1
|
Guo W, Wang D, Chen W, Rao C, Tang Y, Li W. The heterogeneous expression, extraction, and purification of recombinant Caldanaerobacter subterraneus subsp. tengcongensis apurine/apyrimidine endonuclease in Escherichia coli. Protein Expr Purif 2025; 226:106621. [PMID: 39528145 DOI: 10.1016/j.pep.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Thermostable apurinic/apyrimidinic (AP) endonuclease (TtAP), cloned from Caldanaerobacter subterraneus subsp. tengcongensis, is an exonuclease III (Exo III) family protein with high-heat resistance, has activities of AP site endonuclease, 3'-5' exonuclease, and 3'-nuclease, and facilitates efficient amplification of lengthy DNA fragments in PCR. However, the research of the combinant TtAP in Escherichia coli with its expression, large-scale extraction and purification of its protein was limited. In this study, we optimized the codons of TtAP gene for expression in E. coli and constructed a fusion gene encoding TtAP with a 6His tag (TtAP-6His). TtAP-6His was put into vector pET-30a(+) to form the expression vector pET-30a(+)-TtAP-6His, and was then introduced into E. coli strain Rosetta (DE3). We established a systematic process for the extraction of TtAP protein using 5 liters of bacterial suspension, including the optimization of IPTG induction time (6 h), followed by protein extraction using enzymolysis buffers, the heat treatment of temperature (70 °C) with 60 min to remove impurity, precipitation with ammonium sulfate (55 %), protein purification with Ni-affinity chromatography, and the enzyme activities finally were determined. The purification yield of TtAP-6His ranged from 73.67 to 115.25 mg/L (47 KU/mg).
Collapse
Affiliation(s)
- Wanli Guo
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Dajin Wang
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Wei Chen
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Chuyang Rao
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yunxuan Tang
- Laboratory of Molecular Precision Diagnosis, Chengdu Base Cipher Biotechnology Co., Ltd., No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuang, China
| | - Wangfeng Li
- Laboratory of Molecular Precision Diagnosis, Chengdu Base Cipher Biotechnology Co., Ltd., No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuang, China.
| |
Collapse
|
2
|
DeHart KM, Hoitsma NM, Thompson SH, Borin VA, Agarwal PK, Freudenthal BD. APE1 active site residue Asn174 stabilizes the AP-site and is essential for catalysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633034. [PMID: 39868178 PMCID: PMC11761008 DOI: 10.1101/2025.01.14.633034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Apurinic/Apyrimidinic (AP)-sites are common and highly mutagenic DNA lesions that can arise spontaneously or as intermediates during Base Excision Repair (BER). The enzyme apurinic/apyrimidinic endonuclease 1 (APE1) initiates repair of AP-sites by cleaving the DNA backbone at the AP-site via its endonuclease activity. Here, we investigated the functional role of the APE1 active site residue N174 that contacts the AP-site during catalysis. We analyzed the effects of three rationally designed APE1 mutations that alter the hydrogen bonding potential, size, and charge of N174: N174A, N174D, and N174Q. We found impaired catalysis of the APE1 N174A and APE1 N174D mutants due to disruption of hydrogen bonding and electrostatic interactions between residue 174 and the AP-site. In comparison, the APE1 N174Q mutant was less impaired due to retaining similar hydrogen bonding and electrostatic characteristics as N174 in wild-type APE1. Structures and computational simulations further revealed that the AP-site was destabilized within the active sites of the APE1 N174A and APE1 N174D mutants due to loss of hydrogen bonding between residue 174 and the AP-site. Cumulatively, we show that N174 stabilizes the AP-site within the APE1 active site through hydrogen bonding and electrostatic interactions to enable effective catalysis. These findings highlight the importance of N174 in APE1's function and provide new insights into the molecular mechanism by which APE1 processes AP-sites during DNA repair.
Collapse
|
3
|
Lee D, Lee G. Single-molecule studies of repair proteins in base excision repair. BMB Rep 2025; 58:17-23. [PMID: 39701025 PMCID: PMC11788526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024] Open
Abstract
Base excision repair (BER) is an essential cellular mechanism that repairs small, non-helix-distorting base lesions in DNA, resulting from oxidative damage, alkylation, deamination, or hydrolysis. This review highlights recent advances in understanding the molecular mechanisms of BER enzymes through single-molecule studies. We discuss the roles of DNA glycosylases in lesion recognition and excision, with a focus on facilitated diffusion mechanisms such as sliding and hopping that enable efficient genome scanning. The dynamics of apurinic/apyrimidinic endonucleases, especially the coordination between APE1 and DNA polymerase β (Pol β), are explored to demonstrate their crucial roles in processing abasic sites. The review further explores the short-patch and long-patch BER pathways, emphasizing the activities of Pol β, XRCC1, PARP1, FEN1, and PCNA in supporting repair synthesis and ligation. Additionally, we highlight the emerging role of UV-DDB as a general damage sensor in BER, extending its recognized function beyond nucleotide excision repair. Single-molecule techniques have been instrumental in uncovering the complex interactions and mechanisms of BER proteins, offering unprecedented insights that could guide future therapeutic strategies for maintaining genomic stability. [BMB Reports 2025; 58(1): 17-23].
Collapse
Affiliation(s)
- Donghun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Gwangrog Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
4
|
Zhou M, Liu Z, Zhang B, Hu B. Defense systems of soil microorganisms in response to compound contamination by arsenic and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175364. [PMID: 39117226 DOI: 10.1016/j.scitotenv.2024.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % ∼ 74.23 % and specific defense genes increasing by 44.13 % ∼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
5
|
Lee D, Kim J, Lee G. Simple methods to determine the dissociation constant, K d. Mol Cells 2024; 47:100112. [PMID: 39293742 PMCID: PMC11471161 DOI: 10.1016/j.mocell.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The determination of the dissociation constant (Kd) is pivotal in biochemistry and pharmacology for understanding binding affinities in chemical reactions, which is crucial for drug development and comprehending biological systems. Here, we introduce a single-molecule fluorescence resonance energy transfer-based method for determining Kd, alongside the conventional electrophoretic mobility shift assay method of Kd, offering insights into thermodynamic interactions between proteins and substrates. The single-molecule fluorescence resonance energy transfer approach is highlighted for its ability to accurately measure binding and dissociation kinetics through fluorescence labeling and the intrinsic nature of protein-DNA interactions, representing a significant advancement in the fields of molecular biology and pharmacology.
Collapse
Affiliation(s)
- Donghun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Juwon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Gwangrog Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
6
|
Ye J, Fan M, Zhan J, Zhang X, Lu S, Chai M, Zhang Y, Zhao X, Li S, Zhang D. In silico bioactivity prediction of proteins interacting with graphene-based nanomaterials guides rational design of biosensor. Talanta 2024; 277:126397. [PMID: 38865956 DOI: 10.1016/j.talanta.2024.126397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Graphene-based nanomaterials have attracted significant attention for their potentials in biomedical and biotechnology applications in recent years, owing to the outstanding physical and chemical properties. However, the interaction mechanism and impact on biological activity of macro/micro biomolecules still require more concerns and further research in order to enhance their applicability in biosensors, etc. Herein, an integrated method has been developed to predict the protein bioactivity performance when interacting with nanomaterials for protein-based biosensor. Molecular dynamics simulation and molecular docking technique were consolidated to investigate several nanomaterials: C60 fullerene, single-walled carbon nanotube, pristine graphene and graphene oxide, and their effect when interacting with protein. The adsorption behavior, secondary structure changes and protein bioactivity changes were simulated, and the results of protein activity simulation were verified in combination with atomic force spectrum, circular dichroism spectrum fluorescence and electrochemical experiments. The best quantification alignment between bioactivity obtained by simulation and experiment measurements was further explored. The two proteins, RNase A and Exonuclease III, were regarded as analysis model for the proof of concept, and the prediction accuracy of protein bioactivity could reach up to 0.98. The study shows an easy-to-operate and systematic approach to predict the effects of graphene-based nanomaterials on protein bioactivity, which holds guiding significance for the design of protein-related biosensors. In addition, the proposed prediction model is not limited to carbon-based nanomaterials and can be extended to other types of nanomaterials. This facilitates the rapid, simple, and low-cost selection of efficient and biosafe nanomaterials candidates for protein-related applications in biosensing and biomedical systems.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jie Zhan
- Research Center for New Materials Computation, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Shasha Lu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mengyao Chai
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Wang H, Ye C, Lu Q, Jiang Z, Jiang C, Zhou C, Li N, Zhang C, Zhao G, Yue M, Li Y. Bacterial exonuclease III expands its enzymatic activities on single-stranded DNA. eLife 2024; 13:RP95648. [PMID: 38959062 PMCID: PMC11221836 DOI: 10.7554/elife.95648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.
Collapse
Affiliation(s)
- Hao Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chen Ye
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Qi Lu
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Chun Zhou
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Na Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Caiqiao Zhang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| |
Collapse
|
8
|
Liu X, Zhang X, Cui S, Xu S, Liu R, Wang B, Wei X, Zhang Q. A signal transmission strategy driven by gap-regulated exonuclease hydrolysis for hierarchical molecular networks. Commun Biol 2024; 7:335. [PMID: 38493265 PMCID: PMC10944543 DOI: 10.1038/s42003-024-06036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Exonucleases serve as efficient tools for signal processing and play an important role in biochemical reactions. Here, we identify the mechanism of cooperative exonuclease hydrolysis, offering a method to regulate the cooperative hydrolysis driven by exonucleases through the modulation of the number of bases in gap region. A signal transmission strategy capable of producing amplified orthogonal DNA signal is proposed to resolve the polarity of signals and byproducts, which provides a solution to overcome the signal attenuation. The gap-regulated mechanism combined with DNA strand displacement (DSD) reduces the unpredictable secondary structures, allowing for the coexistence of similar structures in hierarchical molecular networks. For the application of the strategy, a molecular computing model is constructed to solve the maximum weight clique problems (MWCP). This work enhances for our knowledge of these important enzymes and promises application prospects in molecular computing, signal detection, and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shujuan Xu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
9
|
Li J, Wang C, Liang W, Zhang J, Jiang CK, Liu Y, Ren Z, Ci D, Chang J, Han S, Deng XW, Wang Y, Qian W. Functional importance and divergence of plant apurinic/apyrimidinic endonucleases in somatic and meiotic DNA repair. THE PLANT CELL 2023; 35:2316-2331. [PMID: 36856605 PMCID: PMC10226563 DOI: 10.1093/plcell/koad056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 05/30/2023]
Abstract
Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Shangling Han
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| |
Collapse
|
10
|
Zeng C, Liu X, Wang B, Qin R, Zhang Q. Multifunctional Exo III-assisted scalability strategy for constructing DNA molecular logic circuits. Analyst 2023; 148:1954-1960. [PMID: 36994799 DOI: 10.1039/d3an00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The construction of logic circuits is critical to DNA computing. Simple and effective scalability methods have been the focus of attention in various fields related to constructing logic circuits. We propose a double-stranded separation (DSS) strategy to facilitate the construction of complex circuits. The strategy combines toehold-mediated strand displacement with exonuclease III (Exo III), which is a multifunctional nuclease. Exo III can quickly recognize an apurinic/apyrimidinic (AP) site. DNA oligos with an AP site can generate an output signal by the strand displacement reaction. However, in contrast to traditional strand displacement reactions, the double-stranded waste from the strand displacement can be further hydrolysed by the endonuclease function of Exo III, thus generating an additional output signal. The DSS strategy allows for the effective scalability of molecular logic circuits, enabling multiple logic computing capabilities simultaneously. In addition, we succeeded in constructing a logic circuit with dual logic functions that provides foundations for more complex circuits in the future and has a broad scope for development in logic computing, biosensing, and nanomachines.
Collapse
Affiliation(s)
- Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Rui Qin
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| |
Collapse
|
11
|
Jia X, Li Y, Wang T, Bi L, Guo L, Chen Z, Zhang X, Ye S, Chen J, Yang B, Sun B. Discrete RNA-DNA hybrid cleavage by the EXD2 exonuclease pinpoints two rate-limiting steps. EMBO J 2023; 42:e111703. [PMID: 36326837 PMCID: PMC9811613 DOI: 10.15252/embj.2022111703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
EXD2 is a recently identified exonuclease that cleaves RNA and DNA in double-stranded (ds) forms. It thus serves as a model system for investigating the similarities and discrepancies between exoribonuclease and exodeoxyribonuclease activities and for understanding the nucleic acid (NA) unwinding-degradation coordination of an exonuclease. Here, using a single-molecule fluorescence resonance energy transfer (smFRET) approach, we show that despite stable binding to both substrates, EXD2 barely cleaves dsDNA and yet displays both exoribonuclease and exodeoxyribonuclease activities toward RNA-DNA hybrids with a cleavage preference for RNA. Unexpectedly, EXD2-mediated hybrid cleavage proceeds in a discrete stepwise pattern, wherein a sudden 4-bp duplex unwinding increment and the subsequent dwell constitute a complete hydrolysis cycle. The relatively weak exodeoxyribonuclease activity of EXD2 partially originates from frequent hybrid rewinding. Importantly, kinetic analysis and comparison of the dwell times under varied conditions reveal two rate-limiting steps of hybrid unwinding and nucleotide excision. Overall, our findings help better understand the cellular functions of EXD2, and the cyclic coupling between duplex unwinding and exonucleolytic degradation may be generalizable to other exonucleases.
Collapse
Affiliation(s)
- Xinshuo Jia
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yanan Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Teng Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Lijuan Guo
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ziting Chen
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xia Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Shasha Ye
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Present address:
ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Jia Chen
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Bei Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
12
|
Bilayer magnetic-plasmonic satellite nanoassemblies for SERS detection of tobramycin with exonuclease amplification. Biosens Bioelectron 2022; 218:114789. [DOI: 10.1016/j.bios.2022.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
|