1
|
Ritsch M, Cassman NA, Saghaei S, Marz M. Navigating the Landscape: A Comprehensive Review of Current Virus Databases. Viruses 2023; 15:1834. [PMID: 37766241 PMCID: PMC10537806 DOI: 10.3390/v15091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are abundant and diverse entities that have important roles in public health, ecology, and agriculture. The identification and surveillance of viruses rely on an understanding of their genome organization, sequences, and replication strategy. Despite technological advancements in sequencing methods, our current understanding of virus diversity remains incomplete, highlighting the need to explore undiscovered viruses. Virus databases play a crucial role in providing access to sequences, annotations and other metadata, and analysis tools for studying viruses. However, there has not been a comprehensive review of virus databases in the last five years. This study aimed to fill this gap by identifying 24 active virus databases and included an extensive evaluation of their content, functionality and compliance with the FAIR principles. In this study, we thoroughly assessed the search capabilities of five database catalogs, which serve as comprehensive repositories housing a diverse array of databases and offering essential metadata. Moreover, we conducted a comprehensive review of different types of errors, encompassing taxonomy, names, missing information, sequences, sequence orientation, and chimeric sequences, with the intention of empowering users to effectively tackle these challenges. We expect this review to aid users in selecting suitable virus databases and other resources, and to help databases in error management and improve their adherence to the FAIR principles. The databases listed here represent the current knowledge of viruses and will help aid users find databases of interest based on content, functionality, and scope. The use of virus databases is integral to gaining new insights into the biology, evolution, and transmission of viruses, and developing new strategies to manage virus outbreaks and preserve global health.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Noriko A. Cassman
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Shahram Saghaei
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
2
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
3
|
Jeon H, Bae J, Kim H, Kim MS. VPrimer: A Method of Designing and Updating Primer and Probe With High Variant Coverage for RNA Virus Detection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:775-784. [PMID: 34951850 DOI: 10.1109/tcbb.2021.3138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fatal infectious diseases caused by RNA viruses, such as COVID-19, have emerged around the world. RT-PCR is widely employed for virus detection, and its accuracy depends on the primers and probes since RT-PCR can detect a virus only when the primers and probes bind to the target gene of the virus. Most of primer design methods are for a single host and so require a great deal of effort to design for RNA virus detection, including homology tests among the host and all the viruses for the host using BLAST-like tools. Furthermore, they do not consider variant sequences, which are very common in viruses. In this study, we describe VPrimer, a method of designing high-quality primer-probe sets for RNA viruses. VPrimer can find primer-probe sets that cover more than 95% of the variants of a target virus but do not cover any sequences of other viruses or the host. With VPrimer, we found 381,698,582 primer-probe sets for 3,104 RNA viruses. Multiplex PCR assays using the top 2 primer-probe sets suggested by VPrimer usually cover 100% of variants. To address the rapid changes in viral genomes, VPrimer finds the best and up-to-date primer-probe sets incrementally against the most recently reported variants.
Collapse
|
4
|
Bioinformatics Applications in Advancing Animal Virus Research. RECENT ADVANCES IN ANIMAL VIROLOGY 2019. [PMCID: PMC7121192 DOI: 10.1007/978-981-13-9073-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Viruses serve as infectious agents for all living entities. There have been various research groups that focus on understanding the viruses in terms of their host-viral relationships, pathogenesis and immune evasion. However, with the current advances in the field of science, now the research field has widened up at the ‘omics’ level. Apparently, generation of viral sequence data has been increasing. There are numerous bioinformatics tools available that not only aid in analysing such sequence data but also aid in deducing useful information that can be exploited in developing preventive and therapeutic measures. This chapter elaborates on bioinformatics tools that are specifically designed for animal viruses as well as other generic tools that can be exploited to study animal viruses. The chapter further provides information on the tools that can be used to study viral epidemiology, phylogenetic analysis, structural modelling of proteins, epitope recognition and open reading frame (ORF) recognition and tools that enable to analyse host-viral interactions, gene prediction in the viral genome, etc. Various databases that organize information on animal and human viruses have also been described. The chapter will converse on overview of the current advances, online and downloadable tools and databases in the field of bioinformatics that will enable the researchers to study animal viruses at gene level.
Collapse
|
5
|
Kim H, Kang N, An K, Kim D, Koo J, Kim MS. MRPrimerV: a database of PCR primers for RNA virus detection. Nucleic Acids Res 2016; 45:D475-D481. [PMID: 27899620 PMCID: PMC5210568 DOI: 10.1093/nar/gkw1095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 11/13/2022] Open
Abstract
Many infectious diseases are caused by viral infections, and in particular by RNA viruses such as MERS, Ebola and Zika. To understand viral disease, detection and identification of these viruses are essential. Although PCR is widely used for rapid virus identification due to its low cost and high sensitivity and specificity, very few online database resources have compiled PCR primers for RNA viruses. To effectively detect viruses, the MRPrimerV database (http://MRPrimerV.com) contains 152 380 247 PCR primer pairs for detection of 1818 viruses, covering 7144 coding sequences (CDSs), representing 100% of the RNA viruses in the most up-to-date NCBI RefSeq database. Due to rigorous similarity testing against all human and viral sequences, every primer in MRPrimerV is highly target-specific. Because MRPrimerV ranks CDSs by the penalty scores of their best primer, users need only use the first primer pair for a single-phase PCR or the first two primer pairs for two-phase PCR. Moreover, MRPrimerV provides the list of genome neighbors that can be detected using each primer pair, covering 22 192 variants of 532 RefSeq RNA viruses. We believe that the public availability of MRPrimerV will facilitate viral metagenomics studies aimed at evaluating the variability of viruses, as well as other scientific tasks.
Collapse
Affiliation(s)
- Hyerin Kim
- Department of Information and Communication Engineering, DGIST, Daegu, 42988, South Korea
| | - NaNa Kang
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - KyuHyeon An
- Department of Information and Communication Engineering, DGIST, Daegu, 42988, South Korea
| | - Doyun Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Min-Soo Kim
- Department of Information and Communication Engineering, DGIST, Daegu, 42988, South Korea
| |
Collapse
|
6
|
Unraveling the web of viroinformatics: computational tools and databases in virus research. J Virol 2014; 89:1489-501. [PMID: 25428870 DOI: 10.1128/jvi.02027-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The beginning of the second century of research in the field of virology (the first virus was discovered in 1898) was marked by its amalgamation with bioinformatics, resulting in the birth of a new domain--viroinformatics. The availability of more than 100 Web servers and databases embracing all or specific viruses (for example, dengue virus, influenza virus, hepatitis virus, human immunodeficiency virus [HIV], hemorrhagic fever virus [HFV], human papillomavirus [HPV], West Nile virus, etc.) as well as distinct applications (comparative/diversity analysis, viral recombination, small interfering RNA [siRNA]/short hairpin RNA [shRNA]/microRNA [miRNA] studies, RNA folding, protein-protein interaction, structural analysis, and phylotyping and genotyping) will definitely aid the development of effective drugs and vaccines. However, information about their access and utility is not available at any single source or on any single platform. Therefore, a compendium of various computational tools and resources dedicated specifically to virology is presented in this article.
Collapse
|
7
|
Bose ME, Littrell JC, Patzer AD, Kraft AJ, Metallo JA, Fan J, Henrickson KJ. The Influenza Primer Design Resource: a new tool for translating influenza sequence data into effective diagnostics. Influenza Other Respir Viruses 2008; 2:23-31. [PMID: 19453490 PMCID: PMC4634328 DOI: 10.1111/j.1750-2659.2007.00031.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Recent outbreaks of highly pathogenic avian influenza and multiple occurrences of zoonotic infection and deaths in humans have sparked a dramatic increase in influenza research. In order to rapidly identify and help prevent future influenza outbreaks, numerous laboratories around the world are working to develop new nucleotide-based diagnostics for identifying and subtyping influenza viruses. While there are several databases that have been developed for manipulating the vast amount of influenza genetic data that have been produced, significant progress can still be made in developing tools for translating the genetic data into effective diagnostics. DESCRIPTION The Influenza Primer Design Resource (IPDR) is the combination of a comprehensive database of influenza nucleotide sequences and a web interface that provides several important tools that aid in the development of oligonucleotides that may be used to develop better diagnostics. IPDR's database can be searched using a variety of criteria, allowing the user to align the subset of influenza sequences that they are interested in. In addition, IPDR reports a consensus sequence for the alignment along with sequence polymorphism information, a summary of most published primers and probes that match the consensus sequence, and a Primer3 analysis of potential primers and probes that could be used for amplifying the sequence subset. CONCLUSIONS The IPDR is a unique combination of bioinformatics tools that will greatly aid researchers in translating influenza genetic data into diagnostics, which can effectively identify and subtype influenza strains. The website is freely available at http://www.ipdr.mcw.edu.
Collapse
Affiliation(s)
- Michael E. Bose
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| | - John C. Littrell
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| | - Andrew D. Patzer
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| | - Andrea J. Kraft
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| | - Jacob A. Metallo
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| | - Jiang Fan
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| | - Kelly J. Henrickson
- Department of Pediatric Infectious Diseases, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, WI, USA
| |
Collapse
|
8
|
Nyman M, Bieker JM, Thoma SG, Trudell DE. Investigation of inorganic cluster–surfactant flocculants for virion sequestration and removal from aqueous media. J Colloid Interface Sci 2007; 316:968-76. [PMID: 17888936 DOI: 10.1016/j.jcis.2007.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 10/23/2022]
Abstract
Anionic polyoxometalates or cationic aluminum clusters when combined with a surfactant of an opposite charge form hydrophobic precipitates that are approximately lamellar with alternating layers of interdigitated surfactant tails and inorganic clusters. The charged surfactant heads are associated with the inorganic cluster layers. When these phases self-assemble and precipitate from aqueous media spiked with a virus titer, either bovine enterovirus (BEV) or influenza A, the precipitates effectively sequester the virions via an enmeshment process. These studies were done via precipitation and filtration of the cluster-surfactant floc in the presence of the virus, followed by reverse transcriptase polymerase chain reaction (rRT-PCR) analysis of the filtrate. Efficacy of these cluster-surfactant phases for virion sequestration is variable as a function of their solubility, the size of colloid formed in solution, and their degree of long-range order. Generally less soluble, poorly ordered precipitates that form the largest colloids are the most effective virion sequestering media. Cluster-surfactant phases were characterized in solution by nuclear magnetic resonance (NMR) and dynamic light scattering (DLS); and in the solid-state by powder X-ray diffraction and solid-state magic angle spinning (MAS) NMR.
Collapse
Affiliation(s)
- May Nyman
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Primer extension by thermostable DNA polymerase in PCR starts from the 3'-end of a primer. If the PCR starting process fails, the entire PCR fails. Primer sequences at the 3'-end often interfere with success in PCR experiments. Over 2000 primer sequences from successful PCR experiments used with varieties of templates and conditions were analyzed for finding frequencies of the 3'-end triplets. This chapter discusses a trend in 3'-end triplet frequencies in primers used in successful PCR experiments and proposes requirements for the 3'-end of a primer. Finally, a method to select primers with the best 3'-end triplets is introduced based on the 3'-end analysis result.
Collapse
Affiliation(s)
- Kenji Onodera
- RIKEN Genome Sciences Center, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
10
|
Lin FM, Huang HD, Chang YC, Tsou AP, Chan PL, Wu LC, Tsai MF, Horng JT. Database to dynamically aid probe design for virus identification. ACTA ACUST UNITED AC 2006; 10:705-13. [PMID: 17044404 DOI: 10.1109/titb.2006.874202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Viral infection poses a major problem for public health, horticulture, and animal husbandry, possibly causing severe health crises and economic losses. Viral infections can be identified by the specific detection of viral sequences in many ways. The microarray approach not only tolerates sequence variations of newly evolved virus strains, but can also simultaneously diagnose many viral sequences. Many chips have so far been designed for clinical use. Most are designed for special purposes, such as typing enterovirus infection, and compare fewer than 30 different viral sequences. None considers primer design, increasing the likelihood of cross hybridization to similar sequences from other viruses. To prevent this possibility, this work establishes a platform and database that provides users with specific probes of all known viral genome sequences to facilitate the design of diagnostic chips. This work develops a system for designing probes online. A user can select any number of different viruses and set the experimental conditions such as melting temperature and length of probe. The system then returns the optimal sequences from the database. We have also developed a heuristic algorithm to calculate the probe correctness and show the correctness of the algorithm. (The system that supports probe design for identifying viruses has been published on our web page http://bioinfo.csie.ncu.edu.tw/.)
Collapse
Affiliation(s)
- Feng-Mao Lin
- Department of Computer Science and Information Engineering, National Central University, Jhongli City, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wren JD, Hildebrand WH, Chandrasekaran S, Melcher U. Markov model recognition and classification of DNA/protein sequences within large text databases. Bioinformatics 2005; 21:4046-53. [PMID: 16159926 DOI: 10.1093/bioinformatics/bti657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Short sequence patterns frequently define regions of biological interest (binding sites, immune epitopes, primers, etc.), yet a large fraction of this information exists only within the scientific literature and is thus difficult to locate via conventional means (e.g. keyword queries or manual searches). We describe herein a system to accurately identify and classify sequence patterns from within large corpora using an n-gram Markov model (MM). RESULTS As expected, on test sets we found that identification of sequences with limited alphabets and/or regular structures such as nucleic acids (non-ambiguous) and peptide abbreviations (3-letter) was highly accurate, whereas classification of symbolic (1-letter) peptide strings with more complex alphabets was more problematic. The MM was used to analyze two very large, sequence-containing corpora: over 7.75 million Medline abstracts and 9000 full-text articles from Journal of Virology. Performance was benchmarked by comparing the results with Journal of Virology entries in two existing manually curated databases: VirOligo and the HLA Ligand Database. Performance estimates were 98 +/- 2% precision/84% recall for primer identification and classification and 67 +/- 6% precision/85% recall for peptide epitopes. We also find a dramatic difference between the amounts of sequence-related data reported in abstracts versus full text. Our results suggest that automated extraction and classification of sequence elements is a promising, low-cost means of sequence database curation and annotation. AVAILABILITY MM routine and datasets are available upon request.
Collapse
Affiliation(s)
- Jonathan D Wren
- Advanced Center for Genome Technology, Stephenson Research and Technology Center, Department of Botany and Microbiology, The University of Oklahoma, 101 David L. Boren Blvd., Rm 2025, Norman, OK 73019, USA.
| | | | | | | |
Collapse
|
12
|
Onodera K, Melcher U. Selection for 3' end triplets for polymerase chain reaction primers. Mol Cell Probes 2004; 18:369-72. [PMID: 15488375 PMCID: PMC7127618 DOI: 10.1016/j.mcp.2004.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/28/2004] [Indexed: 11/26/2022]
Abstract
The 3' end of a primer is a key component of PCR primer design. Many recommendations for the composition and sequence of the 3' end have been suggested based on theoretical considerations, but have not been verified experimentally. We analyzed 3' end triplets of PCR primer sequences obtained from refereed journal articles, to test those recommendations and to make empirical recommendations for primer design. The frequencies of the 64 possible 3'end triplets among 2137 PCR primers from the VirOligo database were not uniformly distributed. From the analysis, we found that unfavored and preferred 3' end triplets existed, and that the apparent preferences were not due to base compositions in viral genome sequences. Comparison of the sequences preferred by practitioners to those recommended, suggested that no single recommendation is entirely satisfactory. We suggest that recommendations be replaced with a scoring system incorporating empirical frequencies such as those reported here.
Collapse
Affiliation(s)
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 NRC, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
|
14
|
Sengupta S, Onodera K, Lai A, Melcher U. Molecular detection and identification of influenza viruses by oligonucleotide microarray hybridization. J Clin Microbiol 2003; 41:4542-50. [PMID: 14532180 PMCID: PMC254299 DOI: 10.1128/jcm.41.10.4542-4550.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Revised: 05/14/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
Microarrays of virus-specific oligonucleotides may provide a method of screening samples for the presence or absence of a large variety of viruses simultaneously. Influenza viruses are ideal for evaluating such microarrays because of their genetic and host diversity, and the availability of an extensive sequence database. A collection of 476 influenza virus-specific oligonucleotides was spotted onto glass slides as probes. Viral RNAs were reverse transcribed and amplified by PCR, and the products were labeled with cyanine dyes. The presence of viruses and their identities were determined by hybridization. The fluorescence intensities of oligonucleotide spots were highly reproducible within each slide and satisfactorily proportional between experiments. However, the intensities of probe spots completely complementary to target sequences varied from background to saturation. The variations did not correlate with base composition, nucleotide sequence, or internal secondary structures. Therefore, thresholds for determining whether hybridization to a spot should be judged as positive were assigned individually. Considering only positive spots from probes predicted to be monospecific for influenza virus species, subtype, host source, or gene segment, this method made correct identifications at the species, hemagglutinin subtype, and gene segment levels. Monospecific neuraminidase (NA) subtype probes were insufficiently diverse to allow confident NA subtype assignment. Incorporating positive spots from polyspecific probes into the identification scheme gave similar results. Overall, the results demonstrate the potential of microarray-based oligonucleotide hybridization for multiple virus detection.
Collapse
Affiliation(s)
- Srikumar Sengupta
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | |
Collapse
|
15
|
Loy A, Horn M, Wagner M. probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 2003; 31:514-6. [PMID: 12520066 PMCID: PMC165463 DOI: 10.1093/nar/gkg016] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosomal RNA-(rRNA)-targeted oligonucleotide probes are widely used for culture-independent identification of microorganisms in environmental and clinical samples. ProbeBase is a comprehensive database containing more than 700 published rRNA-targeted oligonucleotide probe sequences (status August 2002) with supporting bibliographic and biological annotation that can be accessed through the internet at http://www.probebase.net. Each oligonucleotide probe entry contains information on target organisms, target molecule (small- or large-subunit rRNA) and position, G+C content, predicted melting temperature, molecular weight, necessity of competitor probes, and the reference that originally described the oligonucleotide probe, including a link to the respective abstract at PubMed. In addition, probes successfully used for fluorescence in situ hybridization (FISH) are highlighted and the recommended hybridization conditions are listed. ProbeBase also offers difference alignments for 16S rRNA-targeted probes by using the probe match tool of the ARB software and the latest small-subunit rRNA ARB database (release June 2002). The option to directly submit probe sequences to the probe match tool of the Ribosomal Database Project II (RDP-II) further allows one to extract supplementary information on probe specificities. The two main features of probeBase, 'search probeBase' and 'find probe set', help researchers to find suitable, published oligonucleotide probes for microorganisms of interest or for rRNA gene sequences submitted by the user. Furthermore, the 'search target site' option provides guidance for the development of new FISH probes.
Collapse
Affiliation(s)
- Alexander Loy
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | | | | |
Collapse
|