1
|
Choudhury SD, Ghosh S, Kumar P, Bhardwaj A, Singh K, Singh A, Kumar A, Basu B, Giri R, Choudhury D. Attenuation of c-Myc expression in breast cancer by hesperidin-mediated stabilization of its promoter proximal G quadruplex region. Int J Biol Macromol 2025; 309:143000. [PMID: 40222510 DOI: 10.1016/j.ijbiomac.2025.143000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Hesperidin, a citrus flavanone, demonstrates significant potential as an anticancer agent by targeting the c-Myc G-quadruplex (G4) silencer element (Pu-27), a key epigenetic regulator of c-Myc expression. Molecular docking analysis revealed a strong interaction with Pu-27 (binding energy: -48.344 kcal/mol), forming hydrogen bonds across five critical regions. This interaction stabilized the G4 structure, as confirmed by increased ellipticity, higher melting temperature, and enhanced nanostructure formation. In functional assays, Hesperidin selectively inhibited the viability of MDA-MB-231 breast cancer cells while sparing normal cells. It significantly reduced clonogenic potential, migration, and c-Myc expression, indicating its role in suppressing oncogenic pathways. Moreover, Hesperidin effectively reduced primer dimer formation in the PCR stop assay and decreased mTFP expression in the mTFP reporter assay, further supporting its specificity for G4 stabilization. Preclinical studies demonstrated that Hesperidin treatment led to a marked reduction in tumor volume with minimal systemic toxicity, highlighting its therapeutic potential. These findings establish Hesperidin as a promising small-molecule stabilizer of the c-Myc G4 silencer, offering a targeted strategy for breast cancer therapy. By directly modulating c-Myc expression, hesperidin holds promise for clinical translation as a selective and effective anticancer agent.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Sandip Ghosh
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh 175005, India
| | - Aparna Bhardwaj
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh 175005, India
| | - Krishna Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Biswarup Basu
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Rajnish Giri
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India; Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
2
|
Malina J, Kostrhunova H, Aldrich-Wright JR, Brabec V. Antitumor platinum(II) complex 56MESS binds to DNA G-quadruplexes, downregulates expression of c-MYC and k-RAS oncogenes, and triggers DNA damage in cancer cells. Chem Biol Interact 2025; 416:111534. [PMID: 40288436 DOI: 10.1016/j.cbi.2025.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Previous research indicated that the cytotoxic activity of the antitumor platinum(II) complex [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MESS) was not primarily attributed to DNA binding, despite the complex being confirmed to localize also in the nucleus. In this study, we have demonstrated that the antiproliferative activity of 56MESS indeed involves DNA binding. Furthermore, in addition to binding duplex DNA, the complex also interacts with non-canonical secondary DNA structures, such as G-quadruplexes (G4s) and i-Motifs (iMs). This interaction leads to the suppression of G-regulated oncogene expression and disrupts key enzymatic processes associated with DNA, potentially contributing to DNA damage and the biological activity of 56MESS. These findings build upon previously published results, revealing that the anticancer activity of 56MESS is significantly more multifaceted than previously understood, involving multiple distinct mechanisms.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, CZ-61200, Brno, Czech Republic
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, CZ-61200, Brno, Czech Republic
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Penrith South, DC 1797, New South Wales, Australia
| | - Viktor Brabec
- Department of Biophysics, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Sharma P, Paul K. Selective Recognition of Oncogene Promoter C-Myc G-Quadruplex: Design, Synthesis, and In Vitro Evaluation of Naphthalimide and Imidazo[1,2- a]pyrazines for Their Anticancer Activity. ACS APPLIED BIO MATERIALS 2025; 8:1377-1396. [PMID: 39844620 DOI: 10.1021/acsabm.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines. Compound 8eb showed excellent cytotoxicity against all the tested cancer cell lines, with the range of growth inhibition from -98.79% to 96.62% at a single-dose concentration of 10-5 M. Further, 8eb was employed for a 5-dose assay against the same cancer cell lines, which showed efficacy at varying concentrations with an MG-MID GI50 value of 2.61 μM. Biophysical studies were performed to explore the interaction of 8eb with c-Myc Pu27 over ct-DNA, oncogene promotor Pu22, and human telomere, with a binding constant value of 1.3 × 107 M-1. Additionally, experiments were performed to get insights into the interaction mechanism between 8eb and the c-Myc oncogene promoter. A molecular docking study unveiled the stacking of the compound with G4 DNA through groove binding, where very few reports are available, with a favorable binding energy of -9.2 kcal/mol. Moreover, the pharmacokinetic study and HOMO-LUMO energy gap analysis underscored the potency of the active candidate. The compound's binding ability toward HSA was also assessed, where results suggested effective binding of the compound to HSA, revealing its potential for easy delivery to the target site. The above findings suggested that these newly synthesized candidates with potent anticancer activity offer a promising avenue as G4 DNA c-Myc stabilizers.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
4
|
Rohrer C, Palumbo A, Paul M, Reese E, Basu S. Neurotransmitters and neural hormone-based probes for quadruplex DNA sequences associated with neurodegenerative diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39561111 DOI: 10.1080/15257770.2024.2431145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The potential of neurotransmitters and neural hormones as possible G-quadruplex DNA binders was analyzed using fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), DNA melting analysis, and molecular docking. G-quadruplex sequences, (GGC)3 and G4C2, with roles in Fragile X syndrome and amyotrophic lateral sclerosis (ALS), respectively, were selected, and their interactions with melatonin, serotonin, and gamma-aminobutyric acid (GABA), were studied. Both melatonin and serotonin demonstrated strong interactions with the DNA sequences with hydrogen bonding being the primary mode of interaction, with some non-intercalative interactions involving the π systems. GABA demonstrated much weaker interactions and may not be a suitable candidate as a probe for low concentrations of G-quadruplex DNA.
Collapse
Affiliation(s)
- Callie Rohrer
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Alexis Palumbo
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Marissa Paul
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Erin Reese
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| |
Collapse
|
5
|
Zhang Y, Cheng Y, Luo Q, Wu T, Huo J, Yin M, Peng H, Xiao Y, Tong Q, You H. Distinguishing G-Quadruplexes Stabilizer and Chaperone for c- MYC Promoter G-Quadruplexes through Single-Molecule Manipulation. J Am Chem Soc 2024; 146:3689-3699. [PMID: 38296825 DOI: 10.1021/jacs.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
G-quadruplex (G4) selective stabilizing ligands can regulate c-MYC gene expression, but the kinetic basis remains unclear. Determining the effects of ligands on c-MYC promoter G4s' folding/unfolding kinetics is challenging due to the polymorphic nature of G4s and the high energy barrier to unfold c-MYC promoter G4s. Here, we used single-molecule magnetic tweezers to manipulate a duplex hairpin containing a c-MYC promoter sequence to mimic the transiently denatured duplex during transcription. We measured the effects of six commonly used G4s binding ligands on the competition between quadruplex and duplex structures, as well as the folding/unfolding kinetics of G4s. Our results revealed two distinct roles for G4s selective stabilization: CX-5461 is mainly acting as c-MYC G4s stabilizer, reducing the unfolding rate (ku) of c-MYC G4s, whereas PDS and 360A also act as G4s chaperone, accelerating the folding rates (kf) of c-MYC G4s. qRT-PCR results obtained from CA46 and Raji cell lines demonstrated that G4s stabilizing ligands can downregulate c-MYC expression, while G4s stabilizer CX-5461 exhibited the strongest c-MYC gene suppression. These results shed light on the potential of manipulating G4s' folding/unfolding kinetics by ligands for precise regulation of promoter G4-associated biological activities.
Collapse
Affiliation(s)
- Yashuo Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanlei Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Qun Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junfeng Huo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Peng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Roy S, Maiti B, Banerjee N, Kaulage MH, Muniyappa K, Chatterjee S, Bhattacharya S. New Xanthone Derivatives as Potent G-Quadruplex Binders for Developing Anti-Cancer Therapeutics. ACS Pharmacol Transl Sci 2023; 6:546-566. [PMID: 37082748 PMCID: PMC10111628 DOI: 10.1021/acsptsci.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 04/22/2023]
Abstract
Xanthone is an important scaffold for various medicinally relevant compounds. However, it has received scant attention in the design of agents that are cytotoxic to cancer cells via targeting the stabilization of G-quadruplex (G4) nucleic acids. Specific G4 DNA recognition against double-stranded (ds) DNA is receiving epoch-making interest for the development of G4-mediated anticancer agents. Toward this goal, we have synthesized xanthone-based derivatives with various functionalized side-arm substituents that exhibited significant selectivity for G4 DNA as compared to dsDNA. The specific interaction has been demonstrated by performing various biophysical experiments. Based on the computational study as well as the competitive ligand binding assay, it is inferred that the potent compounds exhibit an end-stacking mode of binding with G4 DNA. Additionally, compound-induced conformational changes in the flanking nucleotides form the binding pocket for effective interaction. Selective action of the compounds on cancer cells suggests their effectiveness as potent anti-cancer agents. This study promotes the importance of structure-based screening approaches to get molecular insights for new scaffolds toward desired specific recognition of non-canonical G4 DNA structures.
Collapse
Affiliation(s)
- Soma Roy
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Bappa Maiti
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nilanjan Banerjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Mangesh H. Kaulage
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kalappa Muniyappa
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
7
|
Roy A, Chatterjee O, Banerjee N, Roychowdhury T, Dhar G, Mukherjee G, Chatterjee S. Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III 1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells. J Biomol Struct Dyn 2022; 40:10203-10219. [PMID: 34192476 DOI: 10.1080/07391102.2021.1940284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
c-MYC is deregulated in triple negative breast cancer (TNBC) pointing to be a promising biomarker for breast cancer treatment. Precise level of MYC expression is important in the control of cellular growth and proliferation. Designing of c-MYC-targeted antidotes to restore its basal level of cellular expression holds an optimistic approach towards anti-cancer treatment. MYC transcription is dominantly controlled by Nuclear Hypersensitive Element III-1 (NHEIII1) upstream of the promoter region possessing G-Quadruplex silencer element (Pu-27). We have investigated the selective binding-interaction profile of a natural phytophenolic compound Curcumin with native MYC G-quadruplex by conducting an array of biophysical experiments and in silico based Molecular Docking and Molecular Dynamic (MDs) simulation studies. Curcumin possesses immense anti-cancerous properties. We have observed significantly increased stability of MYC-G Quadruplex and thermodynamic spontaneity of Curcumin-MYC GQ binding with negative ΔG value. Transcription of MYC is tightly regulated by a complex mechanism involving promoters, enhancers and multiple transcription factors. We have used Curcumin as a model drug to understand the innate mechanism of controlling deregulated MYC back to its basal expression level. We have checked MYC-expression at transcriptional and translational level and proceeded for Chromatin Immuno-Precipitation assay (ChIP) to study the occupancy level of SP1, Heterogeneous nuclear ribonucleoprotein K (hnRNPK), Nucleoside Diphosphate Kinase 2 (NM23-H2) and Nucleolin at NHEIII1 upon Curcumin treatment of MDA-MB-231 cells. We have concluded that Curcumin binding tends to drive the equilibrium towards stable G-quadruplex formation repressing MYC back to its threshold-level. On retrospection of the synergistic effect of upregulated c-MYC and BCL-2 in cancer, we have also reported a new pathway [MYC-E2F-1-BCL-2-axis] through which Curcumin trigger apoptosis in cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, India
| | - Gopa Dhar
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | |
Collapse
|
8
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
9
|
Jawarkar RD, Bakal RL, Khatale PN, Lewaa I, Jain CM, Manwar JV, Jaiswal MS. QSAR, pharmacophore modeling and molecular docking studies to identify structural alerts for some nitrogen heterocycles as dual inhibitor of telomerase reverse transcriptase and human telomeric G-quadruplex DNA. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA are amongst the favorable target for researchers to discover novel and more effective anticancer agents. To understand and elucidate structure activity relationship and mechanism of inhibition of telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA, a QSAR modeling and molecular docking were conducted.
Results
Two robust QSAR model were obtained which consist of full set QSAR model (R2: 0.8174, CCCtr: 0.8995, Q2loo: 0.7881, Q2LMO: 0.7814) and divided set QSAR model (R2: 0.8217, CCCtr: 0.9021, Q2loo: 0.7886, Q2LMO: 0.7783, Q2-F1: 0.7078, Q2-F2: 0.6865, Q2-F3: 0.7346) for envisaging the inhibitory activity of telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA. The analysis reveals that carbon atom exactly at 3 bonds from aromatic carbon atom, nitrogen atom exactly at six bonds from planer nitrogen atom, aromatic carbon atom within 2 A0 from the center of mass of molecule and occurrence of element hydrogen within 2 A0 from donar atom are the key pharmacophoric features important for dual inhibition of TERT and human telomeric G-quadruplex DNA. To validate this analysis, pharmacophore modeling and the molecular docking is performed. Molecular docking analysis support QSAR analysis and revealed that, dual inhibition of TERT and human telomeric DNA is mainly contributed from hydrophobic and hydrogen bonding interactions.
Conclusion
The findings of molecular docking, pharmacophore modelling, and QSAR are all consistent and in strong agreement. The validated QSAR analyses can detect structural alerts, pharmacophore modelling can classify a molecule's consensus pharmacophore involving hydrophobic and acceptor regions, whereas docking analysis can reveal the mechanism of dual inhibition of telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA. The combination of QSAR, pharmacophore modeling and molecular docking may be useful for the future drug design of dual inhibitors to combat the devastating issue of resistance.
Graphical abstract
Collapse
|
10
|
Ma Y, Wakabayashi Y, Watatani N, Saito R, Hirokawa T, Tera M, Nagasawa K. Vinylnaphthalene-bearing hexaoxazole as a fluorescence turn-on type G-quadruplex ligand. Org Biomol Chem 2021; 19:8035-8040. [PMID: 34492672 DOI: 10.1039/d1ob01500a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxazole-type fluorophores show an increase of fluorescence intensity upon interaction with nucleic acids, and therefore can be used as tools for nucleic acid-sensing and fluorescence imaging. Here, we developed a novel stilbene-type fluorophore, MO-VN (1), consisting of a mono oxazole bearing a vinyl naphthalene moiety. This compound (1) was embedded in a trioxazole 2 and a cyclic hexaoxazole 3a. The fluorescence properties of 1, 2, and 3a were evaluated in the presence of various nucleic acid sequences. Compound 3 showed significant fluorescent enhancement upon interacting with G-quadruplex (G4) structure, which plays critical roles in various biological phenomena. Further structural development focusing on the vinyl naphthalene moiety of 3a afforded a turn-on type G4 ligand 3e that shows G4-specific fluorescence. Measurement of the fluorescence of 3e during titration of a telomeric DNA, telo24, with its C-rich complementary sequence, which unwinds the G4 structure, allowed us to monitor the dynamics of G4.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, To-kyo 184-8588, Japan.
| | - Yuki Wakabayashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Naruyuki Watatani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Ryota Saito
- Department of Chemistry Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Division of Biomedical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ward, Tokyo 135-0064, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| |
Collapse
|
11
|
Bağda E, Bağda E, Kocak A, Durmuş M. Investigation of Binding behaviour of a water-soluble gallium (III) phthalocyanine with double-stranded and G-quadruplex DNA via experimental and computational methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Unraveling the binding characteristics of small ligands to telomeric DNA by pressure modulation. Sci Rep 2021; 11:9714. [PMID: 33958702 PMCID: PMC8102477 DOI: 10.1038/s41598-021-89215-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, non-canonical DNA structures, such as G-quadruplexes (GQs), were found to be highly pressure sensitive, suggesting that pressure modulation studies can provide additional mechanistic details of such biomolecular systems. Using FRET and CD spectroscopy as well as binding equilibrium measurements, we investigated the effect of pressure on the binding reaction of the ligand ThT to the quadruplex 22AG in solutions containing different ionic species and a crowding agent mimicking the intracellular milieu. Pressure modulation helped us to identify the different conformational substates adopted by the quadruplex at the different solution conditions and to determine the volumetric changes during complex formation and the conformational transitions involved. The magnitudes of the binding volumes are a hallmark of packing defects and hydrational changes upon ligand binding. The conformational substates of the GQ as well as the binding strength and the stoichiometry of complex formation depend strongly on the solution conditions as well as on pressure. High hydrostatic pressure can also impact GQs inside living cells and thus affect expression of genetic information in deep sea organisms. We show that sub-kbar pressures do not only affect the conformational dynamics and structures of GQs, but also their ligand binding reactions.
Collapse
|
13
|
Zhang YL, Deng CX, Zhou WF, Zhou LY, Cao QQ, Shen WY, Liang H, Chen ZF. Synthesis and in vitro antitumor activity evaluation of copper(II) complexes with 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline derivatives. J Inorg Biochem 2019; 201:110820. [DOI: 10.1016/j.jinorgbio.2019.110820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
|
14
|
Xu X, Wang S, Mi Y, Zhao H, Zheng Z, Zhao X. A hydroxyquinoline-appended ruthenium(II)-polypyridyl complex that induces and stabilizes G-quadruplex DNA. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1548703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Xuexue Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Shuang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Yaxuan Mi
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Huaqian Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Zebao Zheng
- College of Chemistry and Chemical Engineering, Taishan University, Taian, P.R. China
| | - Xiaolong Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| |
Collapse
|
15
|
Wang BL, Jiang C. DNA G-Quadruplexes as a Template To Direct Cyanine Dyes To Form H-Aggregates and Application of the Self-Assembly Entity as a New G-Quadruplexes Ligands Screening Platform. Anal Chem 2019; 91:1541-1547. [DOI: 10.1021/acs.analchem.8b04677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bo-Lin Wang
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Chuang Jiang
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
16
|
Sharawy M, Consta S. Effect of the chemical environment of the DNA guanine quadruplex on the free energy of binding of Na and K ions. J Chem Phys 2019; 149:225102. [PMID: 30553268 DOI: 10.1063/1.5050534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Guanine quadruplex (G-quadruplex) structures play a vital role in stabilizing the DNA genome and in protecting healthy cells from transforming into cancer cells. The structural stability of G-quadruplexes is greatly enhanced by the binding of monovalent cations such as Na+ or K+ into the interior axial channel. We computationally study the free energy of binding of Na+ and K+ ions to two intramolecular G-quadruplexes that differ considerably in their degree of rigidity and the presence or absence of terminal nucleotides. The goal of our study is two-fold. On the one hand, we study the free energy of binding every ion, which complements the experimental findings that report the average free energy for replacing Na+ with K+ ions. On the other hand, we examine the role of the G-quadruplex structure in the binding free energy. In the study, we employ all-atom molecular dynamics simulations and the alchemical transformation method for the computation of the free energies. To compare the cation-dependent contribution to the structural stability of G-quadruplexes, we use a two-step approach to calculate the individual free energy difference ΔG of binding two Na+ and two K+ to two G-quadruplexes: the unimolecular DNA d[T2GT2(G3T)3] (Protein Data Bank ID 2M4P) and the human telomeric DNA d[AGGG(TTAGGG)3] (PDB ID 1KF1). In contrast to the experimental studies that estimate the average free energy of binding, we find a varying difference of approximately 2-9 kcal/mol between the free energy contribution of binding the first and second cation, Na+ or K+. Furthermore, we found that the free energy of binding K+ is not affected by the chemical nature of the two quadruplexes. By contrast, Na+ showed dependency on the G-quadruplex structure; the relatively small size allows Na+ to explore larger configurational space than K+. Numerical results presented here may offer reference values for future design of cationic drug-like ligands that replace the metal ions in G-quadruplexes.
Collapse
Affiliation(s)
- Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
17
|
Lu Y, Yu S, Lin F, Lin F, Zhao X, Wu L, Miao Y, Li H, Deng Y, Geng L. Simultaneous label-free screening of G-quadruplex active ligands from natural medicine via a microfluidic chip electrophoresis-based energy transfer multi-biosensor strategy. Analyst 2018; 142:4257-4264. [PMID: 28835953 DOI: 10.1039/c7an00692f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rapid screening of active compounds plays a crucial role in the research and application of complex natural medicines. Herein, a new method of simultaneous label-free multi-drug screening based on a selective aptamer-carboxyfluorescein/graphene oxide energy transfer optical sensor combined with microfluidic chip electrophoretic separation is reported. In this study, seven traditional Chinese medicinal monomers were chosen as targets for the screening of G-quadruplex ligands. The screening results of the G-quadruplex active ligands, including daidzein, berberine hydrochloride, jatrorrhizine hydrochloride, and fangchinoline, and non-active ligands, including geniposide and oxymatrine, were consistent with those reported in literature. Moreover, one new potential G4DNA active drug, jujuboside A, was identified. Molecular simulation of the interaction between G4DNA and drugs was also carried out using HyperChem and AutoDock to verify the results of the experimental screening. It further demonstrated the reliability of our strategy. This novel separation and concentration based multi-sensing strategy provides a simple, rapid, and sensitive tool for simultaneous multi-drug screening, which is very meaningful for drug screening and bio-interaction analysis.
Collapse
Affiliation(s)
- Yi Lu
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yeasmin Khusbu F, Zhou X, Chen H, Ma C, Wang K. Thioflavin T as a fluorescence probe for biosensing applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Rajasekhar B, Kumar C, Premkumar G, Riyaz MAB, Lakshmi PTV, Swu T. Computational studies on G-quadruplex DNA-stabilizing property of novel Wittig-based Schiff-Base ligands and their copper(II) complexes. Struct Chem 2018. [DOI: 10.1007/s11224-018-1229-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Wei ZZ, Qin QP, Meng T, Deng CX, Liang H, Chen ZF. 5-Bromo-oxoisoaporphine platinum(II) complexes exhibit tumor cell cytotoxcicity via inhibition of telomerase activity and disruption of c-myc G-quadruplex DNA and mitochondrial functions. Eur J Med Chem 2018; 145:360-369. [DOI: 10.1016/j.ejmech.2017.12.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023]
|
21
|
Zhang X, Wei Y, Bing T, Liu X, Zhang N, Wang J, He J, Jin B, Shangguan D. Development of squaraine based G-quadruplex ligands using click chemistry. Sci Rep 2017; 7:4766. [PMID: 28684846 PMCID: PMC5500484 DOI: 10.1038/s41598-017-04344-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The G-quadruplex (G4) structures of nucleic acids are considered to play an intrinsic role in gene expression. To this end, the development of new G4 ligands has attracted extensive research interests towards potential applications as G4-targeted drugs and molecular probes. To date, the majority of G4 ligands have been composed of an extended planar aromatic scaffold that interacts with the terminal G-tetrad plane via π-π interactions, and various side chains that interact with the sugar-phosphate backbone, loops or grooves of the G4 structures. The side chains act to modulate the affinity and selectivity of the G4 ligands, alongside influencing their biodistribution. Here, we present a click chemistry methodology to generate a series of squaraine-based G4 ligand derivatives based on our previously reported G4 probe (named CSTS) but with varing side chains. We find that importantly these new G4 ligand derivatives retain the G4 selectivity, optical properties and low cytotoxicity of CSTS, but exhibit different binding behaviors to G4 structures, and distinct cellular uptake efficiencies. Indeed, of these new complexes, several exhibit much higher affinity and cellular uptake than CSTS. Overall, this novel, facile and highly effective strategy has significant future potential for the high-throughput screening of G4 ligands or probes targeted towards in vivo applications.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbiao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junqing He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bing Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Zhao XL, Zhao HQ, Xu XX, Li ZS, Wang KZ. Inducement and stabilization of G-quadruplex DNA by a thiophene-containing dinuclear ruthenium(II) complex. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1322694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiao-Long Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Hua-Qian Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Xue-Xue Xu
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Zhen-Sheng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, PR China
| |
Collapse
|
23
|
Bağda E, Bağda E, Yabaş E. A versatile water soluble ball-type phthalocyanine as potential antiproliferative drug: the interaction with G-quadruplex formed from Tel 21 and cMYC. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.288284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Saadallah D, Bellakhal M, Amor S, Lefebvre JF, Chavarot-Kerlidou M, Baussanne I, Moucheron C, Demeunynck M, Monchaud D. Selective Luminescent Labeling of DNA and RNA Quadruplexes by π-Extended Ruthenium Light-Up Probes. Chemistry 2017; 23:4967-4972. [DOI: 10.1002/chem.201605948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Dounia Saadallah
- Laboratoire de Chimie Organique et Photochimie; Université Libre de Bruxelles; 1050 Bruxelles Belgium
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - Mehdi Bellakhal
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| | - Souheila Amor
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| | - Jean-François Lefebvre
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CNRS UMR5249, CEA; 38054 Grenoble France
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CNRS UMR5249, CEA; 38054 Grenoble France
| | - Isabelle Baussanne
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie; Université Libre de Bruxelles; 1050 Bruxelles Belgium
| | - Martine Demeunynck
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - David Monchaud
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| |
Collapse
|
25
|
Jana J, Mondal S, Bhattacharjee P, Sengupta P, Roychowdhury T, Saha P, Kundu P, Chatterjee S. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions. Sci Rep 2017; 7:40706. [PMID: 28102286 PMCID: PMC5244364 DOI: 10.1038/srep40706] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
Collapse
Affiliation(s)
- Jagannath Jana
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | - Soma Mondal
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | | | | | | | - Pranay Saha
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, Kolkata, WB, India
| | | |
Collapse
|
26
|
Bağda E, Bağda E, Yabaş E. Circular dichroism spectroscopic investigation of double-decker phthalocyanine with G-Quadruplex as promising telomerase inhibitor. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Yang L, Wang Y, Li B, Jin Y. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles. Biosens Bioelectron 2016; 87:915-920. [PMID: 27664411 DOI: 10.1016/j.bios.2016.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023]
Abstract
Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs.
Collapse
Affiliation(s)
- Luzhu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
28
|
Pradeep TP, Barthwal R. NMR structure of dual site binding of mitoxantrone dimer to opposite grooves of parallel stranded G-quadruplex [d-(TTGGGGT)]4. Biochimie 2016; 128-129:59-69. [DOI: 10.1016/j.biochi.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
|
29
|
Sheu SY, Huang CH, Zhou JK, Yang DY. Relative stability of G-quadruplex structures: Interactions between the human Bcl2 promoter region and derivatives of carbazole and diphenylamine. Biopolymers 2016; 101:1038-50. [PMID: 24723333 DOI: 10.1002/bip.22497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 01/24/2023]
Abstract
The bcl2 promoter region forms a G-quadruplex structure, which is a crucial target for anticancer drug development. In this study, we provide theoretical predictions of the stability of different G-quadruplex folds of the 23-mer bcl2 promoter region and G-quadruplex ligand. We take into account the whole G-quadruplex structure, including bound-cations and solvent effects, in order to compute the ligand binding free energy using molecular dynamics simulation. Two series of the carbazole and diphenylamine derivatives are used to screen for the most potent drug in terms of stabilization. The energy analysis identifies the predominant energy components affecting the stability of the various different G-quadruplex folds. The energy associated with the stability of the G-quadruplex-K(+) structures obtained displays good correlation with experimental Tm measurements. We found that loop orientation has an intrinsic influence on G-quadruplex stability and that the basket structure is the most stable. Furthermore, parallel loops are the most effective drug binding site. Our studies also demonstrate that rigidity and planarity are the key structural elements of a drug that stabilizes the G-quadruplex structure. BMVC-4 is the most potential G-quadruplex ligand. This approach demonstrates significant promise and should benefit drug design.
Collapse
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Institute of Biomedical informatics, National Yang-Ming University, Taipei, 112, Taiwan
| | | | | | | |
Collapse
|
30
|
Lu YJ, Deng Q, Hou JQ, Hu DP, Wang ZY, Zhang K, Luyt LG, Wong WL, Chow CF. Molecular Engineering of Thiazole Orange Dye: Change of Fluorescent Signaling from Universal to Specific upon Binding with Nucleic Acids in Bioassay. ACS Chem Biol 2016; 11:1019-29. [PMID: 26752011 DOI: 10.1021/acschembio.5b00987] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The universal fluorescent staining property of thiazole orange (TO) dye was adapted in order to be specific for G-quadruplex DNA structures, through the introduction of a styrene-like substituent at the ortho-position of the TO scaffold. This extraordinary outcome was determined from experimental studies and further explored through molecular docking studies. The molecular docking studies help understand how such a small substituent leads to remarkable fluorescent signal discrimination between G-quadruplex DNA and other types of nucleic acids. The results reveal that the modified dyes bind to the G-quadruplex or duplex DNA in a similar fashion as TO, but exhibit either enhanced or quenched fluorescent signal, which is determined by the spatial length and orientation of the substituent and has never been known. The new fluorescent dye modified with a p-(dimethylamino)styryl substituent offers 10-fold more selectivity toward telomeric G-quadruplexes than double-stranded DNA substrates. In addition, native PAGE experiments, FRET, CD analysis, and live cell imaging were also studied and demonstrated the potential applications of this class of thiazole-orange-based fluorescent probes in bioassays and cell imaging.
Collapse
Affiliation(s)
- Yu-Jing Lu
- Institute
of Natural Medicine and Green Chemistry, School of Chemical Engineering
and Light Industry, Guangdong University of Technology, Guangzhou 510006, Peoples’ Republic of China
| | - Qiang Deng
- Institute
of Natural Medicine and Green Chemistry, School of Chemical Engineering
and Light Industry, Guangdong University of Technology, Guangzhou 510006, Peoples’ Republic of China
| | - Jin-Qiang Hou
- London Regional Cancer Program, 790 Commissioners Road East, London, Ontario N6A 4L6, Canada
| | - Dong-Ping Hu
- Institute
of Natural Medicine and Green Chemistry, School of Chemical Engineering
and Light Industry, Guangdong University of Technology, Guangzhou 510006, Peoples’ Republic of China
| | - Zheng-Ya Wang
- Institute
of Natural Medicine and Green Chemistry, School of Chemical Engineering
and Light Industry, Guangdong University of Technology, Guangzhou 510006, Peoples’ Republic of China
| | - Kun Zhang
- Institute
of Natural Medicine and Green Chemistry, School of Chemical Engineering
and Light Industry, Guangdong University of Technology, Guangzhou 510006, Peoples’ Republic of China
| | - Leonard G. Luyt
- London Regional Cancer Program, 790 Commissioners Road East, London, Ontario N6A 4L6, Canada
- Departments
of Oncology, Chemistry, Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Wing-Leung Wong
- Department
of Science and Environmental Studies, Centre for Education in Environmental
Sustainability, The Hong Kong Institute of Education, 10 Lo Ping
Road, Tai Po, Hong Kong SAR, Peoples’ Republic of China
| | - Cheuk-Fai Chow
- Department
of Science and Environmental Studies, Centre for Education in Environmental
Sustainability, The Hong Kong Institute of Education, 10 Lo Ping
Road, Tai Po, Hong Kong SAR, Peoples’ Republic of China
| |
Collapse
|
31
|
Chan K, Yik-Sham Chung C, Wing-Wah Yam V. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(ii) complex ensemble. Chem Sci 2016; 7:2842-2855. [PMID: 30090278 PMCID: PMC6055111 DOI: 10.1039/c5sc04563k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
The formation of supramolecular assemblies between [Pt(bzimpy-Et){C[triple bond, length as m-dash]CC6H4(CH2NMe3-4)}]Cl2 (1) and mPPE-Ala and the FRET properties of the ensemble have been revealed from the UV-vis absorption, steady-state emission and time-resolved emission decay studies. The two-component mPPE-Ala-1 ensemble has been employed in a "proof-of-principle" concept for label-free detection of G-quadruplex DNAs with the intramolecular propeller parallel folding topology, such as c-myc, in aqueous buffer solution. By the modulation of the aggregation/deaggregation of the polymer-metal complex aggregates and hence the FRET from the mPPE-Ala donor to the aggregated 1 as acceptor, the ensemble has been demonstrated for sensitive and selective label-free detection of c-myc via the monitoring of emission spectral changes of the ensemble. Ratiometric emission of the ensemble at 461 and 662 nm has been shown to distinguish the intramolecular propeller parallel G-quadruplex folding topology of c-myc from other G-quadruplex-forming sequences of different folding topologies, owing to the strong and specific interactions between c-myc and 1 as suggested by the UV-vis absorption and UV melting studies. In addition, the formation of high-order intermolecular multimeric G-quadruplexes from c-myc under molecular crowding conditions has been successfully probed by the ratiometric emission of the ensemble. The conformational and topological transition of human telomeric DNA from the mixed-hybrid form to the intramolecular propeller parallel form, as observed from the circular dichroism spectroscopy, has also been monitored by the ratiometric emission of the ensemble. The ability of the ensemble to detect these conformational and topological transitions of G-quadruplex DNAs has been rationalized by the excellent selectivity and sensitivity of the ensemble towards the intramolecular propeller parallel G-quadruplex DNAs and their high-order intermolecular multimers, which are due to the extra stabilization gained from Pt···Pt and π-π interactions in addition to the electrostatic and hydrophobic interactions found in the polymer-metal complex aggregates.
Collapse
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
32
|
New pyridinium-based fluorescent dyes: A comparison of symmetry and side-group effects on G-Quadruplex DNA binding selectivity and application in live cell imaging. Biosens Bioelectron 2016; 81:373-381. [PMID: 26994364 DOI: 10.1016/j.bios.2016.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]
Abstract
A series of C1-, C2-and C3-symmetric pyridinium conjugates with different styrene-like side groups were synthesized and were utilized as G-quadruplex selective fluorescent probes. The new compounds were well-characterized. Their selectivity, sensitivity, and stability towards G-quadruplex were studied by fluorescence titration, native PAGE experiments, FRET and circular dichroism (CD) analyses. These new compounds investigated in the fluorescence assays were preferentially bound with G-quadruplex DNA compared with other type of nucleic acids and it is fascinating to realize the effects of molecular symmetry and associated side groups showing unexpectedly great influence on the fluorescent signal enhancement for the discrimination of G-quadruplexes DNA from other nucleic acids. This may correlate with the pocket symmetry and shape of the G-quadruplex DNA inherently. Among the compounds, a C2-symmetric dye (2,6-bis-((E)-2-(1H-indol-3-yl)-vinyl)-1-methylpyridin-1-ium iodide) with indolyl-groups substituted was screened out from the series giving the best selectivity and sensitivity towards G-quadruplexes DNA, particularly telo21, due to its high equilibrium binding constant (K=2.17×10(5)M(-1)). In addition, the limit of detection (LOD) of the dye to determine telo21 DNA in bioassays was found as low as 33nM. The results of the study give insight and certain crucial factors, such as molecular symmetry and the associated side groups, on developing of effective fluorescent dyes for G-quadruplex DNA applications including G-quadruplex structure stabilization, biosensing and clinical applications. The compound was also demonstrated as a very selective G-quadruplex fluorescent agent for living cell staining and imaging.
Collapse
|
33
|
Pavan Kumar Y, Saha P, Saha D, Bessi I, Schwalbe H, Chowdhury S, Dash J. Fluorescent Dansyl-Guanosine Conjugates that Bindc-MYCPromoter G-Quadruplex and Downregulatec-MYCExpression. Chembiochem 2016; 17:388-93. [DOI: 10.1002/cbic.201500631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Y. Pavan Kumar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur University; 2A ∞ B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| | - Puja Saha
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur University; 2A ∞ B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| | - Dhurjhoti Saha
- CSIR-Institute of Genomics and Integrative Biology; Mathura Road Delhi 110 025 India
| | - Irene Bessi
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; and Center for Biomolecular Magnetic Resonance; Max-von-Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; and Center for Biomolecular Magnetic Resonance; Max-von-Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics and Integrative Biology; Mathura Road Delhi 110 025 India
| | - Jyotirmayee Dash
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur University; 2A ∞ B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| |
Collapse
|
34
|
Wachter E, Moyá D, Parkin S, Glazer EC. Ruthenium Complex "Light Switches" that are Selective for Different G-Quadruplex Structures. Chemistry 2016; 22:550-9. [PMID: 26560887 PMCID: PMC4703525 DOI: 10.1002/chem.201503203] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/03/2023]
Abstract
Recognition and regulation of G-quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo-substituent to the dipyridylphenazine (dppz) ligands in the photophysical "light switch", [Ru(bpy)2 dppz](2+) , and the photochemical "light switch", [Ru(bpy)2 dmdppz](2+) , creates compounds with increased selectivity for an intermolecular parallel G-quadruplex and the mixed-hybrid G-quadruplex, respectively. When [Ru(bpy)2 dppz-Br](2+) and [Ru(bpy)2 dmdppz-Br](2+) are incubated with the G-quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2 dmdppz-Br](2+) with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of Ru(II) complexes can alter G-quadruplex selectivity, and could be useful for the rational design of in vivo G-quadruplex probes.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Diego Moyá
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA).
| |
Collapse
|
35
|
Mondal S, Jana J, Sengupta P, Jana S, Chatterjee S. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent. MOLECULAR BIOSYSTEMS 2016; 12:2506-18. [DOI: 10.1039/c6mb00218h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics.
Collapse
Affiliation(s)
- Soma Mondal
- Department of Biophysics
- Bose Institute
- Kolkata-700054
- India
| | - Jagannath Jana
- Department of Biophysics
- Bose Institute
- Kolkata-700054
- India
| | | | - Samarjit Jana
- Department of Zoology
- West Bengal State University
- Kolkata-126
- India
| | | |
Collapse
|
36
|
Narayanaswamy N, Unnikrishnan M, Gupta M, Govindaraju T. Fluorescence reporting of G-quadruplex structures and modulating their DNAzyme activity using polyethylenimine-pyrene conjugate. Bioorg Med Chem Lett 2015; 25:2395-400. [PMID: 25913200 DOI: 10.1016/j.bmcl.2015.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/19/2015] [Accepted: 04/03/2015] [Indexed: 01/25/2023]
Abstract
Four-stranded G-quadruplex structure is one of the most important non-canonical secondary structures of DNA formed by guanine (G)-rich sequences. G-rich DNA sequences are known to occur in the human genome, especially in the telomere 3' end and in oncogene promoters such as c-MYC and c-KIT. In this context, we designed pyrene-conjugated polyethylenimine (PEI-Py) as a fluorescence reporter for the recognition and detection of G-quadruplex structures of G-rich deoxyoligonucleotides and human telomere and gene promoter sequences, under ambient conditions. PEI-Py exhibited prominent pyrene excimer emission in the presence of G-quadruplex structures of G-rich deoxyoligonucleotides and biologically relevant DNA sequences. PEI-Py further displayed the modulation of DNAzyme activity of various G-quadruplex structures in the presence of hemin and hydrogen peroxide.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India
| | - Manju Unnikrishnan
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India
| | - Mona Gupta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India.
| |
Collapse
|
37
|
Raju G, Srinivas R, Reddy MD, Reddy CR, Nagesh N. Studies on non-covalent interaction of coumarin attached pyrimidine and 1-methyl indole 1,2,3 triazole analogues with intermolecular telomeric G-quadruplex DNA using ESI-MS and spectroscopy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:489-506. [PMID: 24972013 DOI: 10.1080/15257770.2014.891742] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, electrospray ionization mass spectrometry (ESI-MS) and spectroscopy have been used to evaluate the non-covalent interaction, stoichiometry, and selectivity of two synthetic coumarin-attached nucleoside and non-nucleoside 1,2,3-triazoles, namely, (1-(5-(hydroxymethyl)-4-(4-((2-oxo-2H-chromen-4-yloxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-furan-2-yl)5-methyl pyrimidine-2,4(1H,3H)-dione (Tr1) and 4-((1-((-1-methyl-1H-indol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (Tr2) with two different human telomeric intermolecular G-quadruplex DNA structures formed by d(T2AG3) and d(T2AG3)2 sequences. ESI-MS studies indicate that Tr1 specifically interacts with four-stranded intermolecular parallel quadruplex complex, whereas Tr2 interacts with two hairpin as well as four-stranded intermolecular parallel quadruplex complexes. UV-Visible spectroscopic studies suggest that Tr1 and Tr2 interact with G-quadruplex structure and unwind them. Job plots show that stoichiometry of ligand:quadruplex DNA is 1:1. Circular dichroism (CD) studies of G-quadruplex DNA and Tr1/Tr2 ligands manifest that they unfold DNA on interaction. Fluorescence studies demonstrate that ligand molecules intercalate between the two stacks of quadruplex DNA and non-radiative energy transfer occurs between the excited ligand molecules (donor) and quadruplex DNA (acceptor), resulting in enhancement of fluorescence emission intensity. Thus, these studies suggest that nucleoside and non-nucleoside ligands efficiently interact with d(T2AG3) and d(T2AG3)2 G-quadruplex DNA but the interaction is not alike with all kinds of quadruplex DNA, this is probably due to the variation in the pharmacophores and structure of the ligand molecules.
Collapse
Affiliation(s)
- G Raju
- a National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology , Hyderabad , India
| | | | | | | | | |
Collapse
|
38
|
Simonicova L, Dudekova H, Ferenc J, Prochazkova K, Nebohacova M, Dusinsky R, Nosek J, Tomaska L. Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase. Curr Genet 2015; 61:517-27. [PMID: 25567623 DOI: 10.1007/s00294-014-0472-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/25/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
The experimental evidence from the last decade made telomerase a prominent member of a family of moonlighting proteins performing different functions at various cellular loci. However, the study of extratelomeric functions of the catalytic subunit of mammalian telomerase (TERT) is often complicated by the fact that it is sometimes difficult to distinguish them from its role(s) at the chromosomal ends. Here, we present an experimental model for studying the extranuclear function(s) of mammalian telomerase in the yeast Saccharomyces cerevisiae. We demonstrate that the catalytic subunit of mammalian telomerase protects the yeast cells against oxidative stress and affects the stability of the mitochondrial genome. The advantage of using S. cerevisiae to study of mammalian telomerase is that (1) mammalian TERT does not interfere with its yeast counterpart in the maintenance of telomeres, (2) yeast telomerase is not localized in mitochondria and (3) it does not seem to be involved in the protection of cells against oxidative stress and stabilization of mtDNA. Thus, yeast cells can be used as a 'test tube' for reconstitution of mammalian TERT extranuclear function(s).
Collapse
Affiliation(s)
- Lucia Simonicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Henrieta Dudekova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Jaroslav Ferenc
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Katarina Prochazkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Martina Nebohacova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina, CH-1, 84215, Bratislava, Slovak Republic
| | - Roman Dusinsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina, CH-1, 84215, Bratislava, Slovak Republic
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic.
| |
Collapse
|
39
|
Lu H, Li S, Chen J, Xia J, Zhang J, Huang Y, Liu X, Wu HC, Zhao Y, Chai Z, Hu Y. Metal ions modulate the conformation and stability of a G-quadruplex with or without a small-molecule ligand. Metallomics 2015; 7:1508-14. [DOI: 10.1039/c5mt00188a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Nagesh N, Raju G, Srinivas R, Ramesh P, Reddy MD, Reddy CR. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells. Biochim Biophys Acta Gen Subj 2015; 1850:129-40. [DOI: 10.1016/j.bbagen.2014.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 12/30/2022]
|
41
|
Bhasikuttan AC, Mohanty J. Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chem Commun (Camb) 2015; 51:7581-97. [DOI: 10.1039/c4cc10030a] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article provides a brief account of the recent reports on the fluorescence properties of some of the fluorogenic dyes towards G-quadruplex DNAs, which have been turned into promising bio-analytical methods.
Collapse
Affiliation(s)
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
42
|
Das RN, Debnath M, Gaurav A, Dash J. Environment-Sensitive Probes Containing a 2,6-Diethynylpyridine Motif for Fluorescence Turn-On Detection and Induction of Nanoarchitectures of Human Telomeric Quadruplex. Chemistry 2014; 20:16688-93. [DOI: 10.1002/chem.201404795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/24/2022]
|
43
|
Siters KE, Fountain MA, Morrow JR. Selective binding of Zn2+ complexes to human telomeric G-quadruplex DNA. Inorg Chem 2014; 53:11540-51. [PMID: 25310175 DOI: 10.1021/ic501484p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.5 μM). Isothermal calorimetric titrations confirm low micromolar dissociation constants with a 2:1 stoichiometry. The interaction between H-Telo and Zn(DSC) is highly pH-dependent, consistent with binding to the unpaired thymines in the G-quadruplex loops. As a result, Zn(DSC) selectively binds to H-Telo over duplex DNA. In contrast to Zn(2+), Fe(2+) and Co(2+) do not complex to the DSC macrocycle appreciably under the conditions of the experiment. The Cu(2+) complex of DSC does not interact measurably with the H-Telo G-quadruplex. Interestingly, the H-Telo-Zn(DSC) adduct self-assembles from its individual components at physiological pH and 100 mM KCl. The self-assembly feature, which is specific for the Zn(2+) ion, suggests that this system may be viable as a Zn(2+) sensor. Pentanucleotides were studied in order to better describe the binding of Zn(DSC) to thymine sequences. NMR studies were consistent with the binding of Zn(DSC) to thymine-containing oligonucleotides including CCTCC, CTTCC, and CTCTC. Studies showed that the dansyl group of Zn(DSC) interacts with thymines in CTTCC. Fluorescence spectroscopy and ITC data indicate that Zn(DSC) forms 2:1 adducts with thymines that are spaced (CTCTC) but not tandem thymines (CTTCC). These data are consistent with one Zn(DSC) complex binding to two separate loops in the G-quadruplex. A second Zn(2+) complex containing an acridine pendent, Zn(ACR), binds tightly to pentanucleotides with both tandem and spaced thymines. Zn(ACR) indiscriminately binds to both H-Telo and duplex DNA.
Collapse
Affiliation(s)
- Kevin E Siters
- Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | | | | |
Collapse
|
44
|
Kumar V, Sengupta A, Gavvala K, Koninti RK, Hazra P. Spectroscopic and Thermodynamic Insights into the Interaction between Proflavine and Human Telomeric G-Quadruplex DNA. J Phys Chem B 2014; 118:11090-9. [DOI: 10.1021/jp506267b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vivek Kumar
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra India
| | - Abhigyan Sengupta
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra India
| | - Krishna Gavvala
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra India
| | - Raj Kumar Koninti
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra India
| | - Partha Hazra
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra India
| |
Collapse
|
45
|
A benzimidazopyridoquinoxaline as promising scaffold for G-quadruplex DNA targeting. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Laguerre A, Stefan L, Larrouy M, Genest D, Novotna J, Pirrotta M, Monchaud D. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J Am Chem Soc 2014; 136:12406-14. [PMID: 25101894 DOI: 10.1021/ja506331x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Institute of Molecular Chemistry, University of Dijon, ICMUB CNRS UMR6302 , 21078 Dijon, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Li MJ, Lan TY, Lin ZS, Yi C, Chen GN. Synthesis, characterization, and DNA binding of a novel ligand and its Cu (II) complex. J Biol Inorg Chem 2014; 18:993-1003. [PMID: 24077729 DOI: 10.1007/s00775-013-1048-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/04/2013] [Indexed: 11/28/2022]
Abstract
A novel naphthalene-2,3-diamine-2-salicylaldehyde (NS) ligand and its mononuclear copper(II) complex (CuNS) have been synthesized and structurally characterized. The UV–vis absorption and emission spectra of NS showed obvious changes on addition of Cu2+ solution. The interaction of the compounds with calf thymus DNA and G-quadruplex DNA were investigated by spectroscopic methods and thermal melting assay. The nucleolytic cleavage activity of the compounds was investigated on double-stranded circular pBR322 plasmid DNA and G-quadruplex DNA by electrophoretic mobility shift assay. The results show that CuNS has a greater ability to stabilize G-quadruplex DNA over calf-thymus DNA. The cytotoxicity of the compounds toward HpeG2 cancer cells was also studied, and they showed significant potential for antineoplastic effects.
Collapse
|
48
|
Yu HJ, Yu L, Hao ZF, Zhao Y. Interactions of ruthenium complexes containing indoloquinoline moiety with human telomeric G-quadruplex DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:187-193. [PMID: 24486786 DOI: 10.1016/j.saa.2013.12.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. Vast majority of G-quadruplex binding molecules have been designed and synthesized. Ruthenium complexes have also been reported to induction or stabilization of G-quadruplex structure of human telomeric sequence, whereas most of them generally promote the formation of antiparallel or hybrid-type G-quadruplex structure. Ruthenium complex that selectively promotes the formation of parallel G-quadruplex structure has rarely been reported. We reported here the interaction of two ruthenium complexes [Ru(bpy)2(mitatp)](2+)1 and [Ru(phen)2(mitatp)](2+)2 (bpy=2,2' bipyridine, phen=1,10-phenanthroline, mitatp=5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) containing indoloquinoline moiety with human telomeric G-quadruplex DNA (Telo22). Complex 1 binds to Telo22 tightly via a stable π-π stacking interaction and efficiently stabilizes the G-quadruplex structure. Circular dichroism (CD) spectra titration results suggest that complex 1 could induce Telo22 to fold into antiparallel G-quadruplex conformation. Complex 2 exhibits moderate G-quadruplex binding and stabilizing ability, while CD titration data reveals that complex 2 could promote the formation of parallel G-quadruplex structure.
Collapse
Affiliation(s)
- Hui-juan Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhi-feng Hao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
49
|
Renaud de la Faverie A, Guédin A, Bedrat A, Yatsunyk LA, Mergny JL. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res 2014; 42:e65. [PMID: 24510097 PMCID: PMC4005661 DOI: 10.1093/nar/gku111] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thioflavin T (ThT) becomes fluorescent in the presence of the G-quadruplex structure such as that formed by the human telomeric motif. In this report, we extend and generalize these observations and show that this dye may be used as a convenient and specific quadruplex probe. In the presence of most, but not all, G4-forming sequences, we observed a large increase in ThT fluorescence emission, whereas the presence of control duplexes and single strands had a more limited effect on emission. This differential behavior allowed us to design a high-throughput assay to detect G4 formation. Hundreds of different oligonucleotides may be tested in parallel for G4 formation with a simple fluorescence plate reader. We applied this technique to a family of aptamers not previously recognized as G4-forming sequences and demonstrated that ThT fluorescence signal may be used to predict G4 formation.
Collapse
Affiliation(s)
- Amandine Renaud de la Faverie
- ARNA Laboratory, University of Bordeaux, F-33000 Bordeaux, France, INSERM U869, IECB, F-33600 Pessac, France and Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | | | | | | | | |
Collapse
|
50
|
Hoshyar R, Bathaie SZ, Kyani A, Mousavi MF. Is there any interaction between telomeric DNA structures, G-quadruplex and I-motif, with saffron active metabolites? NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 31:801-12. [PMID: 23145950 DOI: 10.1080/15257770.2012.730164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Telomeric DNA contains some unique secondary structures, such as G-quadruplex and I-motif. These structures may be stabilized or changed by binding to specific proteins or small molecules. Herein, we report the in vitro effect of crocin, crocetin, picrocrocin, and safranal on these structures. Circular dichroism (CD) data indicate that crocetin has higher affinity for these structures. Safranal and crocin induce little change in the I-motif and G-quadruplex, respectively. The molecular docking confirms the experimental data and indicates the minor groove binding of ligands with G-quadruplex. The possibility for application of these ligands as sequence-specific drugs should be further investigated.
Collapse
Affiliation(s)
- Reyhane Hoshyar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|