1
|
Bhattacharya S, Bejerano-Sagie M, Ravins M, Zeroni L, Kaur P, Gopu V, Rosenshine I, Ben-Yehuda S. Flagellar rotation facilitates the transfer of a bacterial conjugative plasmid. EMBO J 2025; 44:587-611. [PMID: 39623141 PMCID: PMC11730352 DOI: 10.1038/s44318-024-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Conjugation-mediated DNA delivery is the primary mode for antibiotic resistance spread in bacteria; yet, molecular mechanisms regulating the conjugation process remain largely unexplored. While conjugative plasmids typically require bacterial attachment to solid surfaces for facilitation of donor-to-recipient proximity, the pLS20 conjugative plasmid, prevalent among Gram-positive Bacillus spp., uniquely requires fluid environments to enhance its transfer. Here, we show that pLS20, carried by Bacillus subtilis, induces multicellular clustering, which can accommodate various species, hence offering a stable platform for DNA delivery in a liquid milieu. We further discovered that induction of pLS20 promoters, governing crucial conjugative genes, is dependent on the presence of donor cell flagella, the major bacterial motility organelle. Moreover, the pLS20 regulatory circuit is controlled by a mechanosensing signal transduction pathway responsive to flagella rotation, thus activating conjugation gene expression exclusively during the host motile phase. This flagella-conjugation coupling strategy may allow the dissemination of the plasmid to remote destinations, allowing infiltration into new niches.
Collapse
Affiliation(s)
- Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Liat Zeroni
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Prabhjot Kaur
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
2
|
Wirachman ES, Grossman AD. Transcription termination and antitermination are critical for the fitness and function of the integrative and conjugative element Tn916. PLoS Genet 2024; 20:e1011417. [PMID: 39652596 DOI: 10.1371/journal.pgen.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Premature expression of genes in mobile genetic elements can be detrimental to their bacterial hosts. Tn916, the founding member of a large family of integrative and conjugative elements (ICEs; aka conjugative transposons), confers tetracycline-resistance and is found in several Gram-positive bacterial species. We identified a transcription terminator near one end of Tn916 that functions as an insulator that prevents expression of element genes when Tn916 is integrated downstream from an active host promoter. The terminator blocked expression of Tn916 genes needed for unwinding and rolling circle replication of the element DNA, and loss of the terminator caused a fitness defect for the host cells. Further, we identified an element-encoded antiterminator (named canT for conjugation-associated antitermination) that is essential for transcription of Tn916 genes after excision of the element from the host chromosome. We found that the antiterminator is orientation-specific, functions with heterologous promoters and terminators, is processive and is most likely a cis-acting RNA. Insulating gene expression in conjugative elements that are integrated in the chromosome is likely a key feature of the interplay between mobile genetic elements and their hosts and appears to be critical for the function and evolution of the large family of Tn916-like elements.
Collapse
Affiliation(s)
- Erika S Wirachman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Meijer WJJ, Miguel-Arribas A. Genetic Engineering of Bacillus subtilis Using Competence-Induced Homologous Recombination Techniques. Methods Mol Biol 2024; 2819:241-260. [PMID: 39028510 DOI: 10.1007/978-1-0716-3930-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacillus subtilis is one of the best-studied bacteria and serves as a Gram-positive model system to address fundamental biological processes. Depending on conditions, a B. subtilis cell can initiate one out of various distinct differentiation processes to cope with changing environmental conditions. One of these differentiation processes is natural competence that allows cells to adsorb exogenous DNA and subsequently incorporate it into its chromosome by homologous recombination. Due to competence development, the genome of B. subtilis can be easily manipulated, and this has contributed to B. subtilis being a model system. In this chapter, we describe some of the most common genetic tools that can be used in combination with natural competence to tailor the genome of B. subtilis.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Andrés Miguel-Arribas
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
4
|
Sarosh A, Kwong SM, Jensen SO, Northern F, Walton WG, Eakes TC, Redinbo MR, Firth N, McLaughlin KJ. pSK41/pGO1-family conjugative plasmids of Staphylococcus aureus encode a cryptic repressor of replication. Plasmid 2023; 128:102708. [PMID: 37967733 DOI: 10.1016/j.plasmid.2023.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
The majority of large multiresistance plasmids of Staphylococcus aureus utilise a RepA_N-type replication initiation protein, the expression of which is regulated by a small antisense RNA (RNAI) that overlaps the rep mRNA leader. The pSK41/pGO1-family of conjugative plasmids additionally possess a small (86 codon) divergently transcribed ORF (orf86) located upstream of the rep locus. The product of pSK41 orf86 was predicted to have a helix-turn-helix motif suggestive of a likely function in transcriptional repression. In this study, we investigated the effect of Orf86 on transcription of thirteen pSK41 backbone promoters. We found that Orf86 only repressed transcription from the rep promoter, and hence now redesignate the product as Cop. Over-expression of Cop in trans reduced the copy number of pSK41 mini-replicons, both in the presence and absence of rnaI. in vitro protein-DNA binding experiments with purified 6 × His-Cop demonstrated specific DNA binding, adjacent to, and partially overlapping the -35 hexamer of the rep promoter. The crystal structure of Cop revealed a dimeric structure similar to other known transcriptional regulators. Cop mRNA was found to result from "read-through" transcription from the strong RNAI promoter that escapes the rnaI terminator. Thus, PrnaI is responsible for transcription of two distinct negative regulators of plasmid copy number; the antisense RNAI that primarily represses Rep translation, and Cop protein that can repress rep transcription. Deletion of cop in a native plasmid did not appear to impact copy number, indicating a cryptic auxiliary role.
Collapse
Affiliation(s)
- Alvina Sarosh
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales 2751, Australia; Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Faith Northern
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas C Eakes
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
5
|
Miguel-Arribas A, Martín-María A, Alaerds ECW, Val-Calvo J, Yuste L, Rojo F, Abia D, Wu L, Meijer WJJ. Extraordinary long-stem confers resistance of intrinsic terminators to processive antitermination. Nucleic Acids Res 2023; 51:6073-6086. [PMID: 37125647 PMCID: PMC10325885 DOI: 10.1093/nar/gkad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Many prokaryotic operons encode a processive antitermination (P-AT) system. Transcription complexes associated with an antitermination factor can bypass multiple transcription termination signals regardless of their sequences. However, to avoid compromising transcriptional regulation of downstream regions, the terminator at the end of the operon needs to be resistant to antitermination. So far, no studies on the mechanism of resistance to antitermination have been reported. The recently discovered conAn P-AT system is composed of two components that are encoded at the start of many conjugation operons on plasmids of Gram-positive bacteria. Here we report the identification of a conAn-resistant terminator, named TerR, in the conjugation operon of the Bacillus subtilis plasmid pLS20, re-defining the end of the conjugation operon. We investigated the various characteristics of TerR and show that its extraordinary long stem is the determining feature for resistance to antitermination. This is the first P-AT resistance mechanism to be reported.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Martín-María
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Eef C W Alaerds
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, C. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, C. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa”, (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Miguel-Arribas A, Wu LJ, Michaelis C, Yoshida KI, Grohmann E, Meijer WJJ. Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms 2022; 10:microorganisms10030587. [PMID: 35336162 PMCID: PMC8955417 DOI: 10.3390/microorganisms10030587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical Faculty, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK;
| | - Claudia Michaelis
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Elisabeth Grohmann
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| |
Collapse
|
7
|
Val-Calvo J, Miguel-Arribas A, Abia D, Wu LJ, Meijer WJJ. pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genom Bioinform 2021; 3:lqab096. [PMID: 34729475 PMCID: PMC8557374 DOI: 10.1093/nargab/lqab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Conjugation plays important roles in genome plasticity, adaptation and evolution but is also the major horizontal gene-transfer route responsible for spreading toxin, virulence and antibiotic resistance genes. A better understanding of the conjugation process is required for developing drugs and strategies to impede the conjugation-mediated spread of these genes. So far, only a limited number of conjugative elements have been studied. For most of them, it is not known whether they represent a group of conjugative elements, nor about their distribution patterns. Here we show that pLS20 from the Gram-positive bacterium Bacillus subtilis is the prototype conjugative plasmid of a family of at least 35 members that can be divided into four clades, and which are harboured by different Bacillus species found in different global locations and environmental niches. Analyses of their phylogenetic relationship and their conjugation operons have expanded our understanding of a family of conjugative plasmids of Gram-positive origin.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. Microorganisms 2021; 9:microorganisms9122465. [PMID: 34946067 PMCID: PMC8708921 DOI: 10.3390/microorganisms9122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes.
Collapse
|