1
|
Zhang Y, Deveikis M, Qiu Y, Björn L, Martinez ZA, Chou TF, Freemont PS, Murray RM. Optimizing Protein Production in the One-Pot PURE System: Insights into Reaction Composition and Expression Efficiency. ACS Synth Biol 2025. [PMID: 40209036 DOI: 10.1021/acssynbio.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
The One-Pot PURE (Protein synthesis Using Recombinant Elements) system simplifies the preparation of traditional PURE systems by coculturing and purifying 36 essential proteins for gene expression in a single step, enhancing accessibility and affordability for widespread laboratory adoption and customization. However, replicating this protocol to match the productivity of traditional PURE systems can take considerable time and effort due to uncharacterized variability. In this work, we observed unstable PURE protein expression in the original One-Pot PURE strains, E. coli M15/pREP4 and BL21(DE3), and addressed this issue using glucose-mediated catabolite repression to minimize burdensome background expression. We also identified several limitations making the M15/pREP4 strain unsuitable for PURE protein expression, including coculture incompatibility with BL21(DE3) and uncharacterized proteolytic activity. We showed that consolidating all expression vectors into a protease-deficient BL21(DE3) strain minimized proteolysis, led to more uniform coculture cell growth at the time of induction, and improved the stoichiometry of critical translation initiation factors in the final PURE mixture for efficient cell-free protein production. In addition to optimizing the One-Pot PURE protein composition, we found that variations in commercial energy solution formulations could compensate for suboptimal PURE protein stoichiometry. Notably, altering the source of E. coli tRNAs in the energy solution alone led to significant differences in the expression capacity of cell-free reactions, highlighting the importance of tRNA codon usage in influencing protein expression yield. Taken together, this work systematically investigates the proteome and biochemical factors influencing the One-Pot PURE system productivity, offering insights to enhance its robustness and adaptability across laboratories.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Matas Deveikis
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Yanping Qiu
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| | - Lovisa Björn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zachary A Martinez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul S Freemont
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Fukunaga K, Teramoto T, Nakashima M, Ohtani T, Katsuki R, Matsuura T, Yokobayashi Y, Kakuta Y. Structural insights into lab-coevolved RNA-RBP pairs and applications of synthetic riboswitches in cell-free system. Nucleic Acids Res 2025; 53:gkaf212. [PMID: 40119732 PMCID: PMC11928940 DOI: 10.1093/nar/gkaf212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
CS1-LS4 and CS2-LS12 are ultra-high affinity and orthogonal RNA-protein pairs that were identified by PD-SELEX (Phage Display coupled with Systematic Evolution of Ligands by EXponential enrichment). To investigate the molecular basis of the lab-coevolved RNA-RBP pairs, we determined the structures of the CS1-LS4 and CS2-LS12 complexes and the LS12 homodimer in an RNA-free state by X-ray crystallography. The structural analyses revealed that the lab-coevolved RNA-RBPs have acquired unique molecular recognition mechanisms, whereas the overall structures of the RNP complexes were similar to the typical kink-turn RNA-L7Ae complex. The orthogonal RNA-RBP pairs were applied to construct high-performance cell-free riboswitches that regulate translation in response to LS4 or LS12. In addition, by using the orthogonal protein-responsive switches, we generated an AND logic gate that outputs staphylococcal γ-hemolysin in cell-free system and carried out hemolysis assay and calcein leakage assay using rabbit red blood cells and artificial cells, respectively.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- Earth-Life Science Institute (ELSI), Institute of Science Tokyo, Tokyo 152 8550, Japan
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904 0495, Japan
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki 889 2192, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819 0395, Japan
| | - Momoka Nakashima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819 0395, Japan
| | - Toshitaka Ohtani
- Earth-Life Science Institute (ELSI), Institute of Science Tokyo, Tokyo 152 8550, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), Tokyo 182 8585, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute (ELSI), Institute of Science Tokyo, Tokyo 152 8550, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904 0495, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819 0395, Japan
| |
Collapse
|
3
|
Jeung K, Kim M, Jang E, Shon YJ, Jung GY. Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering. Biotechnol Adv 2025; 79:108522. [PMID: 39863189 DOI: 10.1016/j.biotechadv.2025.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive. Cell-free systems (CFSs) serve as powerful platforms for rapid prototyping of genetic circuits, metabolic pathways, and enzyme functionality. They offer numerous advantages, including minimizing unwanted metabolic interference, precise control of reaction conditions, reduced labor, and shorter Design-Build-Test-Learn cycles. Additionally, the introduction of in vitro compartmentalization strategies in CFSs enables ultra-high-throughput screening in physically separated spaces, which significantly enhances prototyping efficiency. This review highlights the latest examples of using CFS to overcome prototyping limitations in living cells with a focus on rapid prototyping, particularly regarding gene regulation, enzymes, and multienzymatic reactions in bacteria. Finally, this review evaluates CFSs as a versatile prototyping platform and discusses its future applications, emphasizing its potential for producing high-value chemicals through microbial biosynthesis.
Collapse
Affiliation(s)
- Kumyoung Jeung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsun Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-Ro, Jung-Gu, Ulsan 44429, Republic of Korea
| | - Eunsoo Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yang Jun Shon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
4
|
Tomohara K, Minagawa Y, Noji H. Artificial cells with all-aqueous droplet-in-droplet structures for spatially separated transcription and translation. Nat Commun 2025; 16:627. [PMID: 39856089 PMCID: PMC11759700 DOI: 10.1038/s41467-024-55366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways. Here, we develop artificial cells with all-aqueous droplet-in-droplet structures that separate transcription and translation processes like the nucleus and cytosol in eukaryotic cells. This architecture uses protein-based inner droplets and aqueous two-phase outer compartments, stabilized by colloidal emulsifiers. The inner droplet is designed to enrich DNA and RNA polymerase for transcription, coupled to translation at the outer droplet via mRNA-mediated cascade reactions. We show that these processes proceed independently within each compartment, maintaining genotype-phenotype correspondence. This approach provides a practical tool for exploring complex systems of artificial organelles within large ensembles of artificial cells.
Collapse
Affiliation(s)
- Kanji Tomohara
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
5
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Cowell TW, Jing W, Noh H, Han HS. Drop-by-Drop Addition of Reagents to a Double Emulsion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404121. [PMID: 39101620 DOI: 10.1002/smll.202404121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Developments in droplet microfluidics have facilitated an era of high-throughput, sensitive single-cell, or single-molecule measurements capable of tackling the heterogeneity present in biological systems. Relying on single emulsion (SE) compartments, droplet assays achieve absolute quantification of nucleic acids, massively parallel single-cell profiling, and more. Double emulsions (DEs) have seen recent interest for their potential to build upon SE techniques. DEs are compatible with flow cytometry enabling high-throughput multi-parameter drop screening and eliminate content mixing due to coalescence during lengthy workflows. Despite these strengths, DEs lack important technical functions that exist in SEs such as methods for adding reagents to droplets on demand. Consequently, DEs cannot be used for multistep workflows which has limited their adoption in assay development. Here, strategies to enable reagent addition and other active manipulations on DEs are reported by converting DE inputs to SEs on chip. After conversion, drops are manipulated using existing SE techniques, including reagent addition, before reforming a DE at the outlet. Device designs and operation conditions achieving drop-by-drop reagent addition to DEs are identified and used as part of a multi-step aptamer screening assay performed entirely in DE drops. This work enables the further development of multistep DE droplet assays.
Collapse
Affiliation(s)
- Thomas W Cowell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Matthews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr., Urbana, IL, 61801, USA
| | - Wenyang Jing
- Department of Biophysics, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
| | - Heewon Noh
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Matthews Ave, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Matthews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr., Urbana, IL, 61801, USA
- Department of Biophysics, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
9
|
Rivera M, Ayon OS, Diaconescu-Grabari S, Pottel J, Moitessier N, Mittermaier A, McKeague M. A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states. Nucleic Acids Res 2024; 52:3164-3179. [PMID: 38375901 PMCID: PMC11014391 DOI: 10.1093/nar/gkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
The capacity of riboswitches to undergo conformational changes in response to binding their native ligands is closely tied to their functional roles and is an attractive target for antimicrobial drug design. Here, we established a probe-based fluorescence anisotropy assay to monitor riboswitch conformational switching with high sensitivity and throughput. Using the Bacillus subtillis yitJ S-Box (SAM-I), Fusobacterium nucleatum impX RFN element of (FMN) and class-I cyclic-di-GMP from Vibrio cholerae riboswitches as model systems, we developed short fluorescent DNA probes that specifically recognize either ligand-free or -bound riboswitch conformational states. We showed that increasing concentrations of native ligands cause measurable and reproducible changes in fluorescence anisotropy that correlate with riboswitch conformational changes observed by native gel analysis. Furthermore, we applied our assay to several ligand analogues and confirmed that it can discriminate between ligands that bind, triggering the native conformational change, from those that bind without causing the conformational change. This new platform opens the possibility of high-throughput screening compound libraries to identify potential new antibiotics that specifically target functional conformational changes in riboswitches.
Collapse
Affiliation(s)
- Maira Rivera
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Omma S Ayon
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Joshua Pottel
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Nicolas Moitessier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Anthony Mittermaier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
10
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
11
|
Takahashi H, Fujikawa M, Ogawa A. Rational design of eukaryotic riboswitches that up-regulate IRES-mediated translation initiation with high switching efficiency through a kinetic trapping mechanism in vitro. RNA (NEW YORK, N.Y.) 2023; 29:1950-1959. [PMID: 37704221 PMCID: PMC10653380 DOI: 10.1261/rna.079778.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
In general, riboswitches functioning through a cotranscriptional kinetic trapping mechanism (kt-riboswitches) show higher switching efficiencies in response to practical concentrations of their ligand molecules than eq-riboswitches, which function by an equilibrium mechanism. However, the former have been much more difficult to design due to their more complex mechanism. We here successfully developed a rational strategy for constructing eukaryotic kt-riboswitches that ligand-dependently enhance translation initiation mediated by an internal ribosome entry site (IRES). This was achieved both by utilizing some predicted structural features of a highly efficient bacterial kt-riboswitch identified through screening and by completely decoupling an aptamer domain from the IRES. Three kt-riboswitches optimized through this strategy, each responding to a different ligand, exhibited three- to sevenfold higher induction ratios (up to ∼90) than previously optimized eq-riboswitches regulating the same IRES-mediated translation in wheat germ extract. Because the IRES used functions well in various eukaryotic expression systems, these types of kt-riboswitches are expected to serve as major eukaryotic gene regulators based on RNA. In addition, the present strategy could be applied to the rational construction of other types of kt-riboswitches, including those functioning in bacterial expression systems.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
12
|
Brookwell AW, Gonzalez JL, Martinez AW, Oza JP. Development of Solid-State Storage for Cell-Free Expression Systems. ACS Synth Biol 2023; 12:2561-2577. [PMID: 37490644 DOI: 10.1021/acssynbio.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The fragility of biological systems during storage, transport, and utilization necessitates reliable cold-chain infrastructure and limits the potential of biotechnological applications. In order to unlock the broad applications of existing and emerging biological technologies, we report the development of a novel solid-state storage platform for complex biologics. The resulting solid-state biologics (SSB) platform meets four key requirements: facile rehydration of solid materials, activation of biochemical activity, ability to support complex downstream applications and functionalities, and compatibility for deployment in a variety of reaction formats and environments. As a model system of biochemical complexity, we utilized crudeEscherichia colicell extracts that retain active cellular metabolism and support robust levels of in vitro transcription and translation. We demonstrate broad versatility and utility of SSB through proof-of-concepts for on-demand in vitro biomanufacturing of proteins at a milliliter scale, the activation of downstream CRISPR activity, as well as deployment on paper-based devices. SSBs unlock a breadth of applications in biomanufacturing, discovery, diagnostics, and education in resource-limited environments on Earth and in space.
Collapse
Affiliation(s)
- August W Brookwell
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jorge L Gonzalez
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Andres W Martinez
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Javin P Oza
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
13
|
Vitalis C, Wenzel T. Leveraging interactions in microfluidic droplets for enhanced biotechnology screens. Curr Opin Biotechnol 2023; 82:102966. [PMID: 37390513 DOI: 10.1016/j.copbio.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Microfluidic droplet screens serve as an innovative platform for high-throughput biotechnology, enabling significant advancements in discovery, product optimization, and analysis. This review sheds light on the emerging trends of interaction assays in microfluidic droplets, underscoring the unique suitability of droplets for these applications. Encompassing a diverse range of biological entities such as antibodies, enzymes, DNA, RNA, various microbial and mammalian cell types, drugs, and other molecules, these assays demonstrate their versatility and scope. Recent methodological breakthroughs have escalated these screens to novel scales of bioanalysis and biotechnological product design. Moreover, we highlight pioneering advancements that extend droplet-based screens into new domains: cargo delivery within human bodies, application of synthetic gene circuits in natural environments, 3D printing, and the development of droplet structures responsive to environmental signals. The potential of this field is profound and only set to increase.
Collapse
Affiliation(s)
- Carolus Vitalis
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile
| | - Tobias Wenzel
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile.
| |
Collapse
|
14
|
Li W, Xu Y, Zhang Y, Li P, Zhu X, Feng C. Cell-Free Biosensing Genetic Circuit Coupled with Ribozyme Cleavage Reaction for Rapid and Sensitive Detection of Small Molecules. ACS Synth Biol 2023; 12:1657-1666. [PMID: 37196142 DOI: 10.1021/acssynbio.3c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Synthetic biological systems have been utilized to develop a wide range of genetic circuits and components that enhance the performance of biosensing systems. Among them, cell-free systems are emerging as important platforms for synthetic biology applications. Genetic circuits play an essential role in cell-free systems, mainly consisting of sensing modules, regulation modules, and signal output modules. Currently, fluorescent proteins and aptamers are commonly used as signal outputs. However, these signal output modes cannot simultaneously achieve faster signal output, more accurate and reliable performance, and signal amplification. Ribozyme is a highly structured and catalytic RNA molecule that can specifically recognize and cut specific substrate sequences. Here, by adopting ribozyme as the signal output, we developed a cell-free biosensing genetic circuit coupled with the ribozyme cleavage reaction, enabling rapid and sensitive detection of small molecules. More importantly, we have also successfully constructed a 3D-printed sensor array and thereby achieved high-throughput analysis of an inhibitory drug. Furthermore, our method will help expand the application range of ribozyme in the field of synthetic biology and also optimize the signal output system of cell-free biosensing, thus promoting the development of cell-free synthetic biology in biomedical research, clinical diagnosis, environmental monitoring, and food inspection.
Collapse
Affiliation(s)
- Wenxing Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Yiming Xu
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Zhang
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Pengfei Li
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
- Shaoxing Institute of Shanghai University, Shaoxing 312071, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
15
|
Mao C, Mao Y, Zhu X, Chen G, Feng C. Synthetic biology-based bioreactor and its application in biochemical analysis. Crit Rev Anal Chem 2023; 54:2467-2484. [PMID: 36803337 DOI: 10.1080/10408347.2023.2180319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the past few years, synthetic biologists have established some biological elements and bioreactors composed of nucleotides under the guidance of engineering methods. Following the concept of engineering, the common bioreactor components in recent years are introduced and compared. At present, biosensors based on synthetic biology have been applied to water pollution monitoring, disease diagnosis, epidemiological monitoring, biochemical analysis and other detection fields. In this paper, the biosensor components based on synthetic bioreactors and reporters are reviewed. In addition, the applications of biosensors based on cell system and cell-free system in the detection of heavy metal ions, nucleic acid, antibiotics and other substances are presented. Finally, the bottlenecks faced by biosensors and the direction of optimization are also discussed.
Collapse
Affiliation(s)
- Changqing Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|