1
|
Affiliation(s)
- Yuji Wakimoto
- Department of Genetics, Harvard Medical School Boston Massachusetts
| | - Jianming Jiang
- Department of Genetics, Harvard Medical School Boston Massachusetts
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School Boston Massachusetts
| |
Collapse
|
2
|
Lord MS, Jung M, Cheng B, Whitelock JM. Transcriptional complexity of the HSPG2 gene in the human mast cell line, HMC-1. Matrix Biol 2013; 35:123-31. [PMID: 24365408 DOI: 10.1016/j.matbio.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023]
Abstract
The mammalian HSPG2 gene encodes the proteoglycan protein core perlecan, which has important functions in biology including cell adhesion via integrins, binding to the extracellular matrix via various protein-protein interactions and binding of growth factors via the heparan sulfate chains decorating the N-terminal domain I. Here we show that, in the human mast cell line HMC-1, the transcription of this gene results in a population of mRNA that is processed in such a way to provide a relative increase of transcripts corresponding to domain V or the C-terminus compared to transcripts from either domain III or the N-terminal domain I. This paper also presents evidence of splicing of the HSPG2 gene in HMC-1 cells at exons 2/3 and after comparing this sequence with those published in various databases, a model is postulated to explain what might be happening in these cells with regard to the transcription of the HSPG2 gene. As domain V of perlecan contains the α2β1 integrin binding site that modulates angiogenesis, we hypothesize that the transcriptional control of the HSPG2 gene in mast cells to synthesize these transcripts supports their stimulatory and specific role in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - MoonSun Jung
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Bill Cheng
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Svobodová M, Pinto A, Nadal P, O' Sullivan CK. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem 2012; 404:835-42. [PMID: 22733247 DOI: 10.1007/s00216-012-6183-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 12/24/2022]
Abstract
Single-stranded DNA (ssDNA) generation is a crucial step in several molecular biology applications, such as sequencing or DNA chip and microarray technology. Molecules of ssDNA also play a key role in the selection of ssDNA aptamers through Systematic Evolution of Ligands by EXponential enrichment (SELEX). With particular interest for this application, herein we present a comparative study of the most used methods for generation of ssDNA used in SELEX, such as asymmetric PCR, enzyme digestion and magnetic separation with streptavidin beads. In addition, we evaluate a new technique that combines asymmetric PCR and enzyme digestion with the aim to achieve the maximum efficiency in ssDNA generation. The methods studied were compared in terms of quality of ssDNA using electrophoretic analysis and generated ssDNA yields were quantitatively measured using an Enzyme-Linked OligoNucleotide Assay (ELONA).
Collapse
Affiliation(s)
- M Svobodová
- Nanobiotechnology and Bioanalysis group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | |
Collapse
|
4
|
Torres TT, Dolezal M, Schlötterer C, Ottenwälder B. Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Res 2010; 37:7509-18. [PMID: 19843606 PMCID: PMC2794191 DOI: 10.1093/nar/gkp856] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an essential role in several cellular processes. Nevertheless, very little is known about patterns of gene expression of genes encoded by the mitochondrial DNA (mtDNA). In this study, we used next-generation sequencing (NGS) for transcription profiling of genes encoded in the mitochondrial genome of Drosophila melanogaster and D. pseudoobscura. The analysis of males and females in both species indicated that the expression pattern was conserved between the two species, but differed significantly between both sexes. Interestingly, mRNA levels were not only different among genes encoded by separate transcription units, but also showed significant differences among genes located in the same transcription unit. Hence, mRNA abundance of genes encoded by mtDNA seems to be heavily modulated by post-transcriptional regulation. Finally, we also identified several transcripts with a noncanonical structure, suggesting that processing of mitochondrial transcripts may be more complex than previously assumed.
Collapse
|
5
|
Harbers M. The current status of cDNA cloning. Genomics 2008; 91:232-42. [PMID: 18222633 DOI: 10.1016/j.ygeno.2007.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/17/2007] [Indexed: 11/19/2022]
Abstract
The cloning of cDNAs, copies of cellular RNA, is one of the classical technologies in molecular biology. Over the past 30 years cDNA cloning technologies have been improved to enable the cloning of large cDNA collections, which are fundamental to today's understanding of the utilization of genetic information. With the discovery of noncoding RNAs, additional new approaches to the cloning of short RNAs have been developed. However, with the realization that much larger portions of genomes are transcribed than anticipated from genome annotations, cDNA cloning faces new challenges to uncover rare transcripts and to make the corresponding cDNAs available for functional studies. This review provides an overview on the current status of cDNA cloning and possibilities for the discovery and characterization of new RNA families.
Collapse
Affiliation(s)
- Matthias Harbers
- DNAFORM, Inc., Leading Venture Plaza 2, 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan.
| |
Collapse
|
6
|
Archer MJ, Lin B, Wang Z, Stenger DA. Magnetic bead-based solid phase for selective extraction of genomic DNA. Anal Biochem 2006; 355:285-97. [PMID: 16764814 DOI: 10.1016/j.ab.2006.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/01/2006] [Accepted: 05/04/2006] [Indexed: 11/19/2022]
Abstract
Magnetic bead-based solid phases are widely used for the separation of nucleic acids from complex mixtures. The challenge to selectively separate specific DNA molecules (via complementary hybridization) in a single step is the selection of a linker between the capture probe and the solid support that can be exposed to high temperatures in the presence of a high salt media. This article presents a general platform for the fabrication of a magnetic bead-based selective solid phase that can be used for subtractive hybridization or sequence capture applications. Phosphorus dendrimers are used for the first time as linkers in a magnetic bead-based selective solid phase for capture of genomic DNA. Aside from providing a high loading capacity, they render a stable bond between the capture probe and the surface under the high temperature and salt conditions required for denaturation and capture to proceed in a single step. The thermal stability of the solid phase under these conditions is first demonstrated by hybridizing a Cy3-labeled target. The selective capture of DNA targets in a single step is then demonstrated by subtractive hybridization of fragmented human genomic DNA. The specificity and selectivity of the solid phase are demonstrated by the recovery of adenovirus serotype 4 DNA spiked into the human DNA target. The effect of steric and electrostatic constraints was also investigated by using dendrimers of different generations that vary in their size and the number of branches. The results demonstrate that this platform can be used for single-step subtractive hybridization applications with better performance over the conventional two-step method using streptavidin-coated magnetic beads.
Collapse
Affiliation(s)
- Marie J Archer
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | |
Collapse
|
7
|
De Pittà C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G, Carli M, Furlanello C, Lanfranchi G, Rosolen A. Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 2006; 118:2772-81. [PMID: 16381018 DOI: 10.1002/ijc.21698] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We analyzed the expression signatures of 14 tumor biopsies from children affected by alveolar rhabdomyosarcoma (ARMS) to identify genes correlating to biological features of this tumor. Seven of these patients were positive for the PAX3-FKHR fusion gene and 7 were negative. We used a cDNA platform containing a large majority of probes derived from muscle tissues. The comparison of transcription profiles of tumor samples with fetal skeletal muscle identified 171 differentially expressed genes common to all ARMS patients. The functional classification analysis of altered genes led to the identification of a group of transcripts (LGALS1, BIN1) that may be relevant for the tumorigenic processes. The muscle-specific microarray platform was able to distinguish PAX3-FKHR positive and negative ARMS through the expression pattern of a limited number of genes (RAC1, CFL1, CCND1, IGFBP2) that might be biologically relevant for the different clinical behavior and aggressiveness of the 2 ARMS subtypes. Expression levels for selected candidate genes were validated by quantitative real-time reverse-transcription PCR.
Collapse
Affiliation(s)
- Cristiano De Pittà
- CRIBI Biotechnology Centre and Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Raffaello A, Laveder P, Romualdi C, Bean C, Toniolo L, Germinario E, Megighian A, Danieli-Betto D, Reggiani C, Lanfranchi G. Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling. Physiol Genomics 2005; 25:60-74. [PMID: 16380408 DOI: 10.1152/physiolgenomics.00051.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Denervation deeply affects muscle structure and function, the alterations being different in slow and fast muscles. Because the effects of denervation on fast muscles are still controversial, and high-throughput studies on gene expression in denervated muscles are lacking, we studied gene expression during atrophy progression following denervation in mouse tibialis anterior (TA). The sciatic nerve was cut close to trochanter in adult CD1 mice. One, three, seven, and fourteen days after denervation, animals were killed and TA muscles were dissected out and utilized for physiological experiments and gene expression studies. Target cDNAs from TA muscles were hybridized on a dedicated cDNA microarray of muscle genes. Seventy-one genes were found differentially expressed. Microarray results were validated, and the expression of relevant genes not probed on our array was monitored by real-time quantitative PCR (RQ-PCR). Nuclear- and mitochondrial-encoded genes implicated in energy metabolism were consistently downregulated. Among genes implicated in muscle contraction (myofibrillar and sarcoplasmic reticulum), genes typical of fast fibers were downregulated, whereas those typical of slow fibers were upregulated. Electrophoresis and Western blot showed less pronounced changes in myofibrillar protein expression, partially confirming changes in gene expression. Isometric tension of skinned fibers was little affected by denervation, whereas calcium sensitivity decreased. Functional studies in mouse extensor digitorum longus muscle showed prolongation in twitch time parameters and shift to the left in force-frequency curves after denervation. We conclude that, if studied at the mRNA level, fast muscles appear not less responsive than slow muscles to the interruption of neural stimulation.
Collapse
Affiliation(s)
- Anna Raffaello
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative Biotechnology Center, University of Padova, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shearstone JR, Wang YE, Clement A, Allaire NE, Yang C, Worley DS, Carulli JP, Perrin S. Application of functional genomic technologies in a mouse model of retinal degeneration. Genomics 2005; 85:309-21. [PMID: 15718098 DOI: 10.1016/j.ygeno.2004.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 11/01/2004] [Indexed: 02/03/2023]
Abstract
Generation of tissue-specific, normalized and subtracted cDNA libraries has the potential to characterize the expression of rare transcriptional units not represented on Affymetrix GeneChips. Initial sequence analysis of our murine cDNA clone collections showed that as much as 86, 45, and 30% of clones are not represented on the Affymetrix Mu11k, MG-U74, and MG-430 chip sets, respectively. A detailed study that compared EST sequences of a subtracted library generated from mouse retina to those of MG-430 consensus sequences was undertaken, using UniGene build 124 as the common reference. A set of 1111 nonredundant transcript regions, not represented on the commercial array, was identified. These clusters were used as the primary filter for analyzing a data set produced by assaying samples from the Pde6b(rd1) mouse model of retinal degeneration on a 12,325-feature retinal cDNA microarray. QRT-PCR validated eight unique transcripts identified by microarray. Seven of the transcripts showed retina-specific expression. Full-length cloning strategies were applied to two of the ESTs. The genes discovered by this approach are the full-length mouse homologue of guanylate cyclase 2F (GUCY2F) and a carboxy-truncated splice variant of retinal S-antigen (SAG), known as regulators of the visual phototransduction G-protein-coupled receptor-mediated signaling pathway. These sequences have been assigned GenBank Accession Nos. and , respectively.
Collapse
Affiliation(s)
- Jeffrey R Shearstone
- Research Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ståhlberg A, Håkansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 2004; 50:509-15. [PMID: 14726469 DOI: 10.1373/clinchem.2003.026161] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In most measurements of gene expression, mRNA is first reverse-transcribed into cDNA. We studied the reverse transcription reaction and its consequences for quantitative measurements of gene expression. METHODS We used SYBR green I-based quantitative real-time PCR (QPCR) to measure the properties of reverse transcription reaction for the beta-tubulin, glyceraldehyde-3-phosphate dehydrogenase, Glut2, CaV1D, and insulin II genes, using random hexamers, oligo(dT), and gene-specific reverse transcription primers. RESULTS Experimental variation in reverse transcription-QPCR (RT-QPCR) was mainly attributable to the reverse transcription step. Reverse transcription efficiency depended on priming strategy, and the dependence was different for the five genes studied. Reverse transcription yields also depended on total RNA concentration. CONCLUSIONS RT-QPCR gene expression measurements are comparable only when the same priming strategy and reaction conditions are used in all experiments and the samples contain the same total amount of RNA. Experimental accuracy is improved by running samples in (at least) duplicate starting with the reverse transcription reaction.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Department of Chemistry and Bioscience, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
11
|
Abstract
Mitochondrial transcripts of two ascidian species were reconstructed through sequence assembly of publicly available ESTs resembling mitochondrial DNA sequences (mt-ESTs). This strategy allowed us to analyze processing and mapping of the mitochondrial transcripts and to investigate the gene organization of a previously uncharacterized mitochondrial genome (mtDNA). This new strategy would greatly facilitate the sequencing and annotation of mtDNAs. In Ciona intestinalis, the assembled mt-ESTs covered 22 mitochondrial genes ( approximately 12,000 bp) and provided the partial sequence of the mtDNA and the prediction of its gene organization. Such sequences were confirmed by amplification and sequencing of the entire Ciona mtDNA. For Halocynthia roretzi, for which the mtDNA sequence was already available, the inferred mt transcripts allowed better definition of gene boundaries (16S rRNA, ND1, ATP6, and tRNA-Ser genes) and the identification of a new gene (an additional Phe-tRNA). In both species, polycistronic and immature transcripts, creation of stop codons by polyadenylation, tRNA signal processing, and rRNA transcript termination signals were identified, thus suggesting that the main features of mitochondrial transcripts are conserved in Chordata.
Collapse
Affiliation(s)
- Carmela Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy
| | | |
Collapse
|