1
|
Ershov PV, Yablokov EO, Mezentsev YV, Ivanov AS. Protein subinteractomes of human microsomal cytochromes P450. Mol Biol Rep 2025; 52:226. [PMID: 39937310 DOI: 10.1007/s11033-025-10341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Microsomal cytochromes P450 (micCYPs) are monooxygenases located in the endoplasmic reticulum and other endomembranes of human cells. micCYPs receive electrons from specific redox partners and perform enzymatic transformations of drugs and different endogenous substrates. The large biodiversity of micCYPs leads to the idea that protein-protein interactions (PPIs) involving micCYPs are not limited to classical redox partners. This review aims to perform a systems biology analysis of the complete set of PPIs for all 33 micCYPs studied, as well as to examine the subinteractome of each micCYP. We have retrieved 287 PPIs from interactomic databases, involving 246 unique protein interactors that share a similar profile of subcellular localization with micCYPs. The number of protein interactors per micCYP unevenly varies from one to 47. Interactors of micCYPs are involved in cellular metabolism, signal transduction, cell-cell junctions, cytoskeleton organization, and intracellular or transmembrane transport. Notably, up to one-third of all interactors belong to the latter group, half of which consists of membrane transporters of compounds, metabolites, and ions (e.g., CACNA2D1, ORAI1, SCN3B, SLC7A2, SLC19A3, and SLC11A2). The CYP2C8 subinteractome is enriched with proteins involved in autophagy; CYP2S1- ERBB2 and EPH-Ephrin signaling; CYP3A4- glucuronidation. Proteins UBC, PGRMC1, and FANCG are the most frequent common interactors across various micCYPs. Nine and 12 interactors of micCYPs are involved in phosphorylation and ubiquitination, respectively; 20 interactors are 'moonlighting' proteins that are represented in the CYP3A4 subinteractome. Furthermore, micCYPs such as CYP2C9, 3A5, 2E1, 2A6, 4F2, and 4A11 may be involved in potentially binary interactions with other micCYPs. The functional implication of these CYP-CYP pairs is likely associated with modulation of their activity. Analysis of transcriptomic data revealed that some micCYP/interactor pairs exhibit tissue-, time-, and disease-specific gene expression patterns. Drugs that are metabolized by micCYPs in some cases can influence the expression of corresponding interactors at the gene or protein levels. These findings suggest that micCYPs may play roles in functions beyond their monooxygenase activity, as indicated by the spectrum of PPIs analyzed.
Collapse
|
2
|
Carpenter KA, Altman RB. Databases of ligand-binding pockets and protein-ligand interactions. Comput Struct Biotechnol J 2024; 23:1320-1338. [PMID: 38585646 PMCID: PMC10997877 DOI: 10.1016/j.csbj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Many research groups and institutions have created a variety of databases curating experimental and predicted data related to protein-ligand binding. The landscape of available databases is dynamic, with new databases emerging and established databases becoming defunct. Here, we review the current state of databases that contain binding pockets and protein-ligand binding interactions. We have compiled a list of such databases, fifty-three of which are currently available for use. We discuss variation in how binding pockets are defined and summarize pocket-finding methods. We organize the fifty-three databases into subgroups based on goals and contents, and describe standard use cases. We also illustrate that pockets within the same protein are characterized differently across different databases. Finally, we assess critical issues of sustainability, accessibility and redundancy.
Collapse
Affiliation(s)
- Kristy A. Carpenter
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Russ B. Altman
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Xu J, Wang Z, Niu Y, Tang Y, Wang Y, Huang J, Leung ELH. TRP channels in cancer: Therapeutic opportunities and research strategies. Pharmacol Res 2024; 209:107412. [PMID: 39303771 DOI: 10.1016/j.phrs.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The influence of gut microbiota on transient receptor potential (TRP) channels has been identified as an important element in the development of gastrointestinal conditions, yet its involvement in cancer progression is not as thoroughly understood. This review explores the multifaceted roles of TRP channels in oncogenesis and emphasizes their significance in cancer progression and therapeutic outcomes. Critical focus was placed on the influence of traditional medicines, such as traditional Chinese medicine (TCM) related aromatic medicines, on TRP channel functions. Moreover, we explored the interplay between the gut microbiota and TRP channels in cancer signaling, highlighting the therapeutic potential of targeting this axis in cancer treatment. The impact of current therapies on TRP channel function was examined, demonstrating the need for a comprehensive understanding of how different modalities affect TRP channels in cancer. Technological advancements, including artificial intelligence (AI) tools and computer-aided drug development (CADD), have been discussed in the context of leveraging TRP channels for innovative cancer therapies. Future directions emphasize the potential applications of TRP channel research in advancing cancer treatment and enhancing patients' well-being.
Collapse
Affiliation(s)
- Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yuqing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Saifi I, Bhat BA, Hamdani SS, Bhat UY, Lobato-Tapia CA, Mir MA, Dar TUH, Ganie SA. Artificial intelligence and cheminformatics tools: a contribution to the drug development and chemical science. J Biomol Struct Dyn 2024; 42:6523-6541. [PMID: 37434311 DOI: 10.1080/07391102.2023.2234039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
In the ever-evolving field of drug discovery, the integration of Artificial Intelligence (AI) and Machine Learning (ML) with cheminformatics has proven to be a powerful combination. Cheminformatics, which combines the principles of computer science and chemistry, is used to extract chemical information and search compound databases, while the application of AI and ML allows for the identification of potential hit compounds, optimization of synthesis routes, and prediction of drug efficacy and toxicity. This collaborative approach has led to the discovery, preclinical evaluations and approval of over 70 drugs in recent years. To aid researchers in the pursuit of new drugs, this article presents a comprehensive list of databases, datasets, predictive and generative models, scoring functions and web platforms that have been launched between 2021 and 2022. These resources provide a wealth of information and tools for computer-assisted drug development, and are a valuable asset for those working in the field of cheminformatics. Overall, the integration of AI, ML and cheminformatics has greatly advanced the drug discovery process and continues to hold great potential for the future. As new resources and technologies become available, we can expect to see even more groundbreaking discoveries and advancements in these fields.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ifra Saifi
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Syed Suhail Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Umar Yousuf Bhat
- Department of Zoology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | | | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, KSA, Saudi Arabia
| | - Tanvir Ul Hasan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
5
|
Huang Y, Dong D, Zhang W, Wang R, Lin YCD, Zuo H, Huang HY, Huang HD. DrugRepoBank: a comprehensive database and discovery platform for accelerating drug repositioning. Database (Oxford) 2024; 2024:baae051. [PMID: 38994794 PMCID: PMC11240114 DOI: 10.1093/database/baae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
In recent years, drug repositioning has emerged as a promising alternative to the time-consuming, expensive and risky process of developing new drugs for diseases. However, the current database for drug repositioning faces several issues, including insufficient data volume, restricted data types, algorithm inaccuracies resulting from the neglect of multidimensional or heterogeneous data, a lack of systematic organization of literature data associated with drug repositioning, limited analytical capabilities and user-unfriendly webpage interfaces. Hence, we have established the first all-encompassing database called DrugRepoBank, consisting of two main modules: the 'Literature' module and the 'Prediction' module. The 'Literature' module serves as the largest repository of literature-supported drug repositioning data with experimental evidence, encompassing 169 repositioned drugs from 134 articles from 1 January 2000 to 1 July 2023. The 'Prediction' module employs 18 efficient algorithms, including similarity-based, artificial-intelligence-based, signature-based and network-based methods to predict repositioned drug candidates. The DrugRepoBank features an interactive and user-friendly web interface and offers comprehensive functionalities such as bioinformatics analysis of disease signatures. When users provide information about a drug, target or disease of interest, DrugRepoBank offers new indications and targets for the drug, proposes new drugs that bind to the target or suggests potential drugs for the queried disease. Additionally, it provides basic information about drugs, targets or diseases, along with supporting literature. We utilize three case studies to demonstrate the feasibility and effectiveness of predictively repositioned drugs within DrugRepoBank. The establishment of the DrugRepoBank database will significantly accelerate the pace of drug repositioning. Database URL: https://awi.cuhk.edu.cn/DrugRepoBank.
Collapse
Affiliation(s)
- Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Danhong Dong
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Wenyang Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Ruiting Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| |
Collapse
|
6
|
Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence. Mol Pharm 2024; 21:1563-1590. [PMID: 38466810 DOI: 10.1021/acs.molpharmaceut.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
Collapse
Affiliation(s)
- Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumyadeep Bhaduri
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debraj Das
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Priya Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
7
|
Kishk A, Pires Pacheco M, Heurtaux T, Sauter T. Metabolic models predict fotemustine and the combination of eflornithine/rifamycin and adapalene/cannabidiol for the treatment of gliomas. Brief Bioinform 2024; 25:bbae199. [PMID: 38701414 PMCID: PMC11066901 DOI: 10.1093/bib/bbae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
8
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
9
|
Chakkittukandiyil A, Chakraborty S, Kothandan R, Rymbai E, Muthu SK, Vasu S, Sajini DV, Sugumar D, Mohammad ZB, Jayaram S, Rajagopal K, Ramachandran V, Selvaraj D. Side effects based network construction and drug repositioning of ropinirole as a potential molecule for Alzheimer's disease: an in-silico, in-vitro, and in-vivo study. J Biomol Struct Dyn 2023; 42:10785-10799. [PMID: 37723871 DOI: 10.1080/07391102.2023.2258968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Drug repositioning is a process of finding new therapeutic applications for existing drugs. One of the methods in drug repositioning is to use the side-effect profile of a drug to identify a new therapeutic indication. The drugs with similar side-effects may act on similar biological targets and could affect the same biochemical process. In this study, we explored the Food and Drug Administration-approved drugs using PROMISCUOUS database to find those that have adverse effects profile comparable with the ligands being studied or used to treat AD. Here, we found that the ropinirole, a dopamine receptor agonist, shared a maximum number of side-effects with the drugs proven beneficial for treating AD. Furthermore, molecular modelling demonstrated that ropinirole exhibited strong binding affinity (-9.313 kcal/mol) and best ligand efficiency (0.49) with sigma-1 receptor. Here, we observed that the quaternary amino group of ropinirole is essential for binding with sigma-1 receptor. Molecular dynamic simulation indicated that the movement of the carboxy-terminal helices (α4/α5) could play a major role in the receptor's physiological functions. The neurotoxicity induced by Aβ25-35 in SH-SY5Y cells was reduced by ropinirole at concentrations 10, 30, and 50 µM. The effect on spatial learning and memory was examined in mice with Aβ25-35 induced memory deficit using the radial arm maze. Ropinirole (10 and 20 mg/kg) significantly improved the short and long-term memories in the radial arm maze test. Our results suggest that ropinirole has the potential to be repositioned for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saurav Chakraborty
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Santhosh Kumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | - Soumya Vasu
- Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Zubair Baba Mohammad
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
10
|
Bolz SN, Schroeder M. Promiscuity in drug discovery on the verge of the structural revolution: recent advances and future chances. Expert Opin Drug Discov 2023; 18:973-985. [PMID: 37489516 DOI: 10.1080/17460441.2023.2239700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Promiscuity denotes the ability of ligands and targets to specifically interact with multiple binding partners. Despite negative aspects like side effects, promiscuity is receiving increasing attention in drug discovery as it can enhance drug efficacy and provides a molecular basis for drug repositioning. The three-dimensional structure of ligand-target complexes delivers exclusive insights into the molecular mechanisms of promiscuity and structure-based methods enable the identification of promiscuous interactions. With the recent breakthrough in protein structure prediction, novel possibilities open up to reveal unknown connections in ligand-target interaction networks. AREAS COVERED This review highlights the significance of structure in the identification and characterization of promiscuity and evaluates the potential of protein structure prediction to advance our knowledge of drug-target interaction networks. It discusses the definition and relevance of promiscuity in drug discovery and explores different approaches to detecting promiscuous ligands and targets. EXPERT OPINION Examination of structural data is essential for understanding and quantifying promiscuity. The recent advancements in structure prediction have resulted in an abundance of targets that are well-suited for structure-based methods like docking. In silico approaches may eventually completely transform our understanding of drug-target networks by complementing the millions of predicted protein structures with billions of predicted drug-target interactions.
Collapse
Affiliation(s)
- Sarah Naomi Bolz
- Biotechnology Center (BIOTEC), CMCB, Technische Universität Dresden, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), CMCB, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Rymbai E, Sugumar D, Krishnamurthy PT, Selvaraj D, Vasu S, Priya S, Jayaram S. A preliminary study to identify existing drugs for potential repurposing in breast cancer based on side effect profile. Drug Res (Stuttg) 2023. [PMID: 36878466 DOI: 10.1055/a-2011-5662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death in women after lung cancer. The present study aims to identify potential drug candidates using the PROMISCUOUS database for breast cancer based on side effect profile and then proceed with in silico and in vitro studies. PROMISCUOUS database was used to construct a group of drugs that share maximum side effects with letrozole. Based on the existing literature, ropinirole, risperidone, pregabalin, and gabapentin were selected for in silico and in vitro studies. The molecular docking was carried out using AUTODOCK 4.2.6. MCF-7 cell line was used to evaluate the anti-cancer activity of the selected drugs. PROMISCUOUS database revealed that as many as 23 existing drugs shared between 62 and 79 side-effects with letrozole. From docking result, we found that, ropinirole showed a good binding affinity (-7.7 kcal/mol) against aromatase compared to letrozole (-7.1 kcal/mol) which was followed by gabapentin (-6.4 kcal/mol), pregabalin (-5.7 kcal/mol) and risperidone (-5.1 kcal/mol). From the in vitro results, ropinirole and risperidone showed good anti-cancer activity of IC50 with 40.85±11.02 μg/ml and 43.10±9.58 μg/ml cell viability. Based on this study results and existing literature we conclude that risperidone, pregabalin, and gabapentin are not ideal candidates for repurposing in breast cancer but ropinirole could be an excellent choice for repurposing in breast cancer after further studies.
Collapse
Affiliation(s)
- Emdormi Rymbai
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | | | - Divakar Selvaraj
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Soumya Vasu
- Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Shiva Priya
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
12
|
Qin S, Li W, Yu H, Xu M, Li C, Fu L, Sun S, He Y, Lv J, He W, Chen L. Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks. Int J Mol Sci 2023; 24:ijms24032244. [PMID: 36768566 PMCID: PMC9917231 DOI: 10.3390/ijms24032244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Drug repositioning aims to discover novel clinical benefits of existing drugs, is an effective way to develop drugs for complex diseases such as cancer and may facilitate the process of traditional drug development. Meanwhile, network-based computational biology approaches, which allow the integration of information from different aspects to understand the relationships between biomolecules, has been successfully applied to drug repurposing. In this work, we developed a new strategy for network-based drug repositioning against cancer. Combining the mechanism of action and clinical efficacy of the drugs, a cancer-related drug similarity network was constructed, and the correlation score of each drug with a specific cancer was quantified. The top 5% of scoring drugs were reviewed for stability and druggable potential to identify potential repositionable drugs. Of the 11 potentially repurposable drugs for non-small cell lung cancer (NSCLC), 10 were confirmed by clinical trial articles and databases. The targets of these drugs were significantly enriched in cancer-related pathways and significantly associated with the prognosis of NSCLC. In light of the successful application of our approach to colorectal cancer as well, it provides an effective clue and valuable perspective for drug repurposing in cancer.
Collapse
Affiliation(s)
- Shimei Qin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongzheng Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shibin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150001, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
- Correspondence: ; Tel.: +86-451-8667-4768
| |
Collapse
|
13
|
Spellicy SE, Hess DC. Recycled Translation: Repurposing Drugs for Stroke. Transl Stroke Res 2022; 13:866-880. [PMID: 35218497 PMCID: PMC9844207 DOI: 10.1007/s12975-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 01/19/2023]
Abstract
Stroke, which continues to be a leading cause of death and long-term disability worldwide, has often been described as a clinical graveyard. While multiple small molecule therapeutics have undergone clinical trials in stroke, currently only one Food and Drug Administration (FDA)-approved medication exists for the treatment of stroke, the biological, recombinant tissue plasminogen activator (rt-PA). Repurposing of therapeutics which have previously gained FDA approval for alternative indications serves as a prospective option for stroke therapeutic translation. In contrast to de novo drug development, repurposing strategies have patient-centered and economic advantages. These include increased safety, increased chance of approval, decreased time to approval, and decreased capital investment. Presently, 37 active stroke clinical trials utilize repurposed therapeutics with various initial indications and dosing paradigms. The currently studied repurposed therapeutics fall into six mechanistic categories: (1) anticoagulation; (2) vasculature integrity, response, or red blood cell (RBC) alterations; (3) immune system regulation; (4) neurotransmission; and (5) neuroprotection. Directed hypothesis-driven computational investigation utilizing drug databases, in silico drug-protein interaction modeling, genomic data, and consensus methodology can determine if the current mechanistic repurposing categories have the highest chance of translational success or if other mechanistic avenues should be explored. With this increased focus on repurposed therapeutic strategies over de novo strategies, evolution and optimization of regulatory protections are needed to incentivize innovators and investigators.
Collapse
Affiliation(s)
- Samantha E Spellicy
- M.D./Ph.D. Program, Office of Academic Affairs, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - David C Hess
- Dean's Office, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Sun G, Dong D, Dong Z, Zhang Q, Fang H, Wang C, Zhang S, Wu S, Dong Y, Wan Y. Drug repositioning: A bibliometric analysis. Front Pharmacol 2022; 13:974849. [PMID: 36225586 PMCID: PMC9549161 DOI: 10.3389/fphar.2022.974849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
Drug repurposing has become an effective approach to drug discovery, as it offers a new way to explore drugs. Based on the Science Citation Index Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the Web of Science core collection, this study presents a bibliometric analysis of drug repurposing publications from 2010 to 2020. Data were cleaned, mined, and visualized using Derwent Data Analyzer (DDA) software. An overview of the history and development trend of the number of publications, major journals, major countries, major institutions, author keywords, major contributors, and major research fields is provided. There were 2,978 publications included in the study. The findings show that the United States leads in this area of research, followed by China, the United Kingdom, and India. The Chinese Academy of Science published the most research studies, and NIH ranked first on the h-index. The Icahn School of Medicine at Mt Sinai leads in the average number of citations per study. Sci Rep, Drug Discov. Today, and Brief. Bioinform. are the three most productive journals evaluated from three separate perspectives, and pharmacology and pharmacy are unquestionably the most commonly used subject categories. Cheng, FX; Mucke, HAM; and Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis shows that in recent years, most research has focused on drug discovery/drug development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual screening, cancer, and other research areas. The hotspots have changed in recent years, with COVID-19/SARS-CoV-2/coronavirus being the most popular topic for current drug repurposing research.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Shaoya Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Shuaijun Wu
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yichen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
15
|
Lee C, Lin J, Prokop A, Gopalakrishnan V, Hanna RN, Papa E, Freeman A, Patel S, Yu W, Huhn M, Sheikh AS, Tan K, Sellman BR, Cohen T, Mangion J, Khan FM, Gusev Y, Shameer K. StarGazer: A Hybrid Intelligence Platform for Drug Target Prioritization and Digital Drug Repositioning Using Streamlit. Front Genet 2022; 13:868015. [PMID: 35711912 PMCID: PMC9197487 DOI: 10.3389/fgene.2022.868015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Target prioritization is essential for drug discovery and repositioning. Applying computational methods to analyze and process multi-omics data to find new drug targets is a practical approach for achieving this. Despite an increasing number of methods for generating datasets such as genomics, phenomics, and proteomics, attempts to integrate and mine such datasets remain limited in scope. Developing hybrid intelligence solutions that combine human intelligence in the scientific domain and disease biology with the ability to mine multiple databases simultaneously may help augment drug target discovery and identify novel drug-indication associations. We believe that integrating different data sources using a singular numerical scoring system in a hybrid intelligent framework could help to bridge these different omics layers and facilitate rapid drug target prioritization for studies in drug discovery, development or repositioning. Herein, we describe our prototype of the StarGazer pipeline which combines multi-source, multi-omics data with a novel target prioritization scoring system in an interactive Python-based Streamlit dashboard. StarGazer displays target prioritization scores for genes associated with 1844 phenotypic traits, and is available via https://github.com/AstraZeneca/StarGazer.
Collapse
Affiliation(s)
- Chiyun Lee
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Junxia Lin
- Georgetown University, Washington, DC, United States
| | | | | | - Richard N. Hanna
- Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Eliseo Papa
- Research Data and Analytics, R&D IT, AstraZeneca, Cambridge, United Kingdom
| | - Adrian Freeman
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Saleha Patel
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Wen Yu
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Monika Huhn
- Biometrics and Information Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Abdul-Saboor Sheikh
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Keith Tan
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bret R. Sellman
- Discovery Microbiome, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Taylor Cohen
- Discovery Microbiome, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Jonathan Mangion
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Faisal M. Khan
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Yuriy Gusev
- Georgetown University, Washington, DC, United States
| | - Khader Shameer
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States,*Correspondence: Khader Shameer,
| |
Collapse
|
16
|
Computational Methods for Drug Repurposing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:119-141. [PMID: 35230686 DOI: 10.1007/978-3-030-91836-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The wealth of knowledge and multi-omics data available in drug research has allowed the rise of several computational methods in the drug discovery field, resulting in a novel and exciting strategy called drug repurposing. Drug repurposing consists in finding new applications for existing drugs. Numerous computational methods perform a high-level integration of different knowledge sources to facilitate the discovery of unknown mechanisms. In this chapter, we present a survey of data resources and computational tools available for drug repositioning.
Collapse
|
17
|
Cipriani C, Pacheco MP, Kishk A, Wachich M, Abankwa D, Schaffner-Reckinger E, Sauter T. Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay. Pharmaceuticals (Basel) 2022; 15:179. [PMID: 35215292 PMCID: PMC8875459 DOI: 10.3390/ph15020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7 to 65 μM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency.
Collapse
Affiliation(s)
- Claudia Cipriani
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maria Pires Pacheco
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Ali Kishk
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maryem Wachich
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Thomas Sauter
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| |
Collapse
|
18
|
Bustamante C, Muskus C, Ochoa R. Rational computational approaches to predict novel drug candidates against leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Mura C, Preissner S, Preissner R, Bourne PE. A Birds-Eye (Re)View of Acid-Suppression Drugs, COVID-19, and the Highly Variable Literature. Front Pharmacol 2021; 12:700703. [PMID: 34456726 PMCID: PMC8385362 DOI: 10.3389/fphar.2021.700703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
This Perspective examines a recent surge of information regarding the potential benefits of acid-suppression drugs in the context of COVID-19, with a particular eye on the great variability (and, thus, confusion) that has arisen across the reported findings, at least as regards the popular antacid famotidine. The degree of inconsistency and discordance reflects contradictory conclusions from independent, clinical-based studies that took roughly similar approaches, in terms of both experimental design (retrospective, observational, cohort-based, etc.) and statistical analysis workflows (propensity-score matching and stratification into sub-cohorts, etc.). The contradictions and potential confusion have ramifications for clinicians faced with choosing therapeutically optimal courses of intervention: e.g., do any potential benefits of famotidine suggest its use in a particular COVID-19 case? (If so, what administration route, dosage regimen, duration, etc. are likely optimal?) As succinctly put this March in Freedberg et al. (2021), "…several retrospective studies show relationships between famotidine and outcomes in COVID-19 and several do not." Beyond the pressing issue of possible therapeutic indications, the conflicting data and conclusions related to famotidine must be resolved before its inclusion/integration in ontological and knowledge graph (KG)-based frameworks, which in turn are useful for drug discovery and repurposing. As a broader methodological issue, note that reconciling inconsistencies would bolster the validity of meta-analyses which draw upon the relevant data-sources. And, perhaps most broadly, developing a system for treating inconsistencies would stand to improve the qualities of both 1) real world evidence-based studies (retrospective), on the one hand, and 2) placebo-controlled, randomized multi-center clinical trials (prospective), on the other hand. In other words, a systematic approach to reconciling the two types of studies would inherently improve the quality and utility of each type of study individually.
Collapse
Affiliation(s)
- Cameron Mura
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Saskia Preissner
- Department Oral and Maxillofacial Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip E. Bourne
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
20
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
21
|
Pinzi L, Tinivella A, Gagliardelli L, Beneventano D, Rastelli G. LigAdvisor: a versatile and user-friendly web-platform for drug design. Nucleic Acids Res 2021; 49:W326-W335. [PMID: 34023895 PMCID: PMC8262749 DOI: 10.1093/nar/gkab385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Although several tools facilitating in silico drug design are available, their results are usually difficult to integrate with publicly available information or require further processing to be fully exploited. The rational design of multi-target ligands (polypharmacology) and the repositioning of known drugs towards unmet therapeutic needs (drug repurposing) have raised increasing attention in drug discovery, although they usually require careful planning of tailored drug design strategies. Computational tools and data-driven approaches can help to reveal novel valuable opportunities in these contexts, as they enable to efficiently mine publicly available chemical, biological, clinical, and disease-related data. Based on these premises, we developed LigAdvisor, a data-driven webserver which integrates information reported in DrugBank, Protein Data Bank, UniProt, Clinical Trials and Therapeutic Target Database into an intuitive platform, to facilitate drug discovery tasks as drug repurposing, polypharmacology, target fishing and profiling. As designed, LigAdvisor enables easy integration of similarity estimation results with clinical data, thereby allowing a more efficient exploitation of information in different drug discovery contexts. Users can also develop customizable drug design tasks on their own molecules, by means of ligand- and target-based search modes, and download their results. LigAdvisor is publicly available at https://ligadvisor.unimore.it/.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Annachiara Tinivella
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.,Clinical and Experimental Medicine, PhD Program, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Luca Gagliardelli
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Domenico Beneventano
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
22
|
Avram S, Udrea AM, Nuta DC, Limban C, Balea AC, Caproiu MT, Dumitrascu F, Buiu C, Bordei AT. Synthesis and Bioinformatic Characterization of New Schiff Bases with Possible Applicability in Brain Disorders. Molecules 2021; 26:molecules26144160. [PMID: 34299440 PMCID: PMC8307098 DOI: 10.3390/molecules26144160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/11/2023] Open
Abstract
(1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer’s disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N′-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment.
Collapse
Affiliation(s)
- Speranta Avram
- Department of Anatomy, Animal Physiology, and Biophysics, Faculty of Biology, University of Bucharest, 36-46 M. Kogălniceanu Boulevard, 050107 Bucharest, Romania
| | - Ana Maria Udrea
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Diana Camelia Nuta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adrian Cosmin Balea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Miron Teodor Caproiu
- The Organic Chemistry Center of Romanian Academy "C. D. Neniţescu", Splaiul Independenţei 202B, 060023 Bucharest, Romania
| | - Florea Dumitrascu
- The Organic Chemistry Center of Romanian Academy "C. D. Neniţescu", Splaiul Independenţei 202B, 060023 Bucharest, Romania
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Spl. Independenţei 313, 060042 Bucharest, Romania
| | - Alexandra Teodora Bordei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|