1
|
Dias JK, D'Arcy S. Beyond the mono-nucleosome. Biochem Soc Trans 2025; 53:BCJ20240452. [PMID: 39887339 DOI: 10.1042/bst20230721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025]
Abstract
Nucleosomes, the building block of chromatin, are responsible for regulating access to the DNA sequence. This control is critical for essential cellular processes, including transcription and DNA replication and repair. Studying chromatin can be challenging both in vitro and in vivo, leading many to use a mono-nucleosome system to answer fundamental questions relating to chromatin regulators and binding partners. However, the mono-nucleosome fails to capture essential features of the chromatin structure, such as higher-order chromatin folding, local nucleosome-nucleosome interactions, and linker DNA trajectory and flexibility. We briefly review significant discoveries enabled by the mono-nucleosome and emphasize the need to go beyond this model system in vitro. Di-, tri-, and tetra-nucleosome arrays can answer important questions about chromatin folding, function, and dynamics. These multi-nucleosome arrays have highlighted the effects of varying linker DNA lengths, binding partners, and histone post-translational modifications in a more chromatin-like environment. We identify various chromatin regulatory mechanisms yet to be explored with multi-nucleosome arrays. Combined with in-solution biophysical techniques, studies of minimal multi-nucleosome chromatin models are feasible.
Collapse
Affiliation(s)
- Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| |
Collapse
|
2
|
Noë M, Mathios D, Annapragada AV, Koul S, Foda ZH, Medina JE, Cristiano S, Cherry C, Bruhm DC, Niknafs N, Adleff V, Ferreira L, Easwaran H, Baylin S, Phallen J, Scharpf RB, Velculescu VE. DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation. Nat Commun 2024; 15:6690. [PMID: 39107309 PMCID: PMC11303779 DOI: 10.1038/s41467-024-50850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Circulating cell-free DNA (cfDNA) is emerging as an avenue for cancer detection, but the characteristics of cfDNA fragmentation in the blood are poorly understood. We evaluate the effect of DNA methylation and gene expression on genome-wide cfDNA fragmentation through analysis of 969 individuals. cfDNA fragment ends more frequently contained CCs or CGs, and fragments ending with CGs or CCGs are enriched or depleted, respectively, at methylated CpG positions. Higher levels and larger sizes of cfDNA fragments are associated with CpG methylation and reduced gene expression. These effects are validated in mice with isogenic tumors with or without the mutant IDH1, and are associated with genome-wide changes in cfDNA fragmentation in patients with cancer. Tumor-related hypomethylation and increased gene expression are associated with decrease in cfDNA fragment size that may explain smaller cfDNA fragments in human cancers. These results provide a connection between epigenetic changes and cfDNA fragmentation with implications for disease detection.
Collapse
Grants
- T32 GM136577 NIGMS NIH HHS
- U01 CA271896 NCI NIH HHS
- R01 CA121113 NCI NIH HHS
- UG1 CA233259 NCI NIH HHS
- P50 CA062924 NCI NIH HHS
- P30 CA006973 NCI NIH HHS
- Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (Dr. Miriam & Sheldon G. Adelson Medical Research Foundation)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- EIF | Stand Up To Cancer (SU2C)
- This work was supported in part by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, SU2C in-Time Lung Cancer Interception Dream Team Grant, Stand Up to Cancer-Dutch Cancer Society International Translational Cancer Research Dream Team Grant (SU2C-AACR-DT1415), the Gray Foundation, the Commonwealth Foundation, the Mark Foundation for Cancer Research, the Cole Foundation, a research grant from Delfi Diagnostics, and US National Institutes of Health grants CA121113, CA006973, CA233259, CA062924, and 1T32GM136577. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research.
Collapse
Affiliation(s)
- Michaël Noë
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dimitrios Mathios
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akshaya V Annapragada
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shashikant Koul
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zacharia H Foda
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie E Medina
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Cristiano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Cherry
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leonardo Ferreira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hari Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Baylin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Sun R, Bishop T. The nucleosome reference frame and standard geometries for octasomes. Biophys Rev 2024; 16:315-330. [PMID: 39099844 PMCID: PMC11297230 DOI: 10.1007/s12551-024-01206-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
There are over 533 nucleosome structures in the Research Collaboratory for Structural Bioinformatics (RCSB). Collectively, numerous variants and species are present, as are sub-nucleosomal and super-nucleosomal assemblies within the nucleosome family. The organization of the histones and DNA is highly conserved in all standard octasomes containing 145, 146, or 147 base pairs. This observation is used to establish a nucleosome reference frame that enables us to describe and compare the gross structure and organization of all nucleosomes. We observe that cumulative sums of Rise, Twist, and DNA arc length are linear functions of the base pair index withR 2 values exceeding 0.999 for almost all octasome structures. These relationships enable us to readily compare the location and orientation of DNA director frames extracted from the crystal structures to ideal superhelix values. Such comparisons reveal that the DNA superhelix extracted from X-ray structures exhibits a sinusoidal variation with an amplitude of approximately 5Å about a constant superhelix radius of ∼ 42 Å, in agreement with early descriptions of nucleosome organization as tripartite. There is also a distinct straightening of the nucleosomal DNA over the outermost turn of DNA's double helix. The straightening of the DNA superhelix marks the transition to linker DNA and is easily recognized as a rapid increase in superhelix radius and is concomitant with a change in pitch. This provides a rigorous means of separating nucleosomal DNA from linker DNA. For all X-ray structures, we find that near the dyad, there exists a set of DNA director frames for which the spatial location and orientation are highly conserved. Away from the dyad, the DNA superhelix exhibits "singletrack" and "multipath" regions. In the singletrack region, all structures exhibit a single highly conserved pathway along which all base pairs must track, but at varying rates. In the multipath regions, the base pairs are allowed to map out a limited number of different pathways along the surface of the histone octamer. To demonstrate the utility of the proposed reference geometries, standard and distorted octasome structures, super-nucleosomal structures, nucleosomes with linker DNA, and nucleosomes in closed circular DNA are analyzed. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-024-01206-5.
Collapse
Affiliation(s)
- Ran Sun
- College of Engineering and Science, Louisiana Tech University, 600 Dan Reneau Dr., Ruston, LA 71272 USA
| | - Thomas Bishop
- Departments of Chemistry and Physics, Louisiana Tech University, 600 Dan Reneau Dr, Ruston, LA 71272 USA
| |
Collapse
|
4
|
Portillo-Ledesma S, Li Z, Schlick T. Genome modeling: From chromatin fibers to genes. Curr Opin Struct Biol 2023; 78:102506. [PMID: 36577295 PMCID: PMC9908845 DOI: 10.1016/j.sbi.2022.102506] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 12/27/2022]
Abstract
The intricacies of the 3D hierarchical organization of the genome have been approached by many creative modeling studies. The specific model/simulation technique combination defines and restricts the system and phenomena that can be investigated. We present the latest modeling developments and studies of the genome, involving models ranging from nucleosome systems and small polynucleosome arrays to chromatin fibers in the kb-range, chromosomes, and whole genomes, while emphasizing gene folding from first principles. Clever combinations allow the exploration of many interesting phenomena involved in gene regulation, such as nucleosome structure and dynamics, nucleosome-nucleosome stacking, polynucleosome array folding, protein regulation of chromatin architecture, mechanisms of gene folding, loop formation, compartmentalization, and structural transitions at the chromosome and genome levels. Gene-level modeling with full details on nucleosome positions, epigenetic factors, and protein binding, in particular, can in principle be scaled up to model chromosomes and cells to study fundamental biological regulation.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Zilong Li
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, 10003, NY, USA.
| |
Collapse
|
5
|
Daban JR. Soft-matter properties of multilayer chromosomes. Phys Biol 2021; 18. [PMID: 34126606 DOI: 10.1088/1478-3975/ac0aff] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
This perspective aims to identify the relationships between the structural and dynamic properties of chromosomes and the fundamental properties of soft-matter systems. Chromatin is condensed into metaphase chromosomes during mitosis. The resulting structures are elongated cylinders having micrometer-scale dimensions. Our previous studies, using transmission electron microscopy, atomic force microscopy, and cryo-electron tomography, suggested that metaphase chromosomes have a multilayered structure, in which each individual layer has the width corresponding to a mononucleosome sheet. The self-assembly of multilayer chromatin plates from small chromatin fragments suggests that metaphase chromosomes are self-organized hydrogels (in which a single DNA molecule crosslinks the whole structure) with an internal liquid-crystal order produced by the stacking of chromatin layers along the chromosome axis. This organization of chromatin was unexpected, but the spontaneous assembly of large structures has been studied in different soft-matter systems and, according to these studies, the self-organization of chromosomes could be justified by the interplay between weak interactions of repetitive nucleosome building blocks and thermal fluctuations. The low energy of interaction between relatively large building blocks also justifies the easy deformation and structural fluctuations of soft-matter structures and the changes of phase caused by diverse external factors. Consistent with these properties of soft matter, different experimental results show that metaphase chromosomes are easily deformable. Furthermore, at the end of mitosis, condensed chromosomes undergo a phase transition into a more fluid structure, which can be correlated to the decrease in the Mg2+concentration and to the dissociation of condensins from chromosomes. Presumably, the unstacking of layers and chromatin fluctuations driven by thermal energy facilitate gene expression during interphase.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193-Bellaterra (Barcelona), Spain
| |
Collapse
|
6
|
McGinty RK, Tan S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr Opin Struct Biol 2021; 71:16-26. [PMID: 34198054 DOI: 10.1016/j.sbi.2021.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
The recent torrent of structures of chromatin complexes determined by cryoelectron microscopy provides an opportunity to discern general principles for how chromatin factors and enzymes interact with their nucleosome substrate. We find that many chromatin proteins use a strikingly similar arginine anchor and variant arginine interactions to bind to the nucleosome acidic patch. We also observe that many chromatin proteins target the H3 and H2B histone fold α1-loop1 elbows and the H2B C-terminal helix on the nucleosomal histone face. These interactions with the histones can be complemented with interactions with and distortions of nucleosomal DNA.
Collapse
Affiliation(s)
- Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|