1
|
Werner M, Trauner M, Schauer T, Ummethum H, Márquez-Gómez E, Lalonde M, Lee CSK, Tsirkas I, Sajid A, Murriello AC, Längst G, Hamperl S. Transcription-replication conflicts drive R-loop-dependent nucleosome eviction and require DOT1L activity for transcription recovery. Nucleic Acids Res 2025; 53:gkaf109. [PMID: 39988315 PMCID: PMC11840560 DOI: 10.1093/nar/gkaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025] Open
Abstract
Progressing transcription and replication machineries profoundly impact their underlying chromatin template. Consequently, transcription-replication conflict (TRC) sites are vulnerable to chromatin and epigenome alterations, provoking genome instability. Here, we engineered an inducible TRC reporter system using a genome-integrated R-loop-prone sequence and characterized the dynamic changes of the local chromatin structure inflicted by TRCs, leading to reduced nucleosome occupancy and replication fork blockage. Strikingly, inducing a small number of TRCs on the genome results in a measurable global replication stress response. Furthermore, we find a TRC-dependent increase in H3K79 methylation specifically at the R-loop forming TRC site. Accordingly, inhibition of the H3K79 methyltransferase DOT1L leads to reduced transcriptional output and an exacerbated DNA damage response, suggesting that deposition of this mark is required for effective transcription recovery and resolution of TRCs. Our work shows the molecular dynamics and reveals a specific epigenetic modifier bookmarking TRC sites, relevant to cancer and other diseases.
Collapse
Affiliation(s)
- Marcel Werner
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Manuel Trauner
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Tamas Schauer
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Elizabeth Márquez-Gómez
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Maxime Lalonde
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Ioannis Tsirkas
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Atiqa Sajid
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Augusto C Murriello
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Gernot Längst
- Biochemistry Center Regensburg, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| |
Collapse
|
2
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
3
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
4
|
Pandiyan A, Mallikarjun J, Maheshwari H, Gowrishankar J. Pathological R-loops in bacteria from engineered expression of endogenous antisense RNAs whose synthesis is ordinarily terminated by Rho. Nucleic Acids Res 2024; 52:12438-12455. [PMID: 39373509 PMCID: PMC11551753 DOI: 10.1093/nar/gkae839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
In many bacteria, the essential factors Rho and NusG mediate termination of synthesis of nascent transcripts (including antisense RNAs) that are not being simultaneously translated. It has been proposed that in Rho's absence toxic RNA-DNA hybrids (R-loops) may be generated from nascent untranslated transcripts, and genome-wide mapping studies in Escherichia coli have identified putative loci of R-loop formation from more than 100 endogenous antisense transcripts that are synthesized only in a Rho-deficient strain. Here we provide evidence that engineered expression in wild-type E. coli of several such individual antisense regions on a plasmid or the chromosome generates R-loops that, in an RNase H-modulated manner, serve to disrupt genome integrity. Rho inhibition was associated with increased prevalence of antisense R-loops also in Xanthomonas oryzae pv. oryzae and Caulobacter crescentus. Our results confirm the essential role of Rho in several bacterial genera for prevention of toxic R-loops from pervasive yet cryptic endogenous antisense transcripts. Engineered antisense R-looped regions may be useful for studies on both site-specific impediments to bacterial chromosomal replication and the mechanisms of their resolution.
Collapse
Affiliation(s)
- Apuratha Pandiyan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jillella Mallikarjun
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
- Centre for DNA Fingerprinting and Diagnostics, Uppal Road, Hyderabad 500039, Telengana, India
| | - Himanshi Maheshwari
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jayaraman Gowrishankar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| |
Collapse
|
5
|
Jones RM, Reynolds-Winczura A, Gambus A. A Decade of Discovery-Eukaryotic Replisome Disassembly at Replication Termination. BIOLOGY 2024; 13:233. [PMID: 38666845 PMCID: PMC11048390 DOI: 10.3390/biology13040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The eukaryotic replicative helicase (CMG complex) is assembled during DNA replication initiation in a highly regulated manner, which is described in depth by other manuscripts in this Issue. During DNA replication, the replicative helicase moves through the chromatin, unwinding DNA and facilitating nascent DNA synthesis by polymerases. Once the duplication of a replicon is complete, the CMG helicase and the remaining components of the replisome need to be removed from the chromatin. Research carried out over the last ten years has produced a breakthrough in our understanding, revealing that replication termination, and more specifically replisome disassembly, is indeed a highly regulated process. This review brings together our current understanding of these processes and highlights elements of the mechanism that are conserved or have undergone divergence throughout evolution. Finally, we discuss events beyond the classic termination of DNA replication in S-phase and go over the known mechanisms of replicative helicase removal from chromatin in these particular situations.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
- School of Biosciences, Aston University, Birmingham B4 7ET, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| |
Collapse
|
6
|
Kim S, Shin WH, Kang Y, Kim H, Lee JY. Direct visualization of replication and R-loop collision using single-molecule imaging. Nucleic Acids Res 2024; 52:259-273. [PMID: 37994723 PMCID: PMC10783495 DOI: 10.1093/nar/gkad1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures that can cause replication stress by blocking replication fork progression. However, the detailed mechanism underlying the collision of DNA replication forks and R-loops remains elusive. To investigate how R-loops induce replication stress, we use single-molecule fluorescence imaging to directly visualize the collision of replicating Phi29 DNA polymerase (Phi29 DNAp), the simplest replication system, and R-loops. We demonstrate that a single R-loop can block replication, and the blockage is more pronounced when an RNA-DNA hybrid is on the non-template strand. We show that this asymmetry results from secondary structure formation on the non-template strand, which impedes the progression of Phi29 DNAp. We also show that G-quadruplex formation on the displaced single-stranded DNA in an R-loop enhances the replication stalling. Moreover, we observe the collision between Phi29 DNAp and RNA transcripts synthesized by T7 RNA polymerase (T7 RNAp). RNA transcripts cause more stalling because of the presence of T7 RNAp. Our work provides insights into how R-loops impede DNA replication at single-molecule resolution.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Woo Hee Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Institute of Basic Science Center for Genomic Integrity, Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
8
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
9
|
Schroeder JW, Hurto RL, Randall JR, Wozniak KJ, Timko TA, Nye TM, Wang JD, Freddolino PL, Simmons LA. RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome wide. SCIENCE ADVANCES 2023; 9:eadi5945. [PMID: 37494439 PMCID: PMC10371020 DOI: 10.1126/sciadv.adi5945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
RNA:DNA hybrids compromise replication fork progression and genome integrity in all cells. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate strongly in noncoding RNAs and 5'-UTRs of coding sequences. For ΔrnhB, hybrids accumulate preferentially in untranslated regions and early in coding sequences. We show that hybrid accumulation is particularly sensitive to gene expression in ΔrnhC cells. DNA replication in ΔrnhC cells is disrupted, leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts cause mutagenesis and shape genome organization.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Rebecca L. Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Room 743E, Houston, TX 77030, USA
| | - Taylor A. Timko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Bhowmick R, Mehta KPM, Lerdrup M, Cortez D. Integrator facilitates RNAPII removal to prevent transcription-replication collisions and genome instability. Mol Cell 2023; 83:2357-2366.e8. [PMID: 37295432 PMCID: PMC10330747 DOI: 10.1016/j.molcel.2023.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Mads Lerdrup
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| |
Collapse
|
11
|
Schroeder JW, Hurto RL, Randall JR, Wozniak KJ, Timko TA, Nye TM, Wang JD, Freddolino PL, Simmons LA. RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539860. [PMID: 37214986 PMCID: PMC10197577 DOI: 10.1101/2023.05.08.539860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA:DNA hybrids such as R-loops affect genome integrity and DNA replication fork progression. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome-wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation, but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate most strongly in non-coding RNAs and 5'-UTRs of coding sequences. For Δ rnhB , hybrids accumulate preferentially in untranslated regions and early in coding sequences. Hybrid accumulation is particularly sensitive to gene expression in Δ rnhC ; in cells lacking RnhC, DNA replication is disrupted leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts interact with replication to cause mutagenesis and shape genome organization.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706
| | - Rebecca L. Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Taylor A. Timko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Stoy H, Zwicky K, Kuster D, Lang KS, Krietsch J, Crossley MP, Schmid JA, Cimprich KA, Merrikh H, Lopes M. Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. Nat Struct Mol Biol 2023; 30:348-359. [PMID: 36864174 PMCID: PMC10023573 DOI: 10.1038/s41594-023-00928-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.
Collapse
Affiliation(s)
- Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Danina Kuster
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Kevin S Lang
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Brown RE, Su XA, Fair S, Wu K, Verra L, Jong R, Andrykovich K, Freudenreich CH. The RNA export and RNA decay complexes THO and TRAMP prevent transcription-replication conflicts, DNA breaks, and CAG repeat contractions. PLoS Biol 2022; 20:e3001940. [PMID: 36574440 PMCID: PMC9829180 DOI: 10.1371/journal.pbio.3001940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2023] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Expansion of structure-forming CAG/CTG repetitive sequences is the cause of several neurodegenerative disorders and deletion of repeats is a potential therapeutic strategy. Transcription-associated mechanisms are known to cause CAG repeat instability. In this study, we discovered that Thp2, an RNA export factor and member of the THO (suppressors of transcriptional defects of hpr1Δ by overexpression) complex, and Trf4, a key component of the TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex involved in nuclear RNA polyadenylation and degradation, are necessary to prevent CAG fragility and repeat contractions in a Saccharomyces cerevisiae model system. Depletion of both Thp2 and Trf4 proteins causes a highly synergistic increase in CAG repeat fragility, indicating a complementary role of the THO and TRAMP complexes in preventing genome instability. Loss of either Thp2 or Trf4 causes an increase in RNA polymerase stalling at the CAG repeats and other genomic loci, as well as genome-wide transcription-replication conflicts (TRCs), implicating TRCs as a cause of CAG fragility and instability in their absence. Analysis of the effect of RNase H1 overexpression on CAG fragility, RNAPII stalling, and TRCs suggests that RNAPII stalling with associated R-loops are the main cause of CAG fragility in the thp2Δ mutants. In contrast, CAG fragility and TRCs in the trf4Δ mutant can be compensated for by RPA overexpression, suggesting that excess unprocessed RNA in TRAMP4 mutants leads to reduced RPA availability and high levels of TRCs. Our results show the importance of RNA surveillance pathways in preventing RNAPII stalling, TRCs, and DNA breaks, and show that RNA export and RNA decay factors work collaboratively to maintain genome stability.
Collapse
Affiliation(s)
- Rebecca E. Brown
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Xiaofeng A. Su
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stacey Fair
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Katherine Wu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Robyn Jong
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Kristin Andrykovich
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Catherine H. Freudenreich
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Temporal regulation of head-on transcription at replication initiation sites. iScience 2022; 26:105791. [PMID: 36594032 PMCID: PMC9803852 DOI: 10.1016/j.isci.2022.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Head-on (HO) collisions between the DNA replication machinery and RNA polymerase over R-loop forming sequences (RLFS) are genotoxic, leading to replication fork blockage and DNA breaks. Current models suggest that HO collisions are avoided through replication initiation site (RIS) positioning upstream of active genes, ensuring co-orientation of replication fork movement and genic transcription. However, this model does not account for pervasive transcription, or intragenic RIS. Moreover, pervasive transcription initiation and CG-rich DNA is a feature of RIS, suggesting that HO transcription units (HO TUs) capable of forming R-loops might occur. Through mining phased GRO-seq data, and developing an informatics strategy to stringently identify RIS, we demonstrate that HO TUs containing RLFS occur at RIS in MCF-7 cells, and are downregulated at the G1/S phase boundary. Our analysis reveals a novel spatiotemporal relationship between transcription and replication, and supports the idea that HO collisions are avoided through transcriptional regulatory mechanisms.
Collapse
|
15
|
Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells. Nat Commun 2022; 13:6907. [PMID: 36376321 PMCID: PMC9663592 DOI: 10.1038/s41467-022-34577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription replication collisions (TRCs) constitute a major intrinsic source of genome instability but conclusive evidence for a causal role of TRCs in tumor initiation is missing. We discover that lack of the H4K20-dimethyltransferase KMT5B (also known as SUV4-20H1) in muscle stem cells de-represses S-phase transcription by increasing H4K20me1 levels, which induces TRCs and aberrant R-loops in oncogenic genes. The resulting replication stress and aberrant mitosis activate ATR-RPA32-P53 signaling, promoting cellular senescence, which turns into rapid rhabdomyosarcoma formation when p53 is absent. Inhibition of S-phase transcription ameliorates TRCs and formation of R-loops in Kmt5b-deficient MuSCs, validating the crucial role of H4K20me1-dependent, tightly controlled S-phase transcription for preventing collision errors. Low KMT5B expression is prevalent in human sarcomas and associated with tumor recurrence, suggesting a common function of KMT5B in sarcoma formation. The study uncovers decisive functions of KMT5B for maintaining genome stability by repressing S-phase transcription via control of H4K20me1 levels.
Collapse
|
16
|
McLean EK, Nye TM, Lowder FC, Simmons LA. The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria. Annu Rev Microbiol 2022; 76:461-480. [PMID: 35655343 PMCID: PMC9527769 DOI: 10.1146/annurev-micro-102521-014450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Collapse
Affiliation(s)
- Emma K McLean
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Taylor M Nye
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
- Current affiliation: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frances C Lowder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
17
|
Bhowmick R, Lerdrup M, Gadi SA, Rossetti GG, Singh MI, Liu Y, Halazonetis TD, Hickson ID. RAD51 protects human cells from transcription-replication conflicts. Mol Cell 2022; 82:3366-3381.e9. [PMID: 36002000 DOI: 10.1016/j.molcel.2022.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/02/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022]
Abstract
Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mads Lerdrup
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Sampath Amitash Gadi
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Giacomo G Rossetti
- Department of Molecular Biology, University of Geneva, 30, quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Manika I Singh
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ying Liu
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 30, quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Ian D Hickson
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
18
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
19
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
St Germain C, Zhao H, Sinha V, Sanz LA, Chédin F, Barlow J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2051-2073. [PMID: 35100392 PMCID: PMC8887484 DOI: 10.1093/nar/gkac035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription–replication interactions. Here, we report a novel method to identify genomic loci prone to transcription–replication interactions termed transcription–replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine. Using TRIPn-Seq, we mapped 1009 unique transcription–replication interactions (TRIs) in mouse primary B cells characterized by a bimodal pattern of RNAP2s5, bidirectional transcription, an enrichment of RNA:DNA hybrids, and a high probability of forming G-quadruplexes. TRIs are highly enriched at transcription start sites and map to early replicating regions. TRIs exhibit enhanced Replication Protein A association and TRI-associated genes exhibit higher replication fork termination than control transcription start sites, two marks of replication stress. TRIs colocalize with double-strand DNA breaks, are enriched for deletions, and accumulate mutations in tumors. We propose that replication stress at TRIs induces mutations potentially contributing to age-related disease, as well as tumor formation and development.
Collapse
Affiliation(s)
- Commodore P St Germain
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Vrishti Sinha
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jacqueline H Barlow
- To whom correspondence should be addressed. Tel: +1 530 752 9529; Fax: +1 530 752 9014;
| |
Collapse
|
21
|
Zardoni L, Nardini E, Brambati A, Lucca C, Choudhary R, Loperfido F, Sabbioneda S, Liberi G. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Res 2021; 49:12769-12784. [PMID: 34878142 PMCID: PMC8682787 DOI: 10.1093/nar/gkab1146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Uncoordinated clashes between replication forks and transcription cause replication stress and genome instability, which are hallmarks of cancer and neurodegeneration. Here, we investigate the outcomes of head-on replication-transcription collisions, using as a model system budding yeast mutants for the helicase Sen1, the ortholog of human Senataxin. We found that RNA Polymerase II accumulates together with RNA:DNA hybrids at sites of head-on collisions. The replication fork and RNA Polymerase II are both arrested during the clash, leading to DNA damage and, in the long run, the inhibition of gene expression. The inactivation of RNA Polymerase II elongation factors, such as the HMG-like protein Spt2 and the DISF and PAF complexes, but not alterations in chromatin structure, allows replication fork progression through transcribed regions. Attenuation of RNA Polymerase II elongation rescues RNA:DNA hybrid accumulation and DNA damage sensitivity caused by the absence of Sen1, but not of RNase H proteins, suggesting that such enzymes counteract toxic RNA:DNA hybrids at different stages of the cell cycle with Sen1 mainly acting in replication. We suggest that the main obstacle to replication fork progression is the elongating RNA Polymerase II engaged in an R-loop, rather than RNA:DNA hybrids per se or hybrid-associated chromatin modifications.
Collapse
Affiliation(s)
- Luca Zardoni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy.,Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Alessandra Brambati
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | | | | | - Federica Loperfido
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy.,IFOM Foundation, 20139 Milan, Italy
| |
Collapse
|
22
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
23
|
Castillo-Guzman D, Chédin F. Defining R-loop classes and their contributions to genome instability. DNA Repair (Amst) 2021; 106:103182. [PMID: 34303066 PMCID: PMC8691176 DOI: 10.1016/j.dnarep.2021.103182] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
R-loops are non-B DNA structures that form during transcription when the nascent RNA anneals to the template DNA strand forming a RNA:DNA hybrid. Understanding the genomic distribution and function of R-loops is an important goal, since R-loops have been implicated in a number of adaptive and maladaptive processes under physiological and pathological conditions. Based on R-loop mapping datasets, we propose the existence of two main classes of R-loops, each associated with unique characteristics. Promoter-paused R-loops (Class I) are short R-loops that form at high frequency during promoter-proximal pausing by RNA polymerase II. Elongation-associated R-loops (Class II) are long structures that occur throughout gene bodies at modest frequencies. We further discuss the relationships between each R-loop class with instances of genome instability and suggest that increased class I R-loops, resulting from enhanced promoter-proximal pausing, represent the main culprits for R-loop mediated genome instability under pathological conditions.
Collapse
Affiliation(s)
- Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
24
|
Brüning JG, Marians KJ. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 2021; 49:9870-9885. [PMID: 34469567 PMCID: PMC8464059 DOI: 10.1093/nar/gkab760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
25
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
26
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|