1
|
Cai X, Zhai Z, Noto T, Dong G, Wang X, Liucong M, Liu Y, Agreiter C, Loidl J, Mochizuki K, Tian M. A specialized TFIIB is required for transcription of transposon-targeting noncoding RNAs. Nucleic Acids Res 2025; 53:gkaf427. [PMID: 40377217 PMCID: PMC12082453 DOI: 10.1093/nar/gkaf427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Transposable elements (TEs) pose threats to genome stability. Therefore, small RNA-mediated heterochromatinization suppresses the transcription and hence the mobility of TEs. Paradoxically, transcription of noncoding RNA (ncRNA) from TEs is needed for the production of TE-targeting small RNAs and/or recruiting the silencing machinery to TEs. Hence, specialized RNA polymerase II (Pol II) regulators are required for such unconventional transcription in different organisms, including the developmental stage-specific Mediator complex (Med)-associated proteins in the ncRNA transcription from TE-related sequences in Tetrahymena. Yet it remains unclear how the Pol II transcriptional machinery is assembled at TE-related sequences for the ncRNA transcription. Here, we report that Pol II is regulated by Emit3, a stage-specific TFIIB-like protein specialized in TE transcription. Emit3 interacts with the TFIIH complex and localizes to TE-dense regions, especially at sites enriched with a G-rich sequence motif. Deletion of Emit3 globally abolishes Pol II-chromatin association in the meiotic nucleus, disrupts the chromatin binding of Med, and impairs the TE-biased localization of TFIIH. Conversely, Emit3's preferential localization to TE-rich loci relies in part on Med-associated proteins. These findings suggest that Emit3, TFIIH, and Med-associated proteins work together to initiate Pol II ncRNA transcription from TE-dense regions, possibly in a sequence-dependent manner.
Collapse
Affiliation(s)
- Xia Cai
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhihao Zhai
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
| | - Gang Dong
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna A-1030, Austria
| | - Xue Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Mingmei Liucong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yujie Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Christiane Agreiter
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
| | - Miao Tian
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
2
|
Stefanov BA, Nowacki M. Functions and mechanisms of eukaryotic RNA-guided programmed DNA elimination. Biochem Soc Trans 2025; 53:BST20253006. [PMID: 40305257 DOI: 10.1042/bst20253006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
Many eukaryotic organisms, from ciliates to mammals, employ programmed DNA elimination during their postmeiotic reproduction. The process removes specific regions from the somatic DNA and has broad functions, including the irreversible silencing of genes, sex determination, and genome protection from transposable elements or integrating viruses. Multiple mechanisms have evolved that explain the sequence selectivity of the process. In some cases, the eliminated sequences lack centromeres and are flanked by conserved sequence motifs that are specifically recognized and cleaved by designated nucleases. Upon cleavage, all DNA fragments that lack centromeres are lost during the following mitosis. Alternatively, specific sequences can be destined for elimination by complementary small RNAs (sRNAs) as in some ciliates. These sRNAs enable a PIWI-mediated recruitment of chromatin remodelers, followed up by the precise positioning of a cleavage complex formed from a transposase like PiggyBac or Tc1. Here, we review the known molecular interplay of the cellular machinery that is involved in precise sRNA-guided DNA excision, and additionally, we highlight prominent knowledge gaps. We focus on the modes through which sRNAs enable the precise localization of the cleavage complex, and how the nuclease activity is controlled to prevent off-target cleavage. A mechanistic understanding of this process could enable the development of novel eukaryotic genome editing tools.
Collapse
Affiliation(s)
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| |
Collapse
|
3
|
Singh A, Häußermann L, Emmerich C, Nischwitz E, Seah BKB, Butter F, Nowacki M, Swart EC. ISWI1 complex proteins facilitate developmental genome editing in Paramecium. Genome Res 2025; 35:93-108. [PMID: 39542647 PMCID: PMC11789628 DOI: 10.1101/gr.278402.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
One of the most extensive forms of natural genome editing occurs in ciliates, a group of microbial eukaryotes. Ciliate germline and somatic genomes are contained in distinct nuclei within the same cell. During the massive reorganization process of somatic genome development, ciliates eliminate tens of thousands of DNA sequences from a germline genome copy. Recently, we showed that the chromatin remodeler ISWI1 is required for somatic genome development in the ciliate Paramecium tetraurelia Here, we describe two high similarity paralogous proteins, ICOPa and ICOPb, essential for their genome editing. ICOPa and ICOPb are highly divergent from known proteins; the only domain detected showed distant homology with the WSD (WHIM2 + WHIM3) motif. We show that both ICOPa and ICOPb interact with the chromatin remodeler ISWI1. Upon ICOP knockdown, changes in alternative DNA excision boundaries and nucleosome densities are similar to those observed for ISWI1 knockdown. We thus propose that a complex comprising ISWI1 and either or both ICOPa and ICOPb are needed for Paramecium's precise genome editing.
Collapse
Affiliation(s)
- Aditi Singh
- Max Planck Institute for Biology, 72076 Tübingen, Germany;
| | | | | | | | | | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institut, 17493 Greifswald, Germany
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
4
|
Charmant O, Gruchota J, Arnaiz O, Nowak K, Moisan N, Zangarelli C, Bétermier M, Anielska-Mazur A, Legros V, Chevreux G, Nowak J, Duharcourt S. The PIWI-interacting protein Gtsf1 controls the selective degradation of small RNAs in Paramecium. Nucleic Acids Res 2025; 53:gkae1055. [PMID: 39571614 PMCID: PMC11724296 DOI: 10.1093/nar/gkae1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 01/12/2025] Open
Abstract
Ciliates undergo developmentally programmed genome elimination, in which small RNAs direct the removal of transposable elements (TEs) during the development of the somatic nucleus. Twenty-five nucleotide scanRNAs (scnRNAs) are produced from the entire germline genome and transported to the maternal somatic nucleus, where selection of scnRNAs corresponding to germline-specific sequences is thought to take place. Selected scnRNAs then guide the elimination of TEs in the developing somatic nucleus. How germline-specific scnRNAs are selected remains to be determined. Here, we provide important mechanistic insights into the scnRNA selection pathway by identifying a Paramecium homolog of Gtsf1 as essential for the selective degradation of scnRNAs corresponding to retained somatic sequences. Consistently, we also show that Gtsf1 is localized in the maternal somatic nucleus where it associates with the scnRNA-binding protein Ptiwi09. Furthermore, we demonstrate that the scnRNA selection process is critical for genome elimination. We propose that Gtsf1 is required for the coordinated degradation of Ptiwi09-scnRNA complexes that pair with target RNA via the ubiquitin pathway, similarly to the mechanism suggested for microRNA target-directed degradation in metazoans.
Collapse
Affiliation(s)
- Olivia Charmant
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, F-75013 Paris, France
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Katarzyna P Nowak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Nicolas Moisan
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, F-75013 Paris, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Anna Anielska-Mazur
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, F-75013 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, F-75013 Paris, France
| | - Jacek K Nowak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Sandra Duharcourt
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, F-75013 Paris, France
| |
Collapse
|
5
|
Jiang Y, Chen X, Wang C, Lyu L, Al-Farraj SA, Stover NA, Gao F. Genes and proteins expressed at different life cycle stages in the model protist Euplotes vannus revealed by both transcriptomic and proteomic approaches. SCIENCE CHINA. LIFE SCIENCES 2025; 68:232-248. [PMID: 39276255 DOI: 10.1007/s11427-023-2605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 09/16/2024]
Abstract
Sexual reproduction first appeared in unicellular protists and has continued to be an essential biological process in almost all eukaryotes. Ciliated protists, which contain both germline and somatic genomes within a single cell, have evolved a special form of sexual reproduction called conjugation that involves mitosis, meiosis, fertilization, nuclear differentiation, genome rearrangement, and the development of unique cellular structures. The molecular basis and mechanisms of conjugation vary dramatically among ciliates, and many details of the process and its regulation are still largely unknown. In order to better comprehend these processes and mechanisms from an evolutionary perspective, this study provides the first comprehensive overview of the transcriptome and proteome profiles during the entire life cycle of the newly-established marine model ciliate Euplotes vannus. Transcriptome analyses from 14 life cycle stages (three vegetative stages and 11 sexual stages) revealed over 26,000 genes that are specifically expressed at different stages, many of which are related to DNA replication, transcription, translation, mitosis, meiosis, nuclear differentiation, and/or genome rearrangement. Quantitative proteomic analyses identified 338 proteins with homologs associated with conjugation and/or somatic nuclear development in other ciliates, including dicer-like proteins, Hsp90 proteins, RNA polymerase II and transcription elongation factors, ribosomal-associated proteins, and ubiquitin-related proteins. Four of these homologs belong to the PIWI family, each with different expression patterns identified and confirmed by RT-qPCR, which may function in small RNA-mediated genome rearrangement. Proteins involved in the nonhomologous end-joining pathway are induced early during meiosis and accumulate in the developing new somatic nucleus, where more than 80% of the germline sequences are eliminated from the somatic genome. A number of new candidate genes and proteins likely to play roles in conjugation and its related genome rearrangements have also been revealed. The gene expression profiles reported here will be valuable resources for further studies of the origin and evolution of sexual reproduction in this new model species.
Collapse
Affiliation(s)
- Yaohan Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai, 264209, China
| | - Chundi Wang
- Marine College, Shandong University, Weihai, 264209, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
7
|
Shehzada S, Noto T, Saksouk J, Mochizuki K. A SUMO E3 ligase promotes long non-coding RNA transcription to regulate small RNA-directed DNA elimination. eLife 2024; 13:e95337. [PMID: 38197489 PMCID: PMC10830130 DOI: 10.7554/elife.95337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Small RNAs target their complementary chromatin regions for gene silencing through nascent long non-coding RNAs (lncRNAs). In the ciliated protozoan Tetrahymena, the interaction between Piwi-associated small RNAs (scnRNAs) and the nascent lncRNA transcripts from the somatic genome has been proposed to induce target-directed small RNA degradation (TDSD), and scnRNAs not targeted for TDSD later target the germline-limited sequences for programmed DNA elimination. In this study, we show that the SUMO E3 ligase Ema2 is required for the accumulation of lncRNAs from the somatic genome and thus for TDSD and completing DNA elimination to make viable sexual progeny. Ema2 interacts with the SUMO E2 conjugating enzyme Ubc9 and enhances SUMOylation of the transcription regulator Spt6. We further show that Ema2 promotes the association of Spt6 and RNA polymerase II with chromatin. These results suggest that Ema2-directed SUMOylation actively promotes lncRNA transcription, which is a prerequisite for communication between the genome and small RNAs.
Collapse
Affiliation(s)
- Salman Shehzada
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Julie Saksouk
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| |
Collapse
|
8
|
Liu J, Jie W, Shi X, Ding Y, Ding C. Transcription elongation factors OsSPT4 and OsSPT5 are essential for rice growth and development and act with APO2. PLANT CELL REPORTS 2023:10.1007/s00299-023-03025-6. [PMID: 37148321 DOI: 10.1007/s00299-023-03025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE The transcription elongation factor SPT4/SPT5 complex is essential for rice vegetative and reproductive growth and that OsSPT5-1, with its interactor APO2, is involved in multiple phytohormone pathways. The SPT4/SPT5 complex is a transcription elongation factor that regulates the processivity of transcription elongation. However, our understanding of the role of SPT4/SPT5 complex in developmental regulation remains limited. Here, we identified three SPT4/SPT5 genes (OsSPT4, OsSPT5-1, and OsSPT5-2) in rice, and investigated their roles in vegetative and reproductive growth. These genes are highly conserved with their orthologs in other species. OsSPT4 and OsSPT5-1 are widely expressed in various tissues. By contrast, OsSPT5-2 is expressed at a relatively low level, which could cause osspt5-2 null mutants have no phenotypes. Loss-of-function mutants of OsSPT4 and OsSPT5-1 could not be obtained; their heterozygotes showed severe reproductive growth defects. An incomplete mutant line (osspt5-1#12) displayed gibberellin-related dwarfed defects and a weak root system at an early vegetative phase, and a short life cycle in different planting environments. Furthermore, OsSPT5-1 interacts with the transcription factor ABERRANT PANICLE ORGANIZATION 2 (APO2) and plays a similar role in regulating the growth of rice shoots. RNA sequencing analysis verified that OsSPT5-1 is involved in multiple phytohormone pathways, including gibberellin, auxin, and cytokinin. Therefore, the SPT4/SPT5 complex is essential for both vegetative and reproductive growth in rice.
Collapse
Affiliation(s)
- Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wanrong Jie
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xi'an Shi
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing, 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China.
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|