1
|
Russomanno P, Zizza P, Cerofolini L, D'Aria F, Iachettini S, Di Vito S, Biroccio A, Amato J, Fragai M, Pagano B. Expanding the Functions of KHSRP Protein: Insights into DNA G-Quadruplex Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410086. [PMID: 39763191 PMCID: PMC11848572 DOI: 10.1002/advs.202410086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Indexed: 02/25/2025]
Abstract
KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells. Therefore, the recognition of G4s by specific proteins is crucial for modulating physiological and pathological pathways. Given the growing interest in DNA G4s, a deeper understanding of the proteins that interact with them and their molecular recognition is imperative. This study demonstrates that KHSRP binds to these DNA structures. Biophysical analyses provide insights into the thermodynamics, kinetics, and structural aspects of these interactions, showing that G4 structural variability significantly influences KHSRP binding, in which the KH3 protein domain plays a key role. Validation of these interactions in cancer cells further highlights their biological relevance. Notably, the G4 ligand pyridostatin affects KHSRP/G4 interactions both in vitro and in cells, suggesting that small molecules can modulate this molecular recognition. These findings underscore KHSRP's potential role in regulating cellular mechanisms through binding to G4-forming DNA, positioning it as a possible therapeutic target in cancer.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Pasquale Zizza
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Linda Cerofolini
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Federica D'Aria
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Sara Iachettini
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Serena Di Vito
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Annamaria Biroccio
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Marco Fragai
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| |
Collapse
|
2
|
Zhang Y, Huang Z, Lu W, Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit Rev Oncol Hematol 2025; 206:104599. [PMID: 39701503 DOI: 10.1016/j.critrevonc.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Alternative polyadenylation (APA) serves as a crucial mechanism for the posttranscriptional regulation of gene expression and influences gene expression by generating diverse mRNA isoforms. This process is regulated by a diverse array of RNA-binding proteins (RBPs), which selectively bind to specific sequences or structures within the pre-mRNA molecule. Dysregulation of APA and its associated RBPs has been implicated in numerous diseases, including cardiovascular diseases, nervous system disease, and cancer. For instance, aberrant APA events have been observed in several types of tumors, contributing to tumor heterogeneity and affecting key cellular pathways involved in cell proliferation, invasion, metastasis, and response to therapy. This review critically evaluates the current understanding of APA mechanisms and the multifaceted roles of RBPs in orchestrating this intricate process. We highlight recent advancements in high-throughput sequencing and bioinformatics tools that have enhanced our ability to study APA on a genome-wide scale. Moreover, we explored the pathological consequences of APA dysregulation, emphasizing its role in oncogenesis. By elucidating the intricate relationships between APA and RBPs, this review aims to underscore the potential of targeting the APA machinery and RBPs for therapeutic intervention. Understanding these molecular processes holds promise for developing novel diagnostic markers and treatment strategies for a range of human cancers.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China; Clinical Research Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China.
| | - Zikun Huang
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China
| | - Zhaoyong Liu
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Ma P, Duan S, Ma W, Deng Q, Yu Y, Gao P, Yuan Y, Liu C. Single-cell chromatin accessibility landscape profiling reveals the diversity of epigenetic regulation in the rat nervous system. Sci Data 2025; 12:140. [PMID: 39856121 PMCID: PMC11761061 DOI: 10.1038/s41597-025-04432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The mammalian nervous system controls complex functions through highly specialized and interacting structures. Single-cell sequencing can provide information on cell-type-specific chromatin structure and regulatory elements, revealing differences in chromatin organization between different cell types and their potential roles of these differences in brain function. Here, we generated a chromatin accessibility dataset through single-cell ATAC-seq of 174,593 high-quality nuclei from 16 adult rat brain regions. We identified cell subtypes of both neuronal and non-neuronal cells with highly specific distributions and characterized gene regulatory elements associated with cell type-specific regions. To further investigate the gene regulatory network involved in spinal cord regeneration, we integrated our scATAC-seq data with published single-nucleus RNA-seq data from the spinal cord, and we identified more detailed regeneration related elements by drawing GRNs centered on the transcription factor Jun in the OPC. We also performed similar integration analyses in the midbrain. Our findings provide a solid foundation for the comprehensive dissection of the molecular architecture of the mammalian nervous system.
Collapse
Affiliation(s)
- Peiyao Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Hangzhou, 310030, China
| | - Shanshan Duan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Hangzhou, 310030, China
| | - Wen Ma
- BGI Research, Hangzhou, 310030, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Hangzhou, 310030, China
| | - Yeya Yu
- BGI Research, Hangzhou, 310030, China
| | - Peng Gao
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
- BGI, Shenzhen, 518083, China
| | - Yue Yuan
- BGI Research, Hangzhou, 310030, China.
- BGI Research, Shenzhen, 518083, China.
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
- Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen, 518083, China.
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
He X, Yuan J, Gao Z, Wang Y. Promoter R-Loops Recruit U2AF1 to Modulate Its Phase Separation and RNA Splicing. J Am Chem Soc 2023; 145:21646-21660. [PMID: 37733759 PMCID: PMC10557143 DOI: 10.1021/jacs.3c08204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 09/23/2023]
Abstract
R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.
Collapse
Affiliation(s)
- Xiaomei He
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
| | - Jun Yuan
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California 92521-0403, United States
| | - Zi Gao
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
| | - Yinsheng Wang
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
5
|
Yuan J, He X, Wang Y. G-quadruplex DNA contributes to RNA polymerase II-mediated 3D chromatin architecture. Nucleic Acids Res 2023; 51:8434-8446. [PMID: 37427784 PMCID: PMC10484665 DOI: 10.1093/nar/gkad588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
High-order chromatin organization plays an important role in biological processes and disease development. Previous studies revealed a widespread occurrence of guanine quadruplex (G4) structures in the human genome, with enrichment in gene regulatory regions, especially in promoters. However, it remains unclear whether G4 structures contribute to RNA polymerase II (RNAPII)-mediated long-range DNA interactions and transcription activity. In this study, we conducted an intuitive overlapping analysis of previously published RNAPII ChIA-PET (chromatin interaction analysis with paired-end tag) and BG4 ChIP-seq (chromatin immunoprecipitation followed by sequencing using a G4 structure-specific antibody) data. We observed a strong positive correlation between RNAPII-linked DNA loops and G4 structures in chromatin. Additionally, our RNAPII HiChIP-seq (in situ Hi-C followed by ChIP-seq) results showed that treatment of HepG2 cells with pyridostatin (PDS), a small-molecule G4-binding ligand, could diminish RNAPII-linked long-range DNA contacts, with more pronounced diminutions being observed for those contacts involving G4 structure loci. RNA sequencing data revealed that PDS treatment modulates the expression of not only genes with G4 structures in their promoters, but also those with promoters being connected with distal G4s through RNAPII-linked long-range DNA interactions. Together, our data substantiate the function of DNA G4s in RNAPII-associated DNA looping and transcription regulation.
Collapse
Affiliation(s)
- Jun Yuan
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521-0403, USA
| | - Xiaomei He
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521-0403, USA
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521-0403, USA
| |
Collapse
|
6
|
Chen S, Zhao X, Huang J, Lin N, Xu Q, Chen J, Huang J, Wang L, Lin C, Zhang Z. The effects of propranolol on the biology and Notch signaling pathway of human umbilical vein endothelial cells. Medicine (Baltimore) 2023; 102:e34672. [PMID: 37565874 PMCID: PMC10419639 DOI: 10.1097/md.0000000000034672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Propranolol is the first choice for treating infantile hemangioma (IH). How propranolol works in IH remains unclear. Infantile hemangioma endothelial cells (HemECs) express Notch1, Jagged, Hey1, and other molecules in the Notch pathway, suggesting that Notch pathway-related molecules play an important role in affecting vascular endothelial cell proliferation. Whether propranolol can affect the Notch signaling pathway in IH treatment is unclear. METHODS We performed this study to observe the effect of propranolol on the expression of Notch signaling pathway molecules in human umbilical vein endothelial cells (HUVECs) and to explore the therapeutic mechanism of propranolol on IH. HUVECs cultured in vitro were exposed to 60, 120, 240, 360, or 480 µM propranolol. The morphological changes of the HUVECs were observed under an inverted microscope. HUVECs proliferation was detected with Cell Counting Kit-8 (CCK-8). The effects of propranolol on HUVECs apoptosis were detected by flow cytometry. The role of Notch in propranolol inhibition of HUVEC proliferation was analyzed with real-time polymerase chain reaction (PCR) and western blotting. RESULTS Propranolol reduced HUVECs numbers and altered their morphology. The inhibitory effect of propranolol on cell proliferation was dependent on the reaction time and drug concentration. Propranolol upregulated Jagged1, Notch1, and Hey1 expression and downregulated delta-like ligand4 (DLL4) expression. CONCLUSIONS Propranolol may play a role in IH treatment by increasing Jagged1 expression in endothelial cells, activating the Notch pathway and inducing the upregulation of the downstream target gene HEY1.
Collapse
Affiliation(s)
- Shuming Chen
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Xuekai Zhao
- The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Junjie Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Na Lin
- Department of Anesthesia, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Qianhui Xu
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Jianwei Chen
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Jianqiang Huang
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Lie Wang
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Chen Lin
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Zaizhong Zhang
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| |
Collapse
|
7
|
|
8
|
Gao Z, Yang YY, Huang M, Qi TF, Wang H, Wang Y. Targeted Proteomic Analysis of Small GTPases in Radioresistant Breast Cancer Cells. Anal Chem 2022; 94:14925-14930. [PMID: 36264766 PMCID: PMC9869664 DOI: 10.1021/acs.analchem.2c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Radiation therapy benefits more than 50% of all cancer patients and cures 40% of them, where ionizing radiation (IR) deposits energy to cells and tissues, thereby eliciting DNA damage and resulting in cell death. Small GTPases are a superfamily of proteins that play critical roles in cell signaling. Several small GTPases, including RAC1, RHOB, and RALA, were previously shown to modulate radioresistance in cancer cells. However, there is no systematic proteomic study on small GTPases that regulate radioresistance in cancer cells. Herein, we applied a high-throughput scheduled multiple-reaction monitoring (MRM) method, along with the use of synthetic stable isotope-labeled (SIL) peptides, to identify differentially expressed small GTPase proteins in two pairs of breast cancer cell lines, MDA-MB-231 and MCF7, and their corresponding radioresistant cell lines. We identified 7 commonly altered small GTPase proteins with over 1.5-fold changes in the two pairs of cell lines. We also discovered ARFRP1 as a novel regulator of radioresistance, where its downregulation promotes radioresistance in breast cancer cells. Together, this represents the first comprehensive investigation about the differential expression of the small GTPase proteome associated with the development of radioresistance in breast cancer cells. Our work also uncovered ARFRP1 as a new target for enhancing radiation sensitivity in breast cancer.
Collapse
Affiliation(s)
- Zi Gao
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
| | - Yen-Yu Yang
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California92521-0403, United States
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California92521-0403, United States
| | - Handing Wang
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California92521-0403, United States
| |
Collapse
|
9
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Hou Y, Gan T, Fang T, Zhao Y, Luo Q, Liu X, Qi L, Zhang Y, Jia F, Han J, Li S, Wang S, Wang F. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3070-3082. [PMID: 35258624 PMCID: PMC8989551 DOI: 10.1093/nar/gkac151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/23/2022] Open
Abstract
Pyridostatin (PDS) is a well-known G-quadruplex (G4) inducer and stabilizer, yet its target genes have remained unclear. Herein, applying MS proteomics strategy, we revealed PDS significantly downregulated 22 proteins but upregulated 16 proteins in HeLa cancer cells, of which the genes both contain a number of G4 potential sequences, implying that PDS regulation on gene expression is far more complicated than inducing/stabilizing G4 structures. The PDS-downregulated proteins consequently upregulated 6 proteins to activate cyclin and cell cycle regulation, suggesting that PDS itself is not a potential anticancer agent, at least toward HeLa cancer cells. Importantly, SUB1, which encodes human positive cofactor and DNA lesion sensor PC4, was downregulated by 4.76-fold. Further studies demonstrated that the downregulation of PC4 dramatically promoted the cytotoxicity of trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) toward HeLa cells to a similar level of cisplatin, contributable to retarding the repair of 1,3-trans-PtTz crosslinked DNA lesion mediated by PC4. These findings not only provide new insights into better understanding on the biological functions of PDS but also implicate a strategy for the rational design of novel multi-targeting platinum anticancer drugs via conjugation of PDS as a ligand to the coordination scaffold of transplatin for battling drug resistance to cisplatin.
Collapse
Affiliation(s)
- Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Tieliang Gan
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Tiantian Fang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Yao Zhao
- Correspondence may also be addressed to Yao Zhao. Tel: +86 010 62529069;
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Shijun Wang
- Correspondence may also be addressed to Shijun Wang. Tel: +86 0531 89628750;
| | - Fuyi Wang
- To whom correspondence should be addressed. Tel: +86 010 62529069;
| |
Collapse
|
11
|
Gao Z, Williams P, Li L, Wang Y. A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins. J Proteome Res 2021; 20:4919-4924. [PMID: 34570971 DOI: 10.1021/acs.jproteome.1c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA sequences of high guanine (G) content have the potential to form G quadruplex (G4) structures. A more complete understanding about the biological functions of G4 DNA requires the investigation about how these structures are recognized by proteins. Here, we conducted exhaustive quantitative proteomic experiments to profile the interaction proteomes of G4 structures by employing different sequences of G4 DNA derived from the human telomere and the promoters of c-MYC and c-KIT genes. Our results led to the identification of a number of candidate G4-interacting proteins, many of which were discovered here for the first time. These included three proteins that can bind to all three DNA G4 structures and 78 other proteins that can bind selectively to one or two of the three DNA G4 structure(s). We also validated that GRSF1 can bind directly and selectively toward G4 structure derived from the c-MYC promoter. Our quantitative proteomic screening also led to the identification of a number of candidate "antireader" proteins of G4 DNA. Together, we uncovered a number of cellular proteins that exhibit general and selective recognitions of G4 folding patterns, which underscore the complexity of G4 DNA in biology and the importance of understanding fully the G4-interaction proteome.
Collapse
Affiliation(s)
- Zi Gao
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Preston Williams
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|