1
|
Zhang Z, Chen J, Yao M, Wang G. Structural Insight Into the Function of DnaB Helicase in Bacterial DNA Replication. Proteins 2025; 93:420-429. [PMID: 39230358 DOI: 10.1002/prot.26746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
In bacteria, chromosome replication is achieved by the coordinations of more than a dozen replisome enzymes. Replication initiation protein DnaA melts DNA duplex at replication origin (oriC) and forms a replication bubble, followed by loading of helicase DnaB with the help of loader protein DnaC. Then the DnaB helicase unwinds the dsDNA and supports the priming of DnaG and the polymerizing of DNA polymerase. The DnaB helicase functions as a platform coupling unwinding, priming, and polymerizing events. The multiple roles of DnaB helicase are underlined by its distinctive architecture and dynamics conformations. In this review, we will discuss the assembling of DnaB hexamer and the conformational changes upon binding of various partners, DnaB in states of closed dilated (CD), closed constricted (CC), closed helical (CH), and open helical (OH) are discussed. These multiple interfaces among DnaB and partners are potential targets for inhibitors design and novel peptide antibiotics development.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Maochun Yao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Pelliciari S, Bodet-Lefèvre S, Fenyk S, Stevens D, Winterhalter C, Schramm FD, Pintar S, Burnham DR, Merces G, Richardson TT, Tashiro Y, Hubbard J, Yardimci H, Ilangovan A, Murray H. The bacterial replication origin BUS promotes nucleobase capture. Nat Commun 2023; 14:8339. [PMID: 38097584 PMCID: PMC10721633 DOI: 10.1038/s41467-023-43823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Genome duplication is essential for the proliferation of cellular life and this process is generally initiated by dedicated replication proteins at chromosome origins. In bacteria, DNA replication is initiated by the ubiquitous DnaA protein, which assembles into an oligomeric complex at the chromosome origin (oriC) that engages both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) to promote DNA duplex opening. However, the mechanism of DnaA specifically opening a replication origin was unknown. Here we show that Bacillus subtilis DnaAATP assembles into a continuous oligomer at the site of DNA melting, extending from a dsDNA anchor to engage a single DNA strand. Within this complex, two nucleobases of each ssDNA binding motif (DnaA-trio) are captured within a dinucleotide binding pocket created by adjacent DnaA proteins. These results provide a molecular basis for DnaA specifically engaging the conserved sequence elements within the bacterial chromosome origin basal unwinding system (BUS).
Collapse
Affiliation(s)
- Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Salomé Bodet-Lefèvre
- Centre for Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark Street, London, E1 2AT, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Frederic D Schramm
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Sara Pintar
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Daniel R Burnham
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Merces
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Tomas T Richardson
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Yumiko Tashiro
- Centre for Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark Street, London, E1 2AT, UK
| | - Julia Hubbard
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Hasan Yardimci
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Aravindan Ilangovan
- Centre for Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark Street, London, E1 2AT, UK.
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK.
| |
Collapse
|
3
|
Jun JS, Jeong HE, Moon SY, Shin SH, Hong KW. Time-Course Transcriptome Analysis of Bacillus subtilis DB104 during Growth. Microorganisms 2023; 11:1928. [PMID: 37630488 PMCID: PMC10458515 DOI: 10.3390/microorganisms11081928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Bacillus subtilis DB104, an extracellular protease-deficient derivative of B. subtilis 168, is widely used for recombinant protein expression. An understanding of the changes in gene expression during growth is essential for the commercial use of bacterial strains. Transcriptome and proteome analyses are ideal methods to study the genomic response of microorganisms. In this study, transcriptome analysis was performed to monitor changes in the gene expression level of B. subtilis DB104 while growing on a complete medium. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, K-mean cluster analysis, gene ontology (GO) enrichment analysis, and the function of sigma factors were used to divide 2122 differentially expressed genes (DEGs) into 10 clusters and identified gene functions according to expression patterns. The results of KEGG pathway analysis indicated that ABC transporter is down-regulated during exponential growth and metabolic changes occur at the transition point where sporulation starts. At this point, several stress response genes were also turned on. The genes involved in the lipid catabolic process were up-regulated briefly at 15 h as an outcome of the programmed cell death that postpones sporulation. The results suggest that changes in the gene expression of B. subtilis DB104 were dependent on the initiation of sporulation. However, the expression timing of the spore coat gene was only affected by the relevant sigma factor. This study can help to understand gene expression and regulatory mechanisms in B. subtilis species by providing an overall view of transcriptional changes during the growth of B. subtilis DB104.
Collapse
Affiliation(s)
| | | | | | | | - Kwang-Won Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang-si 10326, Republic of Korea; (J.-S.J.); (H.-E.J.); (S.-Y.M.); (S.-H.S.)
| |
Collapse
|
4
|
Winterhalter C, Pelliciari S, Stevens D, Fenyk S, Marchand E, Cronin N, Soultanas P, Costa TD, Ilangovan A, Murray H. The DNA replication initiation protein DnaD recognises a specific strand of the Bacillus subtilis chromosome origin. Nucleic Acids Res 2023; 51:4322-4340. [PMID: 37093985 PMCID: PMC10201434 DOI: 10.1093/nar/gkad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Nora B Cronin
- LonCEM, London Consortium for Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Aravindan Ilangovan
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|