35:5192-202. [PMID: 17670800 PMCID: PMC1976456 DOI: 10.1093/nar/gkm521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Double-strand breaks (DSBs) are dangerous chromosomal lesions that must be efficiently repaired in order to avoid loss of genetic information or cell death. In all organisms studied to date, two different mechanisms are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Previous studies have shown that during DSB repair, non-homologous exogenous DNA (also termed ‘filler DNA’) can be incorporated at the site of a DSB. We have created a genetic system in the yeast Saccharomyces cerevisiae to study the mechanism of fragment capture. Our yeast strains carry recognition sites for the HO endonuclease at a unique chromosomal site, and plasmids in which a LEU2 gene is flanked by HO cut sites. Upon induction of the HO endonuclease, a linear extrachromosomal fragment is generated in each cell and its incorporation at the chromosomal DSB site can be genetically monitored. Our results show that linear fragments are captured at the repaired DSB site at frequencies of 10−6 to 10−4 per plated cell depending on strain background and specific end sequences. The mechanism of fragment capture depends on the NHEJ machinery, but only partially on the homologous recombination proteins. More than one fragment can be used during repair, by a mechanism that relies on the annealing of small complementary sequences. We present a model to explain the basis for fragment capture.
Collapse
Affiliation(s)
- Anat Haviv-Chesner
- Graduate School of Biomedical Sciences, University of Medicine & Dentistry of New Jersey and Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
31
|
Sen SK, Huang CT, Han K, Batzer MA. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res 2007; 35:3741-51. [PMID: 17517773 PMCID: PMC1920257 DOI: 10.1093/nar/gkm317] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LINE-1 elements (L1s) are a family of highly successful retrotransposons comprising approximately 17% of the human genome, the majority of which have inserted through an endonuclease-dependent mechanism termed target-primed reverse transcription. Recent in vitro analyses suggest that in the absence of non-homologous end joining proteins, L1 elements may utilize an alternative, endonuclease-independent pathway for insertion. However, it remains unknown whether this pathway operates in vivo or in cell lines where all DNA repair mechanisms are functional. Here, we have analyzed the human genome to demonstrate that this alternative pathway for L1 insertion has been active in recent human evolution and characterized 21 loci where L1 elements have integrated without signs of endonuclease-related activity. The structural features of these loci suggest a role for this process in DNA double-strand break repair. We show that endonuclease-independent L1 insertions are structurally distinguishable from classical L1 insertion loci, and that they are associated with inter-chromosomal translocations and deletions of target genomic DNA.
Collapse
Affiliation(s)
| | | | | | - Mark A. Batzer
- *To whom correspondence should be addressed. +1 225 578 7102+1 225 578 7113
| |
Collapse
|
32
|
Radecke F, Peter I, Radecke S, Gellhaus K, Schwarz K, Cathomen T. Targeted chromosomal gene modification in human cells by single-stranded oligodeoxynucleotides in the presence of a DNA double-strand break. Mol Ther 2006; 14:798-808. [PMID: 16904944 DOI: 10.1016/j.ymthe.2006.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/16/2006] [Accepted: 06/21/2006] [Indexed: 01/05/2023] Open
Abstract
A DNA double-strand break (DSB) cannot be tolerated by a cell and is dealt with by several pathways. Here, it was hypothesized that DSB induction close to a targeted mutation in the genome of a mammalian cell might attract oligodeoxynucleotide (ODN)-directed gene repair. A HEK-293-derived cell line had been engineered harboring a single target locus with open reading frames encoding the living-cell reporter proteins LacZ and EGFP, the latter translationally decoupled by a DNA spacer with a unique I-SceI recognition site for defined DSB induction. To enable expression of a fluorescent LacZ-EGFP fusion protein, single-stranded (ss) ODNs (80 or 96 nucleotides long) spanning the DSB were designed to fuse both reading frames by altering a few base-pair positions, deleting 59 bp or introducing a 10-bp fragment. The ssODNs alone generated few EGFP-positive cells. With I-SceI transiently expressed, more than 0.3% of cells revealed EGFP expression 7 days after transfection, with up to 96% of the loci faithfully corrected, depending on the ssODN used. During these correction events, the ssODN did not become physically incorporated into the chromosome, but served only as information template. Unwanted insertional mutagenesis also occurred. Both observations have important implications for gene therapy.
Collapse
Affiliation(s)
- Frank Radecke
- Department of Transfusion Medicine, University Hospital Ulm, and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Gilbert N, Lutz S, Morrish TA, Moran JV. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 2005; 25:7780-95. [PMID: 16107723 PMCID: PMC1190285 DOI: 10.1128/mcb.25.17.7780-7795.2005] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LINE-1 (L1) retrotransposons comprise approximately 17% of human DNA, yet little is known about L1 integration. Here, we characterized 100 retrotransposition events in HeLa cells and show that distinct DNA repair pathways can resolve L1 cDNA retrotransposition intermediates. L1 cDNA resolution can lead to various forms of genetic instability including the generation of chimeric L1s, intrachromosomal deletions, intrachromosomal duplications, and intra-L1 rearrangements as well as a possible interchromosomal translocation. The L1 retrotransposition machinery also can mobilize U6 snRNA to new genomic locations, increasing the repertoire of noncoding RNAs that are mobilized by L1s. Finally, we have determined that the L1 reverse transcriptase can faithfully replicate its own transcript and has a base misincorporation error rate of approximately 1/7,000 bases. These data indicate that L1 retrotransposition in transformed human cells can lead to a variety of genomic rearrangements and suggest that host processes act to restrict L1 integration in cultured human cells. Indeed, the initial steps in L1 retrotransposition may define a host/parasite battleground that serves to limit the number of active L1s in the genome.
Collapse
Affiliation(s)
- Nicolas Gilbert
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, 48109-0618, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Proper repair of DNA double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity. Here, a new simple assay was used to study extrachromosomal DSB repair in Schizosaccharomyces pombe. Strikingly, DSB repair was associated with the capture of fission yeast mitochondrial DNA (mtDNA) at high frequency. Capture of mtDNA fragments required the Lig4p/Pku70p nonhomologous end-joining (NHEJ) machinery and its frequency was highly increased in fission yeast cells grown to stationary phase. The fission yeast Mre11 complex Rad32p/Rad50p/Nbs1p was also required for efficient capture of mtDNA at DSBs, supporting a role for the complex in promoting intermolecular ligation. Competition assays further revealed that microsatellite DNA from higher eukaryotes was preferentially captured at yeast DSBs. Finally, cotransformation experiments indicated that, in NHEJ-deficient cells, capture of extranuclear DNA at DSBs was observed if homologies--as short as 8 bp--were present between DNA substrate and DSB ends. Hence, whether driven by NHEJ, microhomology-mediated end-joining, or homologous recombination, DNA capture associated with DSB repair is a mutagenic process threatening genomic stability.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, Avenue Hippocrate 74+3, 1200 Brussels, Belgium.
| |
Collapse
|
35
|
Rebuzzini P, Khoriauli L, Azzalin CM, Magnani E, Mondello C, Giulotto E. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst) 2005; 4:546-55. [PMID: 15811627 DOI: 10.1016/j.dnarep.2004.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 12/27/2004] [Indexed: 01/03/2023]
Abstract
The non-homologous end-joining (NHEJ) pathway is a mechanism to repair DNA double strand breaks, which can introduce mutations at repair sites. We constructed new cellular systems to specifically analyze sequence modifications occurring at the repair site. In particular, we looked for the presence of telomeric repeats at the repair junctions, since our previous work indicated that telomeric sequences could be inserted at break sites in germ-line cells during primate evolution. To induce specific DNA breaks, we used the I-SceI system of Saccharomyces cerevisiae or digestion with restriction enzymes. We isolated human and hamster cell lines containing the I-SceI target site integrated in a single chromosomal locus and we exposed the cells to a continuous expression of the I-SceI endonuclease gene. Additionally, we isolated human cell lines that expressed constitutively the I-SceI endonuclease and we introduced the target site on an episomal plasmid stably transfected into the cells. These strategies allowed us to recover repair junctions in which the I-SceI target site was modified at high frequency (100% in hamster cells and about 70% in human cells). Finally, we analyzed junctions produced on an episomal plasmid linearized by restriction enzymes. In all the systems studied, sequence analysis of individual repair junctions showed that deletions were the most frequent modifications, being present in more than 80% of the junctions. On the episomal plasmids, the average deletion length was greater than at intrachromosomal sites. Insertions of nucleotides or deletions associated with insertions were rare events. Junction organization suggested different mechanisms of formation. To check for the insertion of telomeric sequences, we screened plasmid libraries representing about 3.5 x 10(5) junctions with a telomeric repeat probe. No positive clones were detected, suggesting that the addition of telomeric sequences during double strand break repair in somatic cells in culture is either a very rare event or does not occur at all.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Tosato V, Waghmare SK, Bruschi CV. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast. Chromosoma 2005; 114:15-27. [PMID: 15843952 DOI: 10.1007/s00412-005-0332-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/07/2005] [Accepted: 01/25/2005] [Indexed: 12/25/2022]
Abstract
Several experimental in vivo systems exist that generate reciprocal translocations between engineered chromosomal loci of yeast or Drosophila, but not without previous genome modifications. Here we report the successful induction of chromosome translocations in unmodified yeast cells via targeted DNA integration of the KAN(R) selectable marker flanked by sequences homologous to two chromosomal loci randomly chosen on the genome. Using this bridge-induced translocation system, 2% of the integrants showed targeted translocations between chromosomes V-VIII and VIII-XV in two wild-type Saccharomyces cerevisiae strains. All the translocation events studied were found to be non-reciprocal and the fate of their chromosomal fragments that were not included in the translocated chromosome was followed. The recovery of discrete-sized fragments suggested multiple pathway repair of their free DNA ends. We propose that centromere-distal chromosome fragments may be processed by a break-induced replication mechanism ensuing in partial trisomy. The experimental feasibility of inducing chromosomal translocations between any two desired genetic loci in a eukaryotic model system will be instrumental in elucidating the molecular mechanism underlying genome rearrangements generated by DNA integration and the gross chromosomal rearrangements characteristic of many types of cancer.
Collapse
Affiliation(s)
- Valentina Tosato
- ICGEB Microbiology Laboratory, AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | |
Collapse
|
37
|
Gorbunova V, Seluanov A. Making ends meet in old age: DSB repair and aging. Mech Ageing Dev 2005; 126:621-8. [PMID: 15888314 DOI: 10.1016/j.mad.2005.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/14/2005] [Accepted: 02/14/2005] [Indexed: 01/10/2023]
Abstract
Accumulation of somatic mutations has long been considered as a major cause of aging and age-related diseases such as cancer. Genomic rearrangements, which arise from aberrant repair of DNA breaks, are the most characteristic component of the mutation spectra in aging cells and tissues. The studies conducted in the past few years provide further support for the role of DNA double-strand break (DSB) repair in aging and cellular senescence. Evidence was obtained that in addition to accumulation of mutations the efficiency and fidelity of repair declines with age. We propose that DNA damage and age-related decline of DNA repair form a vicious cycle leading to amplification of damage and progression of aging, and discuss a hypothesis on how the interplay between the two pathways of DSB repair, homologous recombination and nonhomologous end joining, may contribute to the aging process.
Collapse
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, NY 14627, USA.
| | | |
Collapse
|
38
|
Smith JA, Waldman BC, Waldman AS. A role for DNA mismatch repair protein Msh2 in error-prone double-strand-break repair in mammalian chromosomes. Genetics 2005; 170:355-63. [PMID: 15781695 PMCID: PMC1449728 DOI: 10.1534/genetics.104.039362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions."
Collapse
Affiliation(s)
- Jason A Smith
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | | | | |
Collapse
|
39
|
Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res 2004; 14:1704-10. [PMID: 15310657 PMCID: PMC515315 DOI: 10.1101/gr.2778904] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Short blocks of telomeric-like DNA (Interstitial Telomeric Sequences, ITSs) are found far from chromosome ends. We addressed the question as to how such sequences arise by comparing the loci of 10 human ITSs with their genomic orthologs in 12 primate species. The ITSs did not derive from expansion of pre-existing TTAGGG units, as described for other microsatellites, but appeared suddenly during evolution. Nine insertion events were dated along the primate evolutionary tree, the dates ranging between 40 and 6 million years ago. Sequence comparisons suggest that in each case the block of (TTAGGG)n DNA arose as a result of double-strand break repair. In fact, ancestral sequences were either interrupted precisely by the tract of telomeric-like repeats or showed the typical modifications observed at double-strand break repair sites such as short deletions, addition of random sequences, or duplications. Similar conclusions were drawn from the analysis of a chimpanzee-specific ITS. We propose that telomeric sequences were inserted by the capture of a telomeric DNA fragment at the break site or by the telomerase enzyme. Our conclusions indicate that human ITSs are relics of ancient breakage rather than fragile sites themselves, as previously suggested.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
40
|
Little KCE, Chartrand P. Genomic DNA is captured and amplified during double-strand break (DSB) repair in human cells. Oncogene 2004; 23:4166-72. [PMID: 15048077 DOI: 10.1038/sj.onc.1207570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genomic stability is maintained by the surveillance and repair of DNA damage. Here, we describe a mechanism whereby repair of extrachromosomal DNA double-strand breaks (DSBs) in human cells can be accompanied by capture of genomic DNA fragments. The availability of the human genome sequence enabled us to characterize these inserts in cells from a normal individual and from a patient with ataxia telangiectasia (AT), deficient for the damage response kinase ATM and prone to genomic instability. We find AT cells exhibit insertions of human chromosomal DNA fragments in excess of 17 kb during DSB repair, whereas we detected no such genomic inserts in normal cells. However, the presence of simian virus 40 (SV40), used to transform these cell lines, resulted in capture of genomic DNA associated with sites of viral integration in both cell types. The genomic instability at sites of SV40 integration was exported to other sites of DNA damage, and acquisition of the viral origin of replication resulted in gene amplification through autonomous replication of the plasmid harbouring the repaired extrachromosomal DSB. Should this same phenomenon apply to the repair of chromosomal DSBs, genome rearrangements made possible via this DSB insertional repair pose risks to genomic integrity, and may contribute to tumorigenic progression.
Collapse
Affiliation(s)
- Kevin C E Little
- Department of Medicine, Division of Experimental Medicine, McGill University, and Centre de recherche CHUM, Hôpital Notre Dame and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
41
|
Yu X, Gabriel A. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 2003; 163:843-56. [PMID: 12663527 PMCID: PMC1462499 DOI: 10.1093/genetics/163.3.843] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Nonhomologous repair mechanisms have been relatively less well studied, despite their potential importance in generating chromosomal rearrangements. We have developed a Saccharomyces cerevisiae-based assay to identify and characterize homology-independent chromosomal rearrangements associated with repair of a unique DSB generated within an engineered URA3 gene. Approximately 1% of successfully repaired cells have accompanying chromosomal rearrangements consisting of large insertions, deletions, aberrant gene conversions, or other more complex changes. We have analyzed rearrangements in isogenic wild-type, rad52, yku80, and rad52 yku80 strains, to determine the types of events that occur in the presence or absence of these key repair proteins. Deletions were found in all strain backgrounds, but insertions were dependent upon the presence of Yku80p. A rare RAD52- and YKU80-independent form of deletion was present in all strains. These events were characterized by long one-sided deletions (up to 13 kb) and extensive imperfect overlapping sequences (7-22 bp) at the junctions. Our results demonstrate that the frequency and types of repair events depend on the specific genetic context. This approach can be applied to a number of problems associated with chromosome stability.
Collapse
Affiliation(s)
- Xin Yu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
42
|
Lin Y, Waldman BC, Waldman AS. Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-alpha, a chemical inhibitor of p53. DNA Repair (Amst) 2003; 2:1-11. [PMID: 12509264 DOI: 10.1016/s1568-7864(02)00183-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the effect of pifithrin-alpha (PFTalpha), a chemical inhibitor of p53, on DNA double-strand break (DSB) repair in mammalian chromosomes. Thymidine kinase-deficient mouse fibroblasts were stably transfected with DNA substrates containing one or two recognition sites for yeast endonuclease I-SceI embedded within a herpes simplex virus thymidine kinase gene. Genomic DSBs were induced by introducing an I-SceI expression plasmid into cells in the presence or absence of 20 microM PFTalpha. From cells containing the DNA substrate with a single I-SceI site we recovered low-fidelity nonhomologous end-joining (NHEJ) events in which one or more nucleotides were deleted or inserted at the DSB. From cells containing the substrate with two I-SceI sites we recovered high-fidelity DNA end-joining (precise ligation (PL)) events. We found that treatment of cells with PFTalpha caused a 5-10-fold decrease in recovery of PL but decreased recovery of NHEJ by less than two-fold. Deletion sizes associated with NHEJ were unaffected by treatment with PFTalpha. Our work suggests the possibility that p53 facilitates high-fidelity DSB repair while playing little or no role in mutagenic NHEJ.
Collapse
Affiliation(s)
- Yunfu Lin
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|