1
|
Xie X, Zhang Y, Peng H, Deng Z. Sex Chromosome Dosage Compensation in Insects. INSECTS 2025; 16:160. [PMID: 40003790 PMCID: PMC11856597 DOI: 10.3390/insects16020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary process of achieving dose compensation, insects have developed a wide variety of mechanisms. There exist two primary modes of dosage compensation mechanisms, including the up-regulation of heterogametic sex chromosomes in the heterogamety and down-regulation of homogametic sex chromosomes in the homogamety. Although extensive investigations have been conducted on dosage compensation in model insects, many questions still remain unresolved. Meanwhile, research on non-model insects is attracting increasing attention. This paper systematically summarizes the current advances in the field of insect dosage compensation with respect to its types and mechanisms. The principal insects involved in this study include the Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and other lepidopteran insects. This paper analyzes the controversial issues about insect dosage compensation and also provides prospects for future research.
Collapse
Affiliation(s)
- Xingcheng Xie
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Heyuan Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
2
|
Li J, Xu S, Liu Z, Yang L, Ming Z, Zhang R, Zhao W, Peng H, Quinn JJ, Wu M, Geng Y, Zhang Y, He J, Chen M, Li N, Shao NY, Ma Q. A noncanonical role of roX RNAs in autosomal epigenetic repression. Nat Commun 2025; 16:155. [PMID: 39747148 PMCID: PMC11696496 DOI: 10.1038/s41467-024-55711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces X-chromosomal H4K16ac levels and autosomal H3K27me3 levels. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX loss. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs with PRC interaction.
Collapse
Affiliation(s)
- Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffrey J Quinn
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yushan Geng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiazhi He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minghai Chen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Lu X, Ng K, Pinto E Vairo F, Collins J, Cohn R, Riley K, Agre K, Gavrilova R, Klee EW, Rosenfeld JA, Jiang YH. Novel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders. Eur J Hum Genet 2024; 32:879-883. [PMID: 38702431 PMCID: PMC11219747 DOI: 10.1038/s41431-024-01576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 02/21/2024] [Indexed: 05/06/2024] Open
Abstract
Numerous large scale genomic studies have uncovered rare but recurrent pathogenetic variants in a significant number of genes encoding epigenetic machinery in cases with neurodevelopmental disorders (NDD) especially autism spectrum disorder (ASD). These findings provide strong support for the functional importance of epigenetic regulators in neurodevelopment. After the clinical genomics evaluation of the patients using exome sequencing, we have identified, three novel protein-truncating variants (PTVs) in the MSL2 gene (OMIM: 614802) which encodes a chromatin modifying enzyme. MSL2 modifies chromatin through both mono-ubiquitination of histone 2B on lysine 34 (K34) and acetylation of histone H4 on lysine 16 (K16). We reported first time the detailed clinical features associated with 3 MSL2 PTVs. There are 15 PTVs (13 de novo) reported from the large genomics studies (12 cases) or ClinVar (3 cases) of NDD, ASD, and developmental disorders (DD) but the specific clinical features for these cases are not described. Taken together, our descriptions of dysmorphic face and other features support the causal role of MSL2 in a likely syndromic neurodevelopmental disorder and add MSL2 to a growing list of epigenetic genes implicated in ASD.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kim Ng
- Pediatric Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Filippo Pinto E Vairo
- Department of Clinical Genomics and Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - James Collins
- Mercy Hospital, Pediatric Neurology, St Louis, MO, USA
| | - Ronald Cohn
- SickKids, The Hospital for Sick Children, 555 University Ave Toronto, Toronto, ON, M5G 1X8, Canada
| | - Kacie Riley
- Pediatric Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Katherine Agre
- Department of Clinical Genomics and Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ralitza Gavrilova
- Department of Clinical Genomics and Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eric W Klee
- Department of Clinical Genomics and Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, 77030, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Professor of Genetics, Neuroscience, & Pediatrics Chief of Medical Genetics, Yale University School of Medicine Yale New Haven Hospital, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Tikhonova EA, Georgiev PG, Maksimenko OG. Functional Role of C-terminal Domains in the MSL2 Protein of Drosophila melanogaster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:663-673. [PMID: 38831503 DOI: 10.1134/s0006297924040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 06/05/2024]
Abstract
Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.
Collapse
Affiliation(s)
| | - Pavel G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Oksana G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
7
|
Tikhonova E, Revel-Muroz A, Georgiev P, Maksimenko O. Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in Drosophila. Open Biol 2024; 14:230270. [PMID: 38471568 DOI: 10.1098/rsob.230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The Drosophila male-specific lethal (MSL) complex binds to the male X chromosome to activate transcription. It comprises five proteins (MSL1, MSL2, MSL3, male absent on the first (MOF), and maleless (MLE)) and two long noncoding RNAs (lncRNAs; roX1 and roX2). The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. MSL2 is expressed only in males and interacts with the N-terminal zinc finger of the transcription factor chromatin-linked adapter for MSL proteins (CLAMP), which is important for the specific recruitment of the MSL complex to the male X chromosome. Here, we found that MLE's unstructured C-terminal region interacts with the sixth zinc-finger domain of CLAMP. In vitro, 4-5 zinc fingers are critical for the specific DNA-binding of CLAMP with GA repeats, which constitute the core motif at the high affinity binding sites for MSL proteins. Deleting the CLAMP binding region in MLE decreases the association of MSL proteins with the male X chromosome and increases male lethality. These results suggest that interactions of unstructured regions in MSL2 and MLE with CLAMP zinc finger domains are important for the specific recruitment of the MSL complex to the male X chromosome.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
8
|
Eggers N, Gkountromichos F, Krause S, Campos-Sparr A, Becker P. Physical interaction between MSL2 and CLAMP assures direct cooperativity and prevents competition at composite binding sites. Nucleic Acids Res 2023; 51:9039-9054. [PMID: 37602401 PMCID: PMC10516644 DOI: 10.1093/nar/gkad680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Silke Krause
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Peter B Becker
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| |
Collapse
|
9
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|