1
|
Głodowicz P, Kuczyński K, Val R, Dietrich A, Rolle K. Mitochondrial transport of catalytic RNAs and targeting of the organellar transcriptome in human cells. J Mol Cell Biol 2024; 15:mjad051. [PMID: 37591617 PMCID: PMC11148835 DOI: 10.1093/jmcb/mjad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Mutations in the small genome present in mitochondria often result in severe pathologies. Different genetic strategies have been explored, aiming to rescue such mutations. A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts. However, the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination. Here, we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines. We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA, followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain. Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.
Collapse
Affiliation(s)
- Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Konrad Kuczyński
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Romain Val
- Institute of Plant Molecular Biology, French National Center for Scientific Research (CNRS) and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - André Dietrich
- Institute of Plant Molecular Biology, French National Center for Scientific Research (CNRS) and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
2
|
Froebel BR, Trujillo AJ, Sullivan JM. Effects of Pathogenic Variations in the Human Rhodopsin Gene (hRHO) on the Predicted Accessibility for a Lead Candidate Ribozyme. Invest Ophthalmol Vis Sci 2017; 58:3576-3591. [PMID: 28715844 PMCID: PMC5516567 DOI: 10.1167/iovs.16-20877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose The mutation-independent strategy for hammerhead ribozyme (hhRz) or RNA interference (RNAi)-based gene therapeutics to treat autosomal dominant diseases is predicated on the hypothesis that a single therapeutic would equivalently suppress all/most of the diverse mutant mRNAs in patients with the disease phenotype. However, the hypothesis has not been formally tested. We address this through a comprehensive bioinformatics study of how mutations affect target mRNA structure accessibility for a single lead hhRz therapeutic (725GUC↓), designed against human rod rhodopsin mRNA (hRHO), for patients with hRHO mutations that cause autosomal dominant retinitis pigmentosa. Methods A total of 199 in silico coding region mutations (missense, nonsense, insert, deletion, indel) were made in hRHO mRNA based on Human Gene Mutation Database and Database of Single Nucleotide Polymorphisms. Each mRNA was folded with MFold, SFold, and OligoWalk algorithms and subjected to a bioinformatics model called multiparameter prediction of RNA accessibility. Predicted accessibility of each mutant over both a broad local region and the explicit lead ribozyme annealing site were compared quantitatively to wild-type hRHO mRNA. Results Accessibility of the 725GUC↓ site is sensitive to some mutations. For single nucleotide missense mutations, proximity of the mutation to the hhRz annealing site increases the impact on predicted accessibility, but some distant mutations also influence accessibility. Conclusions A mutation-independent strategy appears viable in this specific context but certain mutations could significantly influence ribozyme or RNAi efficacy through impact on accessibility at the target annealing site/region. This possibility must be considered in applications of this gene therapy strategy.
Collapse
Affiliation(s)
- Beau R Froebel
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, State University of New York, University at Buffalo, Buffalo, New York, United States 3The Ross Eye Institute of University at Buffalo, Buffalo, New York, United States
| | - Alexandria J Trujillo
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, State University of New York, University at Buffalo, Buffalo, New York, United States 4Department of Pharmacology/Toxicology, State University of New York, University at Buffalo, Buffalo, New York, United States
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, State University of New York, University at Buffalo, Buffalo, New York, United States 3The Ross Eye Institute of University at Buffalo, Buffalo, New York, United States 4Department of Pharmacology/Toxicology, State University of New York, University at Buffalo, Buffalo, New York, United States 5Department of Physiology/Biophysics, State University of New York, University at Buffalo, Buffalo, New York, United States 6Neuroscience Program, State University of New York, University at Buffalo, Buffalo, New York, United States 7The RNA Institute, University at Albany-State University of New York, Albany, New York, United States
| |
Collapse
|
3
|
Peter JU, Alenina N, Bader M, Walther DJ. Development of antithrombotic miniribozymes that target peripheral tryptophan hydroxylase. Mol Cell Biochem 2006; 295:205-15. [PMID: 16924415 DOI: 10.1007/s11010-006-9290-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/24/2006] [Indexed: 01/01/2023]
Abstract
Serotonin is not only a neurotransmitter in the central nervous system, but also a ubiquitous hormone in the periphery involved in vasoconstriction and platelet function. Tryptophan hydroxylase is the rate-limiting enzyme in serotonin biosynthesis. By gene targeting, we have shown that serotonin is synthesized independently by two different tryptophan hydroxylase isoenzymes in peripheral tissues and neurons and identified a neuronal tryptophan hydroxylase isoform. Mice deficient in peripheral tryptophan hydroxylase (TPH1) and serotonin exhibit a reduced risk of thrombosis and thromboembolism. Therefore, we designed several antitph1 hammerhead miniribozymes and tested their cleavage activity against short synthetic Tph1 RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of Tph1 mRNA that was dependent on substrate/miniribozyme ratio and duration of exposure to miniribozyme. Interestingly, we detected different in vitro cleavage rates after we had cloned the miniribozymes into tRNA expression constructs, and found one with a high cleavage rate. We also demonstrated that this active tRNA-miniribozyme chimera is capable of selectively cleaving native Tph1 mRNA in vivo, with concomitant downregulation of the serotonin biosynthesis. Therefore, this Tph1-specific miniribozyme may provide a novel and effective form of gene therapy that may be applicable to a variety of thrombotic diseases.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany
| | | | | | | |
Collapse
|
4
|
Cao S, Chen SJ. Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes. J Mol Biol 2006; 357:292-312. [PMID: 16413034 PMCID: PMC2442757 DOI: 10.1016/j.jmb.2005.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 12/02/2005] [Accepted: 12/03/2005] [Indexed: 11/24/2022]
Abstract
We develop a statistical mechanical model for RNA/RNA complexes with both intramolecular and intermolecular interactions. As an application of the model, we compute the free energy landscapes, which give the full distribution for all the possible conformations, for U4/U6 and U2/U6 in major spliceosome and U4atac/U6atac and U12/U6atac in minor spliceosome. Different snRNA experiments found contrasting structures, our free energy landscape theory shows why these structures emerge and how they compete with each other. For yeast U2/U6, the model predicts that the two distinct experimental structures, the four-helix junction structure and the helix Ib-containing structure, can actually coexist and specifically compete with each other. In addition, the energy landscapes suggest possible mechanisms for the conformational switches in splicing. For instance, our calculation shows that coaxial stacking is essential for stabilizing the four-helix junction in yeast U2/U6. Therefore, inhibition of the coaxial stacking possibly by protein-binding may activate the conformational switch from the four-helix junction to the helix Ib-containing structure. Moreover, the change of the energy landscape shape gives information about the conformational changes. We find multiple (native-like and misfolded) intermediates formed through base-pairing rearrangements in snRNA complexes. For example, the unfolding of the U2/U6 undergoes a transition to a misfolded state which is functional, while in the unfolding of U12/U6atac, the functional helix Ib is found to be the last one to unfold and is thus the most stable structural component. Furthermore, the energy landscape gives the stabilities of all the possible (functional) intermediates and such information is directly related to splicing efficiency.
Collapse
Affiliation(s)
- Song Cao
- Department of Biochemistry and Department of Physics, University of Missouri-Columbia, Columbia MO 65211, USA
| | - Shi-Jie Chen
- Department of Biochemistry and Department of Physics, University of Missouri-Columbia, Columbia MO 65211, USA
| |
Collapse
|
5
|
Andronescu M, Zhang ZC, Condon A. Secondary structure prediction of interacting RNA molecules. J Mol Biol 2004; 345:987-1001. [PMID: 15644199 DOI: 10.1016/j.jmb.2004.10.082] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Computer Science, The University of British Columbia, 201-2366 Main Mall, Vancouver, BC, Canada V6T 1Z4.
| | | | | |
Collapse
|
6
|
Inoue A, Takagi Y, Taira K. Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme. Nucleic Acids Res 2004; 32:4217-23. [PMID: 15302920 PMCID: PMC514375 DOI: 10.1093/nar/gkh753] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway-a cooperative pathway-in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst.
Collapse
Affiliation(s)
- Atsushi Inoue
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | |
Collapse
|