1
|
Langhammer F, Gregor A, Ntamati NR, Ekici AB, Winner B, Nevian T, Zweier C. Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy. Hum Mol Genet 2025; 34:639-650. [PMID: 39849855 PMCID: PMC11924187 DOI: 10.1093/hmg/ddae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB. Subsequent genetic interaction experiments confirmed a functional link between RhoBTB and paralytic, the orthologue of human sodium channels, including epilepsy associated SCN1A, in vivo. We then performed patch-clamp recordings on mature neurons differentiated from human induced pluripotent stem cells with either homozygous frameshifts or patient-specific heterozygous missense variants in the GTPase or the BTB domains. This revealed significantly altered neuronal activity and excitability resulting from BTB domain variants but not from GTPase domain variants or upon complete loss of RHOBTB2. Our study indicates a role of deregulated ion channels in the pathogenesis of RHOBTB2-related developmental and epileptic encephalopathy and points to specific pathomechanisms underlying the observed genotype-phenotype correlations regarding variant zygosity, location and nature.
Collapse
Affiliation(s)
- Franziska Langhammer
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| |
Collapse
|
2
|
Solano E, Foksinska A, Crowder CM. Variants in RHOBTB2 associated with cancer and rare developmental and epileptic encephalopathy. Front Pediatr 2024; 12:1448793. [PMID: 39736890 PMCID: PMC11683136 DOI: 10.3389/fped.2024.1448793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
RHOBTB2 is a member of the Rho GTPases subfamily of signaling proteins, known tumor suppressors whose loss of function and decreased expression is associated with cancer onset. Beyond its cancer-related role, RHOBTB2 is implicated in rare neurodevelopmental disorders, specifically RHOBTB2-related disorders, recognized in 2018 as a subtype of developmental and epileptic encephalopathies (DEE). Common symptoms of these disorders include early-onset epilepsy, severe intellectual disability, microcephaly, and movement disorders. Few studies have investigated patient variants associated with RHOBTB2-related disorders, and the impact of these variants on protein function remains unclear. Limited research suggests that the accumulation of RHOBTB2 in neural tissues contributes to the development of DEE. Similarly, preclinical studies indicate that missense variants near or in the BTB domain of RHOBTB2 result in decreased degradation of RHOBTB2 and the onset of DEE, whereas variants in the GTPase domain cause more variable neurodevelopmental symptoms, but do not impair proteasomal degradation of RHOBTB2. However, the exact pathophysiological mechanisms are unclear and may differ across variants. Current treatment approaches for individuals with RHOBTB2-related DEE involve the use of antiseizure medications to decrease seizures; however, no treatments have been identified that address the other symptoms or the underlying pathophysiological mechanisms associated with these disorders. Overall, RHOBTB2 remains an understudied protein with limited information on its function and how it contributes to disease mechanisms. This review provides an overview of the current knowledge of RHOBTB2 function, with an emphasis on its association with neurodevelopmental disorders through an analysis of preclinical studies and case reports that link individual variants with clinical features.
Collapse
Affiliation(s)
- Elaina Solano
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aleksandra Foksinska
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Camerron M. Crowder
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
4
|
Zhu P, Fan Y, Xu P, Fan G. Bioinformatic Analysis of the BTB Gene Family in Paulownia fortunei and Functional Characterization in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:4144. [PMID: 38140471 PMCID: PMC10747981 DOI: 10.3390/plants12244144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
To learn about the gene structure, phylogenetic evolution, and function under biotic and abiotic stresses of BTB (Bric-a-Brac/Tramtrack/Broad Complex) genes in Paulownia fortunei, a whole-genome sequence evaluation was carried out, and a total of 62 PfBTB genes were identified. The phylogenetic analysis showed that PfBTB proteins are divided into eight groups, and these proteins are highly conserved. PfBTB genes were unevenly distributed on 17 chromosomes. The colinearity analysis found that fragment replication and tandem replication are the main modes of gene amplification in the PfBTB family. The analysis of cis-acting elements suggests that PfBTB genes may be involved in a variety of biological processes. The transcriptomic analysis results showed that PfBTB3/12/14/16/19/36/44 responded to Paulownia witches' broom (PaWB), while PfBTB1/4/17/43 responded to drought stress, and the RT-qPCR results further support the reliability of transcriptome data. In addition, the association analysis between miRNA and transcriptome revealed a 91-pair targeting relationship between miRNAs and PfBTBs. In conclusion, the BTB genes in Paulownia are systematically identified in this research. This work provides useful knowledge to more fully appreciate the potential functions of these genes and their possible roles in the occurrence of PaWB and in response to stress.
Collapse
Affiliation(s)
- Peipei Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Pingluo Xu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Körber S, Junemann A, Litschko C, Winterhoff M, Faix J. Convergence of Ras- and Rac-regulated formin pathways is pivotal for phagosome formation and particle uptake in Dictyostelium. Proc Natl Acad Sci U S A 2023; 120:e2220825120. [PMID: 36897976 PMCID: PMC10243128 DOI: 10.1073/pnas.2220825120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.
Collapse
Affiliation(s)
- Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| |
Collapse
|
6
|
Zhao M, Ge Y, Xu Z, Ouyang X, Jia Y, Liu J, Zhang M, An Y. A BTB/POZ domain-containing protein negatively regulates plant immunity in Nicotiana benthamiana. Biochem Biophys Res Commun 2022; 600:54-59. [PMID: 35189497 DOI: 10.1016/j.bbrc.2022.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/17/2023]
Abstract
Plants have evolved immune systems to fight against pathogens. However, it is still largely unknown how the plant immunity is finely regulated. Here we identified a BTB/POZ domain-containing protein, namely NbBTB, which is predicted to be a member of the ubiquitin E3 ligase complex. The NbBTB expression is downregulated upon the oomycete pathogen Phytophthora parasitica infection. Overexpression of NbBTB in Nicotiana benthamiana promoted plant susceptibility to P. parasitica infection, and silencing NbBTB increased plant resistance to P. parasitica, indicating that NbBTB negatively modulates plant basal defense. Interestingly, overexpressing or silencing NbBTB did not affect plant resistance to two bacterial pathogens Ralstonia solanacearum and Pseudomonas syringae, suggesting that NbBTB is specifically involved in basal defense against oomycete pathogen. Expression of NbBTB suppressed hypersensitive response (HR) triggered by avirulence proteins from both R. sonanacearum and P. infestans, and silencing NbBTB showed the opposite effect, indicating that NbBTB negatively regulates effector-triggered immunity (ETI). Protein accumulation of avirulence effectors in NbBTB-silenced plants was significantly enhanced, suggesting that NbBTB is likely to negatively modulate ETI by affecting effector protein accumulation. Together, our results demonstrated that NbBTB is a negative regulator in both plant basal defense and ETI.
Collapse
Affiliation(s)
- Mengwei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Ge
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangyan Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuling Jia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangtao Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuyan An
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
9
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
10
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Yamazaki O, Hirohama D, Ishizawa K, Shibata S. Role of the Ubiquitin Proteasome System in the Regulation of Blood Pressure: A Review. Int J Mol Sci 2020; 21:E5358. [PMID: 32731518 PMCID: PMC7432568 DOI: 10.3390/ijms21155358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
The kidney and the vasculature play crucial roles in regulating blood pressure. The ubiquitin proteasome system (UPS), a multienzyme process mediating covalent conjugation of the 76-amino acid polypeptide ubiquitin to a substrate protein followed by proteasomal degradation, is involved in multiple cellular processes by regulating protein turnover in various tissues. Increasing evidence demonstrates the roles of UPS in blood pressure regulation. In the kidney, filtered sodium is reabsorbed through diverse sodium transporters and channels along renal tubules, and studies conducted till date have provided insights into the complex molecular network through which ubiquitin ligases modulate sodium transport in different segments. Components of these pathways include ubiquitin ligase neuronal precursor cell-expressed developmentally downregulated 4-2, Cullin-3, and Kelch-like 3. Moreover, accumulating data indicate the roles of UPS in blood vessels, where it modulates nitric oxide bioavailability and vasoconstriction. Cullin-3 not only regulates renal salt reabsorption but also controls vascular tone using different adaptor proteins that target distinct substrates in vascular smooth muscle cells. In endothelial cells, UPS can also contribute to blood pressure regulation by modulating endothelial nitric oxide synthase. In this review, we summarize current knowledge regarding the role of UPS in blood pressure regulation, focusing on renal sodium reabsorption and vascular function.
Collapse
Affiliation(s)
| | | | | | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (O.Y.); (D.H.); (K.I.)
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review provides an up-to-date understanding of how peroxisome proliferator activated receptor γ (PPARγ) exerts its cardioprotective effect in the vasculature through its activation of novel PPARγ target genes in endothelium and vascular smooth muscle. RECENT FINDINGS In vascular endothelial cells, PPARγ plays a protective role by increasing nitric oxide bioavailability and preventing oxidative stress. RBP7 is a PPARγ target gene enriched in vascular endothelial cells, which is likely to form a positive feedback loop with PPARγ. In vascular smooth muscle cells, PPARγ antagonizes the renin-angiotensin system, maintains vascular integrity, suppresses vasoconstriction, and promotes vasodilation through distinct pathways. Rho-related BTB domain containing protein 1 (RhoBTB1) is a novel PPARγ gene target in vascular smooth muscle cells that mediates the protective effect of PPARγ by serving as a substrate adaptor between the Cullin-3 RING ubiquitin ligase and phosphodiesterase 5, thus restraining its activity through ubiquitination and proteasomal degradation. SUMMARY In the vasculature, PPARγ exerts its cardioprotective effect through its transcriptional activity in endothelium and vascular smooth muscle. From the understanding of PPARγ's transcription targets in those pathways, novel hypertension therapy target(s) will emerge.
Collapse
|
13
|
Amato C, Thomason PA, Davidson AJ, Swaminathan K, Ismail S, Machesky LM, Insall RH. WASP Restricts Active Rac to Maintain Cells' Front-Rear Polarization. Curr Biol 2019; 29:4169-4182.e4. [PMID: 31786060 PMCID: PMC6926487 DOI: 10.1016/j.cub.2019.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Efficient motility requires polarized cells, with pseudopods at the front and a retracting rear. Polarization is maintained by restricting the pseudopod catalyst, active Rac, to the front. Here, we show that the actin nucleation-promoting factor Wiskott-Aldrich syndrome protein (WASP) contributes to maintenance of front-rear polarity by controlling localization and cellular levels of active Rac. Dictyostelium cells lacking WASP inappropriately activate Rac at the rear, which affects their polarity and speed. WASP's Cdc42 and Rac interacting binding ("CRIB") motif has been thought to be essential for its activation. However, we show that the CRIB motif's biological role is unexpectedly complex. WASP CRIB mutants are no longer able to restrict Rac activity to the front, and cannot generate new pseudopods when SCAR/WAVE is absent. Overall levels of Rac activity also increase when WASP is unable to bind to Rac. However, WASP without a functional CRIB domain localizes normally at clathrin pits during endocytosis, and activates Arp2/3 complex. Similarly, chemical inhibition of Rac does not affect WASP localization or activation at sites of endocytosis. Thus, the interaction between small GTPases and WASP is more complex than previously thought-Rac regulates a subset of WASP functions, but WASP reciprocally restricts active Rac through its CRIB motif.
Collapse
Affiliation(s)
- Clelia Amato
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - Peter A Thomason
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Andrew J Davidson
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Shehab Ismail
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Laura M Machesky
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Robert H Insall
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proc Natl Acad Sci U S A 2019; 116:3594-3603. [PMID: 30808751 DOI: 10.1073/pnas.1821638116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA - /E -/H - and racE - mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
Collapse
|
15
|
McKinnon CM, Mellor H. The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer 2017; 17:145. [PMID: 28219369 PMCID: PMC5319017 DOI: 10.1186/s12885-017-3138-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND RhoBTB1 and 2 are atypical members of the Rho GTPase family of signaling proteins. Unlike other Rho GTPases, RhoBTB1 and 2 undergo silencing or mutation in a wide range of epithelial cancers; however, little is known about the consequences of this loss of function. METHODS We analyzed transcriptome data to identify transcriptional targets of RhoBTB2. We verified these using Q-PCR and then used gene silencing and cell imaging to determine the cellular function of these targets downstream of RhoBTB signaling. RESULTS RhoBTB1 and 2 regulate the expression of the methyltransferases METTL7B and METTL7A, respectively. RhoBTB1 regulates the integrity of the Golgi complex through METTL7B. RhoBTB1 is required for expression of METTL7B and silencing of either protein leads to fragmentation of the Golgi. Loss of RhoBTB1 expression is linked to Golgi fragmentation in breast cancer cells. Restoration of normal RhoBTB1 expression rescues Golgi morphology and dramatically inhibits breast cancer cell invasion. CONCLUSION Loss of RhoBTB1 expression in breast cancer cells leads to Golgi fragmentation and hence loss of normal polarity.
Collapse
Affiliation(s)
- Caroline M McKinnon
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Haga RB, Ridley AJ. Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases 2016; 7:207-221. [PMID: 27628050 PMCID: PMC5129894 DOI: 10.1080/21541248.2016.1232583] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Rho GTPases are well known for their roles in regulating cell migration, and also contribute to a variety of other cellular responses. They are subdivided into 2 groups: typical and atypical. The typical Rho family members, including RhoA, Rac1 and Cdc42, cycle between an active GTP-bound and inactive GDP-bound conformation, and are regulated by GEFs, GAPs and GDIs, whereas atypical Rho family members have amino acid substitutions that alter their ability to interact with GTP/GDP and hence are regulated by different mechanisms. Both typical and atypical Rho GTPases contribute to cancer progression. In a few cancers, RhoA or Rac1 are mutated, but in most cancers expression levels and/or activity of Rho GTPases is altered. Rho GTPase signaling could therefore be therapeutically targeted in cancer treatment.
Collapse
Affiliation(s)
- Raquel B. Haga
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
17
|
Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis. Cells 2016; 5:cells5020028. [PMID: 27314390 PMCID: PMC4931677 DOI: 10.3390/cells5020028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
RhoBTB proteins constitute a subfamily of atypical Rho GTPases represented in mammals by RhoBTB1, RhoBTB2, and RhoBTB3. Their characteristic feature is a carboxyl terminal extension that harbors two BTB domains capable of assembling cullin 3-dependent ubiquitin ligase complexes. The expression of all three RHOBTB genes has been found reduced or abolished in a variety of tumors. They are considered tumor suppressor genes and recent studies have strengthened their implication in tumorigenesis through regulation of the cell cycle and apoptosis. RhoBTB3 is also involved in retrograde transport from endosomes to the Golgi apparatus. One aspect that makes RhoBTB proteins atypical among the Rho GTPases is their proposed mechanism of activation. No specific guanine nucleotide exchange factors or GTPase activating proteins are known. Instead, RhoBTB might be activated through interaction with other proteins that relieve their auto-inhibited conformation and inactivated through auto-ubiquitination and destruction in the proteasome. In this review we discuss our current knowledge on the molecular mechanisms of action of RhoBTB proteins and the implications for tumorigenesis and other pathologic conditions.
Collapse
|
18
|
Marinović M, Šoštar M, Filić V, Antolović V, Weber I. Quantitative imaging of Rac1 activity in Dictyostelium cells with a fluorescently labelled GTPase-binding domain from DPAKa kinase. Histochem Cell Biol 2016; 146:267-79. [DOI: 10.1007/s00418-016-1440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
|
19
|
Rho Signaling in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:61-181. [DOI: 10.1016/bs.ircmb.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Génot E, Gligorijevic B. Invadosomes in their natural habitat. Eur J Cell Biol 2014; 93:367-79. [PMID: 25457677 DOI: 10.1016/j.ejcb.2014.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/15/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are small, F-actin-rich protrusions that are located at points of cell-ECM contacts and endow cells with invasive capabilities. So far, they have been identified in human or murine immune (myelomonocytic), vascular and cancer cells. The overarching reason for studying invadosomes is their connection to human disease. For example, macrophages and osteoclasts lacking Wiskott-Aldrich syndrome protein (WASp) are not able to form podosomes, and this leads to altered macrophage chemotaxis and defective bone resorption by osteoclasts. In contrast, the ability of cancer cells to form invadopodia is associated with high invasive and metastatic potentials. While invadosome composition, dynamics and signaling cascades leading to their assembly can be followed easily in in vitro assays, studying their contribution to pathophysiological processes in situ remains challenging. A number of recent papers have started to address this issue and describe invadosomes in situ in mouse models of cancer, cardiovascular disease and angiogenesis. In addition, in vivo invadosome homologs have been reported in developmental model systems such as C. elegans, zebrafish and sea squirt. Comparative analyses among different invasion mechanisms as they happen in their natural habitats, i.e., in situ, may provide an outline of the invadosome evolutionary history, and guide our understanding of the roles of the invasion process in pathophysiology versus development.
Collapse
Affiliation(s)
- Elisabeth Génot
- Université de Bordeaux, F-33000 Bordeaux, France; INSERM U1045, F-33000 Bordeaux, France; European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33 600 Pessac, France.
| | - Bojana Gligorijevic
- Department of Systems & Computational Biology and Albert Einstein College of Medicine, Price Center, 1301 Morris Park Avenue, 10461 Bronx, NY, USA.
| |
Collapse
|
21
|
Lutz J, Grimm-Günter EMS, Joshi P, Rivero F. Expression analysis of mouse Rhobtb3 using a LacZ reporter and preliminary characterization of a knockout strain. Histochem Cell Biol 2014; 142:511-28. [PMID: 24923387 DOI: 10.1007/s00418-014-1235-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
RhoBTB3 is an atypical member of the Rho family of small GTPases. It localizes at the Golgi apparatus and endosomes and is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. Previous studies using Northern blot analysis showed that Rhobtb3 is ubiquitously expressed in adult mice, but expression is particularly high in brain, heart and uterus. The gene is also expressed between embryonic days 11.5 and 17.5. To investigate the specific cell types that express this gene across tissues, both in the embryo and in the adult organism, we have made use of a gene trap mouse strain that expresses the LacZ gene under the transcriptional control of the endogenous Rhobtb3 promoter. Histochemical detection of β-galactosidase expression revealed a profile characterized by nearly ubiquitous expression of Rhobtb3 in the embryo, but with particularly high levels in bone, cartilage, all types of muscle, testis and restricted areas of the nervous system. In the adult, expression persists at much lower levels in cardiac muscle, the tunica media of blood vessels and cartilage and at high levels in the seminiferous tubules. A general preliminary characterization of this gene trap mouse strain revealed reduced viability, a postnatal growth defect and reduced testis size. Our results should pave the way for future studies aimed at investigating the roles of RhoBTB3 in tissue development and in cardiac, vascular and testicular function.
Collapse
Affiliation(s)
- Julia Lutz
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Cottingham Road, HU6 7RX, Hull, UK
| | | | | | | |
Collapse
|
22
|
Phillips JE, Gomer RH. The p21-activated kinase (PAK) family member PakD is required for chemorepulsion and proliferation inhibition by autocrine signals in Dictyostelium discoideum. PLoS One 2014; 9:e96633. [PMID: 24797076 PMCID: PMC4010531 DOI: 10.1371/journal.pone.0096633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
A Cdc42- and Rac-interactive binding (CRIB) domain mediates functions of coronin. Proc Natl Acad Sci U S A 2013; 111:E25-33. [PMID: 24347642 DOI: 10.1073/pnas.1315368111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Cdc42- and Rac-interactive binding motif (CRIB) of coronin binds to Rho GTPases with a preference for GDP-loaded Rac. Mutation of the Cdc42- and Rac-interactive binding motif abrogates Rac binding. This results in increased 1evels of activated Rac in coronin-deficient Dictyostelium cells (corA(-)), which impacts myosin II assembly. corA(-) cells show increased accumulation of myosin II in the cortex of growth-phase cells. Myosin II assembly is regulated by myosin heavy chain kinase-mediated phosphorylation of its tail. Kinase activity depends on the activation state of the p21-activated kinase a. The myosin II defect of corA(-) mutant is alleviated by dominant-negative p21-activated kinase a. It is rescued by wild-type coronin, whereas coronin carrying a mutated Cdc42- and Rac-interactive binding motif failed to rescue the myosin defect in corA(-) mutant cells. Ectopically expressed myosin heavy chain kinases affinity purified from corA(-) cells show reduced kinase activity. We propose that coronin through its affinity for GDP-Rac regulates the availability of GTP-Rac for activation of downstream effectors.
Collapse
|
24
|
Abstract
During chemotaxis, cells sense extracellular chemical gradients and position Ras GTPase activation and phosphatidylinositol (3,4,5)-triphosphate (PIP3) production toward chemoattractants. These two major signaling events are visualized by biosensors in a crescent-like zone at the plasma membrane. Here, we show that a Dictyostelium Rho GTPase, RacE, and a guanine nucleotide exchange factor, GxcT, stabilize the orientation of Ras activation and PIP3 production in response to chemoattractant gradients, and this regulation occurred independently of the actin cytoskeleton and cell polarity. Cells lacking RacE or GxcT fail to persistently direct Ras activation and PIP3 production toward chemoattractants, leading to lateral pseudopod extension and impaired chemotaxis. Constitutively active forms of RacE and human RhoA are located on the portion of the plasma membrane that faces lower concentrations of chemoattractants, opposite of PIP3 production. Mechanisms that control the localization of the constitutively active form of RacE require its effector domain, but not PIP3. Our findings reveal a critical role for Rho GTPases in positioning Ras activation and thereby establishing the accuracy of directional sensing.
Collapse
|
25
|
Xu RS, Wu XD, Zhang SQ, Li CF, Yang L, Li DD, Zhang BG, Zhang Y, Jin JP, Zhang B. The tumor suppressor gene RhoBTB1 is a novel target of miR-31 in human colon cancer. Int J Oncol 2013; 42:676-682. [PMID: 23258531 DOI: 10.3892/ijo.2012.1746] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/18/2012] [Indexed: 11/05/2022] Open
Abstract
miRNAs are a class of endogenous non-coding RNA, which can regulate downstream target genes through binding to the 3'UTR of those genes. Numerous studies have indicated that abnormal expression of miRNAs is implicated in tumor development. Aberrant expression of miR-31 has been found in various cancers, including colorectal cancer. Here, we show that miR-31 is upregulated in human colon cancer tissues and cell lines, and that repression of miR-31 inhibited colon cancer cell proliferation and colony formation in soft agarose. To further elucidate the mechanism underlying the role of miR-31 in promoting colon cancer, we used online miRNA target prediction databases and found that the tumor suppressor RhoTBT1 may be a target of miR-31. Imunohistochemistry assay revealed that RhoBTB1 was significantly decreased in HT29 cells. In addition, ectopic expression of miR-31 reduced RhoBTB1 in the colon cancer cell line HT29. The results suggested that suppression of RhoBTB1 may be responsible for colon tumorigenesis, which was inhibited directly by miR-31. The results of MTT and soft agarose colony-formation assays showed that knockdown of RhoBTB1 by RNAi induced cell proliferation, and colony formation in soft agarose, which mimicked the function of miR-31. This further suggested that suppression of RhoBTB1 was responsible for colon tumorigenesis. In conclusion, we found that miR-31 acts as an oncogene in colon cancer and identified RhoBTB1 as a new target of miR-31 further study demonstrated that miR-31 contributed to the development of colon cancer at least partly by targeting RhoBTB1.
Collapse
Affiliation(s)
- Rui-Si Xu
- Endoscopy Center, China-Japan Union Hospital, Jilin University, Changchun 130033, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schenková K, Lutz J, Kopp M, Ramos S, Rivero F. MUF1/leucine-rich repeat containing 41 (LRRC41), a substrate of RhoBTB-dependent cullin 3 ubiquitin ligase complexes, is a predominantly nuclear dimeric protein. J Mol Biol 2012; 422:659-673. [PMID: 22709582 DOI: 10.1016/j.jmb.2012.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
RhoBTB (BTB stands for broad-complex, tramtrack, bric à brac) proteins are tumor suppressors involved in the formation of cullin 3 (Cul3)-dependent ubiquitin ligase complexes. However, no substrates of RhoBTB-Cul3 ubiquitin ligase complexes have been identified. We identified MUF1 (LRRC41, leucine-rich repeat containing 41) as a potential interaction partner of RhoBTB3 in a two-hybrid screening on a mouse brain cDNA library. MUF1 is a largely uncharacterized protein containing a leucine-rich repeat and, interestingly, a BC-box that serves as a linker in multicomponent, cullin 5 (Cul5)-based ubiquitin ligases. We confirmed the interaction of MUF1 with all three mammalian RhoBTB proteins using immunoprecipitation. We characterized MUF1 in terms of expression profile and subcellular localization, the latter also with respect to RhoBTB proteins. We found out that MUF1 is a ubiquitously expressed nuclear protein that, upon coexpression with RhoBTB, partially retains in the cytoplasm, where both proteins colocalize. We also show that MUF1 is able to dimerize similarly to other leucine-rich repeat-containing proteins. To explore the significance of MUF1-RhoBTB interaction within Cul-ligase complexes and the mechanism of MUF1 degradation, we performed a protein stability assay and found that MUF1 is degraded in the proteasome in a Cul5-independent manner by RhoBTB3-Cul3 ubiquitin ligase complex. Finally, we explored a possible heterodimerization of Cul3 and Cul5 and indeed discovered that these two cullins are capable of forming heterodimers. Thus, we have identified MUF1 as the first substrate for RhoBTB-Cul3 ubiquitin ligase complexes. Identification of substrates of these complexes will result in better understanding of the tumor suppressor function of RhoBTB.
Collapse
Affiliation(s)
- Kristína Schenková
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK; Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Julia Lutz
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| | - Marion Kopp
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sonia Ramos
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK; Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| |
Collapse
|
27
|
Amarnath S, Kawli T, Mohanty S, Srinivasan N, Nanjundiah V. Pleiotropic roles of a ribosomal protein in Dictyostelium discoideum. PLoS One 2012; 7:e30644. [PMID: 22363460 PMCID: PMC3281849 DOI: 10.1371/journal.pone.0030644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over- or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over- or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect – specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.
Collapse
Affiliation(s)
- Smita Amarnath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | | | |
Collapse
|
28
|
Matthys A, Van Craenenbroeck K, Lintermans B, Haegeman G, Vanhoenacker P. RhoBTB3 interacts with the 5-HT7a receptor and inhibits its proteasomal degradation. Cell Signal 2012; 24:1053-63. [PMID: 22245496 DOI: 10.1016/j.cellsig.2011.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/15/2011] [Accepted: 12/31/2011] [Indexed: 11/28/2022]
Abstract
The 5-hydroxytryptamine (5-HT)7 receptor is the most recently identified serotonin receptor and is involved in a wide variety of central nervous system (CNS) functions, namely circadian rhythm, REM sleep, depression, thermoregulation, obsessive-compulsive disorder (OCD), anxiety, schizophrenia, epilepsy, nociception, migraine, sensation-seeking behavior, impulsivity, learning and memory. These numerous (patho)physiological processes of the CNS, in which the 5-HT7 receptor is involved, most likely reflect a diverse set of signaling pathways arising from this receptor. In order to reveal new interaction partners and possibly new signaling and/or trafficking pathways, we performed a yeast two-hybrid screening, using the C-terminal tail of the 5-HT7a receptor as bait and an adult-human brain cDNA library as prey. In this way we identified RhoBTB3 as a new interaction partner of the 5-HT7a receptor. By means of co-immunoprecipitation we were able to confirm the interaction between full length 5-HT7a receptor and RhoBTB3 in HEK293T cells. Subsequent domain mapping of this interaction revealed that not only the C-terminal tail, but also the third intracellular loop of the 5-HT7a receptor is involved. In addition, immunofluorescence microscopy showed clear co-localization between the 5-HT7a receptor and RhoBTB3 at the plasma membrane and in the endoplasmic reticulum. Despite the fact that RhoBTB3 has been shown to interact with Cul3, which in turn interacts with the E3 ubiquitin ligase, Roc1, we show here that RhoBTB3 neither recruits Cul3/Roc1 to the 5-HT7a receptor nor does it mediate ubiquitination of this receptor. Instead, we demonstrate that RhoBTB3 strongly inhibits proteasomal degradation of the 5-HT7a receptor.
Collapse
Affiliation(s)
- Anne Matthys
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University (UGent), K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | | | | | | | | |
Collapse
|
29
|
Abstract
In 1985, the first members of the Rho GTPase family were identified. Over the next 10 years, rapid progress was made in understanding Rho GTPase signalling. Multiple Rho GTPases were discovered in a wide range of eukaryotes, and shown to regulate a diverse range of cellular processes, including cytoskeletal dynamics, NADPH oxidase activation, cell migration, cell polarity, membrane trafficking, and transcription. The Rho regulators, guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs), were found through a combination of biochemistry, genetics, and detective work. Downstream targets for Rho GTPases were also rapidly identified, and linked to Rho-regulated cellular responses. In parallel, a wide range of bacterial proteins were found to modify Rho proteins or alter their activity in cells, many of which turned out to be useful tools to study Rho functions. More recent work has delineated where Rho GTPases act in cells, the molecular pathways linking some of them to specific cellular responses, and their functions in the development of multicellular organisms.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
30
|
Mao H, Zhang L, Yang Y, Sun J, Deng B, Feng J, Shao Q, Feng A, Song B, Qu X. RhoBTB2 (DBC2) functions as tumor suppressor via inhibiting proliferation, preventing colony formation and inducing apoptosis in breast cancer cells. Gene 2011; 486:74-80. [DOI: 10.1016/j.gene.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/10/2011] [Accepted: 07/10/2011] [Indexed: 12/30/2022]
|
31
|
Amicucci A, Balestrini R, Kohler A, Barbieri E, Saltarelli R, Faccio A, Roberson RW, Bonfante P, Stocchi V. Hyphal and cytoskeleton polarization in Tuber melanosporum: A genomic and cellular analysis. Fungal Genet Biol 2011; 48:561-72. [DOI: 10.1016/j.fgb.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
|
32
|
Zazueta-Novoa V, Martínez-Cadena G, Wessel GM, Zazueta-Sandoval R, Castellano L, García-Soto J. Concordance and interaction of guanine nucleotide dissociation inhibitor (RhoGDI) with RhoA in oogenesis and early development of the sea urchin. Dev Growth Differ 2011; 53:427-39. [PMID: 21492154 DOI: 10.1111/j.1440-169x.2011.01261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rho GTPases are Ras-related GTPases that regulate a variety of cellular processes. In the sea urchin Strongylocentrotus purpuratus, RhoA in the oocyte associates with the membrane of the cortical granules and directs their movement from the cytoplasm to the cell cortex during maturation to an egg. RhoA also plays an important role regulating the Na(+) -H(+) exchanger activity, which determines the internal pH of the cell during the first minutes of embryogenesis. We investigated how this activity may be regulated by a guanine-nucleotide dissociation inhibitor (RhoGDI). The sequence of this RhoA regulatory protein was identified in the genome on the basis of its similarity to other RhoGDI species, especially for key segments in the formation of the isoprenyl-binding pocket and in interactions with the Rho GTPase. We examined the expression and the subcellular localization of RhoGDI during oogenesis and in different developmental stages. We found that RhoGDI mRNA levels were high in eggs and during cleavage divisions until blastula, when it disappeared, only to reappear in gastrula stage. RhoGDI localization overlaps the presence of RhoA during oogenesis and in embryonic development, reinforcing the regulatory premise of the interaction. By use of recombinant protein interactions in vitro, we also find that these two proteins selectively interact. These results support the hypothesis of a functional relationship in vivo and now enable mechanistic insight for the cellular and organelle rearrangements that occur during oogenesis and embryonic development.
Collapse
Affiliation(s)
- Vanesa Zazueta-Novoa
- Department of Biology, Natural and Exact Sciences Division, Guanajuato Campus, University of Guanajuato, Box 187, Guanajuato, Gto. 36000, Mèxico
| | | | | | | | | | | |
Collapse
|
33
|
Jilkine A, Edelstein-Keshet L. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput Biol 2011; 7:e1001121. [PMID: 21552548 PMCID: PMC3084230 DOI: 10.1371/journal.pcbi.1001121] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polarization, a primary step in the response of an individual eukaryotic cell to a spatial stimulus, has attracted numerous theoretical treatments complementing experimental studies in a variety of cell types. While the phenomenon itself is universal, details differ across cell types, and across classes of models that have been proposed. Most models address how symmetry breaking leads to polarization, some in abstract settings, others based on specific biochemistry. Here, we compare polarization in response to a stimulus (e.g., a chemoattractant) in cells typically used in experiments (yeast, amoebae, leukocytes, keratocytes, fibroblasts, and neurons), and, in parallel, responses of several prototypical models to typical stimulation protocols. We find that the diversity of cell behaviors is reflected by a diversity of models, and that some, but not all models, can account for amplification of stimulus, maintenance of polarity, adaptation, sensitivity to new signals, and robustness.
Collapse
Affiliation(s)
- Alexandra Jilkine
- Green Comprehensive Center for Computational and Systems Biology, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | |
Collapse
|
34
|
Mao H, Qu X, Yang Y, Zuo W, Bi Y, Zhou C, Yin H, Deng B, Sun J, Zhang L. A novel tumor suppressor gene RhoBTB2 (DBC2): frequent loss of expression in sporadic breast cancer. Mol Carcinog 2010; 49:283-9. [PMID: 19937980 DOI: 10.1002/mc.20598] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RhoBTB2 was isolated recently as a tumor suppressor gene from human chromosome 8p21.3. Although RhoBTB2 was found to be frequently lost in breast cancer lines, expression status of RhoBTB2 in sporadic breast cancer tissues and its clinical and prognostic value, however, remain unclear. Tissue samples from breast cancer patients and normal controls and cell samples from cell lines were collected and reverse transcription (RT)-PCR was used to monitor the presence of RhoBTB2 mRNA. The protein expression of RhoBTB2 was detected by immunohistochemical staining. Cumulative survival time was assessed by the Kaplan-Meier method and Cox regression model. We discovered that RhoBTB2 expression was lacking in a breast ductal epithelial carcinoma cell line T-47D but was expressed in other types of tumor cell lines and normal tissues we tested. The results from tissue samples showed that RhoBTB2 was absent in 60% of breast cancers on both the mRNA and protein level. The results from RT-PCR were completely uniform with those from immunohistochemistry. We demonstrated that loss of RhoBTB2 more frequently occurred in postmenopausal patients of age >or=50 yr old and in patients with infiltrating ductal carcinoma of the breast. The prognostic value of RhoBTB2 in breast cancers also be assessed by a long-term follow-up investigation and we found that patients with RhoBTB2-negative breast cancer were linked to poor clinical prognosis. Therefore, the loss of RhoBTB2 expression is a common occurrence in breast cancers and it is an important factor in the development and prognosis of sporadic breast cancer.
Collapse
Affiliation(s)
- Haiting Mao
- Institute of Basic Medical Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rajashekar B, Kohler A, Johansson T, Martin F, Tunlid A, Ahrén D. Expansion of signal pathways in the ectomycorrhizal fungus Laccaria bicolor- evolution of nucleotide sequences and expression patterns in families of protein kinases and RAS small GTPases. THE NEW PHYTOLOGIST 2009; 183:365-379. [PMID: 19453435 DOI: 10.1111/j.1469-8137.2009.02860.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ectomycorrhizal fungus Laccaria bicolor has the largest genome of all fungi yet sequenced. The large genome size is partly a result of an expansion of gene family sizes. Among the largest gene families are protein kinases and RAS small guanosine triphosphatases (GTPases), which are key components of signal transduction pathways. Comparative genomics and phylogenetic analyses were used to examine the evolution of the two largest families of protein kinases and RAS small GTPases in L. bicolor. Expression levels in various tissues and growth conditions were inferred from microarray data. The two families possessed a large number of young duplicates (paralogs) that had arisen in the Laccaria lineage following the separation from the saprophyte Coprinopsis cinerea. The protein kinase paralogs were dispersed in many small clades and the majority were pseudogenes. By contrast, the RAS paralogs were found in three large groups of RAS1-, RAS2- and RHO1-like GTPases with few pseudogenes. Duplicates of protein kinases and RAS small GTPase have either retained, gained or lost motifs found in the coding regions of their ancestors. Frequent outcomes during evolution were the formation of pseudogenes (nonfunctionalization) or proteins with novel structures and expression patterns (neofunctionalization).
Collapse
Affiliation(s)
- Balaji Rajashekar
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden
| | - Annegret Kohler
- UMR1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France
| | - Tomas Johansson
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden
| | - Francis Martin
- UMR1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France
| | - Anders Tunlid
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden
| | - Dag Ahrén
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
36
|
Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, Briggs S, Firtel RA. Dictyostelium Dock180-related RacGEFs regulate the actin cytoskeleton during cell motility. Mol Biol Cell 2008; 20:699-707. [PMID: 19037099 DOI: 10.1091/mbc.e08-09-0899] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell motility of amoeboid cells is mediated by localized F-actin polymerization that drives the extension of membrane protrusions to promote forward movements. We show that deletion of either of two members of the Dictyostelium Dock180 family of RacGEFs, DockA and DockD, causes decreased speed of chemotaxing cells. The phenotype is enhanced in the double mutant and expression of DockA or DockD complements the reduced speed of randomly moving DockD null cells' phenotype, suggesting that DockA and DockD are likely to act redundantly and to have similar functions in regulating cell movement. In this regard, we find that overexpressing DockD causes increased cell speed by enhancing F-actin polymerization at the sites of pseudopod extension. DockD localizes to the cell cortex upon chemoattractant stimulation and at the leading edge of migrating cells and this localization is dependent on PI3K activity, suggesting that DockD might be part of the pathway that links PtdIns(3,4,5)P(3) production to F-actin polymerization. Using a proteomic approach, we found that DdELMO1 is associated with DockD and that Rac1A and RacC are possible in vivo DockD substrates. In conclusion, our work provides a further understanding of how cell motility is controlled and provides evidence that the molecular mechanism underlying Dock180-related protein function is evolutionarily conserved.
Collapse
Affiliation(s)
- Alessia Para
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fueller F, Kubatzky KF. The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Commun Signal 2008; 6:6. [PMID: 18823547 PMCID: PMC2565660 DOI: 10.1186/1478-811x-6-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 01/25/2023] Open
Abstract
Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule in the NFκB, PI3 kinase and Map kinase pathways. The recent generation of RhoH knockout mice showed a defect in thymocyte selection and TCR signalling of thymic and peripheral T-cells. However, RhoH-deficient mice did not develop lymphomas or showed obvious defects in haematopoiesis.
Collapse
Affiliation(s)
- Florian Fueller
- Ruprecht-Karls-Universität Heidelberg, Hygiene Institut, Abteilung für Hygiene und Medizinische Mikrobiologie, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|
38
|
Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp Cell Res 2008; 314:3453-65. [PMID: 18835386 DOI: 10.1016/j.yexcr.2008.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/14/2008] [Accepted: 09/04/2008] [Indexed: 01/26/2023]
Abstract
RhoBTB proteins are atypical members of the Rho family of small GTPases. Two of the three RhoBTB proteins, RhoBTB1 and RhoBTB2, have been proposed as tumor suppressors and might function as adaptors of Cul3-dependent ubiquitin ligase complexes. Using yeast two-hybrid analysis and co-immunoprecipitation we show that all three RhoBTB proteins interact with Cul3. The interaction requires the N-terminal region of Cul3 and the first BTB domain of RhoBTB. RhoBTB3, the only RhoBTB with a prenylation motif, associates with vesicles that are frequently found in the vicinity of microtubules, suggesting a participation in some aspects of vesicle trafficking. We also show that RhoBTB2 and RhoBTB3 are capable of homo and heterodimerizing through the BTB domain region. The GTPase domain, which does not bind GTP, is able to interact with the BTB domain region, thus preventing proteasomal degradation of RhoBTB. This fits into a model in which an intramolecular interaction maintains RhoBTB in an inactive state, preventing the formation or the functionality of Cul3-dependent complexes. We also report a significantly decreased expression of RHOBTB and CUL3 genes in kidney and breast tumor samples and a very good correlation in the expression changes between RHOBTB and CUL3 that suggests that these genes are subject to a common inactivation mechanism in tumors.
Collapse
|
39
|
McKinnon CM, Lygoe KA, Skelton L, Mitter R, Mellor H. The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene 2008; 27:6856-65. [DOI: 10.1038/onc.2008.317] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Abstract
RhoBTB proteins constitute a subfamily of atypical members within the Rho family of small guanosine triphosphatases (GTPases). Their most salient feature is their domain architecture: a GTPase domain (in most cases, non-functional) is followed by a prolinerich region, a tandem of 2 broadcomplex, tramtrack, bric a brac (BTB) domains, and a conserved Cterminal region. In humans, the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophila and Dictyostelium, but have been lost in plants and fungi. Interest in RhoBTB arose when RHOBTB2 was identified as the gene homozygously deleted in breast cancer samples and was proposed as a candidate tumor suppressor gene, a property that has been extended to RHOBTB1. The functions of RhoBTB proteins have not been defined yet, but may be related to the roles of BTB domains in the recruitment of cullin3, a component of a family of ubiquitin ligases. A model emerges in which RhoBTB proteins are required to maintain constant levels of putative substrates involved in cell cycle regulation or vesicle transport through targeting for degradation in the 26S proteasome. RhoBTB proteins are engrossing the list of Rho GTPases involved in tumorigenesis. Unlike typical Rho GTPases (usually overexpressed or hyperactive), RhoBTB proteins appear to play a part in the carcinogenic process through a mechanism that involves the decreased or abolished expression of the corresponding genes, or more rarely, mutations that result in impaired functioning of the protein, presumably leading to the accumulation of RhoBTB substrates and alterations of the cellular homeostasis.
Collapse
Affiliation(s)
- Jessica Berthold
- Centers for Biochemistry and Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
41
|
|
42
|
Shimada N, Kanno-Tanabe N, Minemura K, Kawata T. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain. Dev Genes Evol 2008; 218:55-68. [PMID: 18204858 DOI: 10.1007/s00427-008-0202-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/01/2008] [Indexed: 02/01/2023]
Abstract
Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.
Collapse
Affiliation(s)
- Nao Shimada
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
The recently identified RhoBTB family is a member of the Rho GTPase family. One family member, RhoBTB2, has been implicated as a tumor suppressor in lung and breast cancer. Studies have shown that RhoBTB2 binds to the ubiquitin ligase scaffold Cul3 and that Cul3 regulates RhoBTB2 protein levels by ubiquitinating RhoBTB2 directly, leading to its degradation by the proteasome. This chapter details the cell biological and biochemical methods for analyzing the regulation of RhoBTB2 by Cul3.
Collapse
|
44
|
Aspenström P, Ruusala A, Pacholsky D. Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 2007; 313:3673-9. [PMID: 17850788 DOI: 10.1016/j.yexcr.2007.07.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/20/2007] [Accepted: 07/21/2007] [Indexed: 01/18/2023]
Abstract
The Rho GTPases are influential regulators of signalling pathways that control vital cellular processes such as cytoskeletal dynamics, gene transcription, cell cycle progression and cell transformation. A vast majority of the studies involving Rho GTPases have been focused to the famous triad, Cdc42, Rac1 and RhoA, but this protein family actually harbours 20 members. Recently, the less known Rho GTPases have received increased attention. Many of the less studied Rho GTPases have structural, as well as, functional features which makes it pertinent to classify them as atypical Rho GTPases. This review article will focus on the critical aspects of the atypical Rho GTPases, RhoH, Wrch-1, Chp and RhoBTB. These proteins are involved in a broad spectre of biological processes, such as cytoskeletal dynamics, T-cell signalling and protein ubiquitinylation. We will also discuss the roles of atypical Rho GTPases as oncogenes or tumour suppressors, as well as their potential involvement in human diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
45
|
Bouslama-Oueghlani L, Echard A, Louvard D, Gautreau A. RNAi depleted Drosophila cell extracts to dissect signaling pathways leading to actin polymerization. ACTA ACUST UNITED AC 2007; 70:663-9. [PMID: 17434595 DOI: 10.1016/j.jbbm.2007.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/06/2007] [Accepted: 03/12/2007] [Indexed: 11/24/2022]
Abstract
Dissection of signal transduction pathways leading to actin polymerization has been performed in cytosolic extracts. In such assays, the implication of an effector molecule is demonstrated by the loss of actin polymerization upon its depletion and the restoration of actin polymerization upon its add-back. Two major limitations in the wide use of this approach have been the availability of immunodepleting antibodies and the functional redundancy for many classes of effector molecules encoded by vertebrate genomes. To circumvent these limitations, we developed extracts derived from S2 Drosophila cells, which are competent for actin polymerization. In this system, depleted extracts are simply obtained from cells cultured with long double stranded RNAs in the medium. We validated the method by showing that beads coated with the C-terminal domain of Wave2 were no longer able to trigger actin polymerization in an extract depleted of the Arp2/3 complex. We also examined the complete set of Drosophila small GTPases of the Rho family for their ability to polymerize actin in such extracts, and found that only dCdc42 was able to induce actin polymerization. Using RNAi depleted extract, we confirmed that dCdc42 triggers actin polymerization in a Wasp dependent manner.
Collapse
Affiliation(s)
- Lamia Bouslama-Oueghlani
- Lab. of "Morphogenesis and Cell Signaling", UMR 144 CNRS/Institut Curie, 26 rue d'Ulm 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
46
|
Dawes AT, Edelstein-Keshet L. Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys J 2006; 92:744-68. [PMID: 17098793 PMCID: PMC1779977 DOI: 10.1529/biophysj.106.090514] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gradient sensing, polarization, and chemotaxis of motile cells involve the actin cytoskeleton, and regulatory modules, including the phosphoinositides (PIs), their kinases/phosphatases, and small GTPases (Rho proteins). Here we model their individual components (PIP1, PIP2, PIP3; PTEN, PI3K, PI5K; Cdc42, Rac, Rho; Arp2/3, and actin), their interconversions, interactions, and modular functions in the context of a one-dimensional dynamic model for protrusive cell motility, with parameter values derived from in vitro and in vivo studies. In response to a spatially graded stimulus, the model produces stable amplified internal profiles of regulatory components, and initiates persistent motility (consistent with experimental observations). By connecting the modules, we find that Rho GTPases work as a spatial switch, and that the PIs filter noise, and define the front versus back. Relatively fast PI diffusion also leads to selection of a unique pattern of Rho distribution from a collection of possible patterns. We use the model to explore the importance of specific hypothesized interactions, to explore mutant phenotypes, and to study the role of actin polymerization in the maintenance of the PI asymmetry. We also suggest a mechanism to explain the spatial exclusion of Cdc42 and PTEN and the inability of cells lacking active Cdc42 to properly detect chemoattractant gradients.
Collapse
Affiliation(s)
- Adriana T Dawes
- Institute of Applied Mathematics and Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
47
|
Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2006; 24:203-16. [PMID: 17035353 PMCID: PMC2665304 DOI: 10.1093/molbev/msl145] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GTPases of the Rho family are molecular switches that play important roles in converting and amplifying external signals into cellular effects. Originally demonstrated to control the dynamics of the F-actin cytoskeleton, Rho GTPases have been implicated in many basic cellular processes that influence cell proliferation, differentiation, motility, adhesion, survival, or secretion. To elucidate the evolutionary history of the Rho family, we have analyzed over 20 species covering major eukaryotic clades from unicellular organisms to mammals, including platypus and opossum, and have reconstructed the ontogeny and the chronology of emergence of the different subfamilies. Our data establish that the 20 mammalian Rho members are structured into 8 subfamilies, among which Rac is the founder of the whole family. Rho, Cdc42, RhoUV, and RhoBTB subfamilies appeared before Coelomates and RhoJQ, Cdc42 isoforms, RhoDF, and Rnd emerged in chordates. In vertebrates, gene duplications and retrotranspositions increased the size of each chordate Rho subfamily, whereas RhoH, the last subfamily, arose probably by horizontal gene transfer. Rac1b, a Rac1 isoform generated by alternative splicing, emerged in amniotes, and RhoD, only in therians. Analysis of Rho mRNA expression patterns in mouse tissues shows that recent subfamilies have tissue-specific and low-level expression that supports their implication only in narrow time windows or in differentiated metabolic functions. These findings give a comprehensive view of the evolutionary canvas of the Rho family and provide guides for future structure and evolution studies of other components of Rho signaling pathways, in particular regulators of the RhoGEF family.
Collapse
Affiliation(s)
| | | | | | - Philippe Fort
- * Correspondence should be adressed to: Philippe Fort
| |
Collapse
|
48
|
Chang FK, Sato N, Kobayashi-Simorowski N, Yoshihara T, Meth JL, Hamaguchi M. DBC2 is essential for transporting vesicular stomatitis virus glycoprotein. J Mol Biol 2006; 364:302-8. [PMID: 17023000 PMCID: PMC1713265 DOI: 10.1016/j.jmb.2006.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/29/2006] [Accepted: 09/08/2006] [Indexed: 01/05/2023]
Abstract
DBC2 is a tumor suppressor gene linked to breast and lung cancers. Although DBC2 belongs to the RHO GTPase family, it has a unique structure that contains a Broad-Complex/Tramtrack/Bric a Brac (BTB) domain at the C terminus instead of a typical CAAX motif. A limited number of functional studies on DBC2 have indicated its participation in diverse cellular activities, such as ubiquitination, cell-cycle control, cytoskeleton organization and protein transport. In this study, the role of DBC2 in protein transport was analyzed using vesicular stomatitis virus glycoprotein (VSVG) fused with green fluorescent protein. We discovered that DBC2 knockdown hinders the VSVG transport system in 293 cells. Previous studies have demonstrated that VSVG is transported via the microtubule motor complex. We demonstrate that DBC2 mobility depends also on an intact microtubule network. We conclude that DBC2 plays an essential role in microtubule-mediated VSVG transport from the endoplasmic reticulum to the Golgi apparatus.
Collapse
Affiliation(s)
- Faith K. Chang
- Department of Biological Sciences, Fordham University, 441 E Fordham Road, Bronx, NY 10458
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Noriko Sato
- Cytokine project, Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | - Takashi Yoshihara
- Department of Biological Sciences, Fordham University, 441 E Fordham Road, Bronx, NY 10458
| | - Jennifer L. Meth
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Masaaki Hamaguchi
- Department of Biological Sciences, Fordham University, 441 E Fordham Road, Bronx, NY 10458
- * Corresponding author: Department of Biological Sciences, Fordham University, 441 E Fordham Road, Larkin Hall, Bronx, NY 10458, Tel: (718) 817-3656, Fax: (718) 817-3645, e-mail:
| |
Collapse
|
49
|
Han JW, Leeper L, Rivero F, Chung CY. Role of RacC for the regulation of WASP and phosphatidylinositol 3-kinase during chemotaxis of Dictyostelium. J Biol Chem 2006; 281:35224-34. [PMID: 16968699 PMCID: PMC2853593 DOI: 10.1074/jbc.m605997200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
WASP family proteins are key players for connecting multiple signaling pathways to F-actin polymerization. To dissect the highly integrated signaling pathways controlling WASP activity, we identified a Rac protein that binds to the GTPase binding domain of WASP. Using two-hybrid and FRET-based functional assays, we identified RacC as a major regulator of WASP. RacC stimulates F-actin assembly in cell-free systems in a WASP-dependent manner. A FRET-based microscopy approach showed local activation of RacC at the leading edge of chemotaxing cells. Cells overexpressing RacC exhibit a significant increase in the level of F-actin polymerization upon cAMP stimulation, which can be blocked by a phosphatidylinositol (PI) 3-kinase inhibitor. Membrane translocation of PI 3-kinase and PI 3,4,5-trisphosphate reporter is absent in racC null cells. Cells overexpressing dominant negative RacC mutants and racC null cells move at a significantly slower speed and show a poor directionality during chemotaxis. Our results suggest that RacC plays an important role in PI 3-kinase activation and WASP activation for dynamic regulation of F-actin assembly during Dictyostelium chemotaxis.
Collapse
Affiliation(s)
- Ji W. Han
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Laura Leeper
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Francisco Rivero
- Zentrum für Biochemie and Zentrum für Molekulare Medizin, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | - Chang Y. Chung
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
- To whom correspondence should be addressed: 468 Robinson Research Bldg. (MRB I), 1215 21st Ave. South at Pierce, Nashville, TN 37232-6600. Tel.: 615-322-4956; Fax: 615-343-6532;
| |
Collapse
|
50
|
Somesh BP, Vlahou G, Iijima M, Insall RH, Devreotes P, Rivero F. RacG regulates morphology, phagocytosis, and chemotaxis. EUKARYOTIC CELL 2006; 5:1648-63. [PMID: 16950926 PMCID: PMC1595345 DOI: 10.1128/ec.00221-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RacG is an unusual member of the complex family of Rho GTPases in Dictyostelium. We have generated a knockout (KO) strain, as well as strains that overexpress wild-type (WT), constitutively active (V12), or dominant negative (N17) RacG. The protein is targeted to the plasma membrane, apparently in a nucleotide-dependent manner, and induces the formation of abundant actin-driven filopods. RacG is enriched at the rim of the progressing phagocytic cup, and overexpression of RacG-WT or RacG-V12 induced an increased rate of particle uptake. The positive effect of RacG on phagocytosis was abolished in the presence of 50 microM LY294002, a phosphoinositide 3-kinase inhibitor, indicating that generation of phosphatidylinositol 3,4,5-trisphosphate is required for activation of RacG. RacG-KO cells showed a moderate chemotaxis defect that was stronger in the RacG-V12 and RacG-N17 mutants, in part because of interference with signaling through Rac1. The in vivo effects of RacG-V12 could not be reproduced by a mutant lacking the Rho insert region, indicating that this region is essential for interaction with downstream components. Processes like growth, pinocytosis, exocytosis, cytokinesis, and development were unaffected in Rac-KO cells and in the overexpressor mutants. In a cell-free system, RacG induced actin polymerization upon GTPgammaS stimulation, and this response could be blocked by an Arp3 antibody. While the mild phenotype of RacG-KO cells indicates some overlap with one or more Dictyostelium Rho GTPases, like Rac1 and RacB, the significant changes found in overexpressors show that RacG plays important roles. We hypothesize that RacG interacts with a subset of effectors, in particular those concerned with shape, motility, and phagocytosis.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|