1
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
2
|
Gutmann S, Faschingeder F, Tauer C, Koch K, Cserjan-Puschmann M, Striedner G, Grabherr R. Site-Directed Genome Integration via Recombinase-Mediated Cassette Exchange (RMCE) in Escherichia coli. ACS Synth Biol 2025; 14:1667-1676. [PMID: 40209274 PMCID: PMC12090343 DOI: 10.1021/acssynbio.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
The gold standard for successful genome integration in Escherichia coli is the homologous recombination by the bacteriophage-inspired lambda Red system. This method uses the bacteriophage lambda Red recombination proteins to promote homologous recombination between a target DNA sequence and a DNA fragment, which is introduced into the bacterial cell by electroporation. It allows researchers to create specific genetic changes in bacterial genomes, making it a valuable tool for studies in microbiology and biotechnology. However, this system is not without limitations, which are characteristic of its working mechanism and remain to present challenges. The most formidable constraints stem from nucleotide sequences that contain self-homology or homologies to the host genome. These instances lead to uncontrolled homologous recombination events, consequently hindering the desired integration event. Furthermore, handling very large fragments can also be problematic, although, in many instances, this can be overcome by multiple lambda Red integrations in a row. In this study, we illustrate that the limitations associated with the lambda Red system can be overcome through the application of recombinase-mediated cassette exchange (RMCE). This enables the genome integration of larger and more complex DNA fragments and facilitates new research opportunities.
Collapse
Affiliation(s)
- Stephan Gutmann
- Christian
Doppler Laboratory for production of next-level biopharmaceuticals
in E. coli, BOKU University, Department
of Biotechnology and Food Science, Vienna 1190, Austria
| | - Felix Faschingeder
- Christian
Doppler Laboratory for production of next-level biopharmaceuticals
in E. coli, BOKU University, Department
of Biotechnology and Food Science, Vienna 1190, Austria
| | - Christopher Tauer
- Christian
Doppler Laboratory for production of next-level biopharmaceuticals
in E. coli, BOKU University, Department
of Biotechnology and Food Science, Vienna 1190, Austria
| | - Karin Koch
- Biopharma
Austria, Process Science, Boehringer Ingelheim
Regional Center Vienna GmbH & Co KG, Vienna 1120, Austria
| | - Monika Cserjan-Puschmann
- Christian
Doppler Laboratory for production of next-level biopharmaceuticals
in E. coli, BOKU University, Department
of Biotechnology and Food Science, Vienna 1190, Austria
| | - Gerald Striedner
- Christian
Doppler Laboratory for production of next-level biopharmaceuticals
in E. coli, BOKU University, Department
of Biotechnology and Food Science, Vienna 1190, Austria
| | - Reingard Grabherr
- Christian
Doppler Laboratory for production of next-level biopharmaceuticals
in E. coli, BOKU University, Department
of Biotechnology and Food Science, Vienna 1190, Austria
| |
Collapse
|
3
|
Cao X, Wang X, Chen R, Chen L, Liu Y, Wang M. Improving Bacillus subtilis as Biological Chassis Performance by the CRISPR Genetic Toolkit. ACS Synth Biol 2025; 14:677-688. [PMID: 40040244 DOI: 10.1021/acssynbio.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Bacillus subtilis is the model Gram-positive and industrial chassis bacterium; it has blossomed as a robust and promising host for enzyme, biochemical, or bioflocculant production. However, synthetic biology and metabolic engineering technologies of B. subtilis have lagged behind the most widely used industrial chassis Saccharomyces cerevisiae and Escherichia coli. CRISPR (an acronym for clustered regularly interspaced short palindromic repeats) enables efficient, site-specific, and programmable DNA cleavage, which has revolutionized the manner of genome editing. In 2016, CRISPR technology was first introduced into B. subtilis and has been intensely upgraded since then. In this Review, we discuss recently developed key additions to CRISPR toolkit design in B. subtilis with gene editing, transcriptional regulation, and enzyme modulation. Second, advances in the B. subtilis chassis of efficient biochemicals and proteins with CRISPR engineering are discussed. Finally, we conclude with perspectives on the challenges and opportunities of CRISPR-based biotechnology in B. subtilis, wishing that B. subtilis can be comparable to traditional industrial microorganisms such as E. coli and S. cerevisiae someday soon.
Collapse
Affiliation(s)
- Xianhai Cao
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaojuan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruirui Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Chen
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yang Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
4
|
Zhu X, Luo H, Yu X, Lv H, Su L, Zhang K, Wu J. Genome-Wide CRISPRi Screening of Key Genes for Recombinant Protein Expression in Bacillus Subtilis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404313. [PMID: 38952047 PMCID: PMC11434012 DOI: 10.1002/advs.202404313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.
Collapse
Affiliation(s)
- Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Huihui Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Lingqia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| |
Collapse
|
5
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
6
|
Köppl C, Buchinger W, Striedner G, Cserjan-Puschmann M. Modifications of the 5' region of the CASPON TM tag's mRNA further enhance soluble recombinant protein production in Escherichia coli. Microb Cell Fact 2024; 23:86. [PMID: 38509572 PMCID: PMC10953258 DOI: 10.1186/s12934-024-02350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Escherichia coli is one of the most commonly used host organisms for the production of biopharmaceuticals, as it allows for cost-efficient and fast recombinant protein expression. However, challenging proteins are often produced with low titres or as inclusion bodies, and the manufacturing process needs to be developed individually for each protein. Recently, we developed the CASPONTM technology, a generic fusion tag-based platform process for high-titer soluble expression including a standardized downstream processing and highly specific enzymatic cleavage of the fusion tag. To assess potential strategies for further improvement of the N-terminally fused CASPONTM tag, we modified the 5'UTR and 5' region of the tag-coding mRNA to optimize the ribosome-mRNA interactions. RESULTS In the present work, we found that by modifying the 5'UTR sequence of a pET30acer plasmid-based system, expression of the fusion protein CASPONTM-tumour necrosis factor α was altered in laboratory-scale carbon-limited fed-batch cultivations, but no significant increase in expression titre was achieved. Translation efficiency was highest for a construct carrying an expression enhancer element and additionally possessing a very favourable interaction energy between ribosome and mRNA (∆Gtotal). However, a construct with comparatively low transcriptional efficiency, which lacked the expression enhancer sequence and carried the most favourable ∆Gtotal tested, led to the highest recombinant protein formation alongside the reference pET30a construct. Furthermore, we found, that by introducing synonymous mutations within the nucleotide sequence of the T7AC element of the CASPONTM tag, utilizing a combination of rare and non-rare codons, the free folding energy of the nucleotides at the 5' end (-4 to + 37) of the transcript encoding the CASPONTM tag increased by 6 kcal/mol. Surprisingly, this new T7ACrare variant led to improved recombinant protein titres by 1.3-fold up to 5.3-fold, shown with three industry-relevant proteins in lab-scale carbon limited fed-batch fermentations under industrially relevant conditions. CONCLUSIONS This study reveals some of the complex interdependencies between the ribosome and mRNA that govern recombinant protein expression. By modifying the 5'UTR to obtain an optimized interaction energy between the mRNA and the ribosome (ΔGtotal), transcript levels were changed, highlighting the different translation efficiencies of individual transcripts. It was shown that the highest recombinant titre was not obtained by the construct with the most efficient translation but by a construct with a generally high transcript amount coupled with a favourable ΔGtotal. Furthermore, an unexpectedly high potential to enhance expression by introducing silent mutations including multiple rare codons into the 5'end of the CAPONTM tag's mRNA was identified. Although the titres of the fusion proteins were dramatically increased, no formation of inclusion bodies or negative impact on cell growth was observed. We hypothesize that the drastic increase in titre is most likely caused by better ribosomal binding site accessibility. Our study, which demonstrates the influence of changes in ribosome-mRNA interactions on protein expression under industrially relevant production conditions, opens the door to the applicability of the new T7ACrare tag in biopharmaceutical industry using the CASPONTM platform process.
Collapse
Affiliation(s)
- Christoph Köppl
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria
| | - Wolfgang Buchinger
- Biopharma Austria, Development Operations, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1121, Austria
| | - Gerald Striedner
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria
| | - Monika Cserjan-Puschmann
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, 1190, Austria.
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria.
| |
Collapse
|
7
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Barbier I, Kusumawardhani H, Chauhan L, Harlapur PV, Jolly MK, Schaerli Y. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in E. coli: Importance of Equal Guide RNA Binding Affinities to Avoid Context-Dependent Effects. ACS Synth Biol 2023; 12:3064-3071. [PMID: 37813387 PMCID: PMC10594877 DOI: 10.1021/acssynbio.3c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/11/2023]
Abstract
Gene expression control based on clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a powerful approach for constructing synthetic gene circuits. While the use of CRISPR interference (CRISPRi) is already well-established in prokaryotic circuits, CRISPR activation (CRISPRa) is less mature, and a combination of the two in the same circuits is only just emerging. Here, we report that combining CRISPRi with SoxS-based CRISPRa in Escherichia coli can lead to context-dependent effects due to different affinities in the formation of CRISPRa and CRISPRi complexes, resulting in loss of predictable behavior. We show that this effect can be avoided by using the same scaffold guide RNA structure for both complexes.
Collapse
Affiliation(s)
- Içvara Barbier
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| | | | - Lakshya Chauhan
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | | | - Mohit Kumar Jolly
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Yolanda Schaerli
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Yan F, Wang J, Zhang S, Lu Z, Li S, Ji Z, Song C, Chen G, Xu J, Feng J, Zhou X, Zhou H. CRISPR/FnCas12a-mediated efficient multiplex and iterative genome editing in bacterial plant pathogens without donor DNA templates. PLoS Pathog 2023; 19:e1010961. [PMID: 36626407 PMCID: PMC9870152 DOI: 10.1371/journal.ppat.1010961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/23/2023] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
CRISPR-based genome editing technology is revolutionizing prokaryotic research, but it has been rarely studied in bacterial plant pathogens. Here, we have developed a targeted genome editing method with no requirement of donor templates for convenient and efficient gene knockout in Xanthomonas oryzae pv. oryzae (Xoo), one of the most important bacterial pathogens on rice, by employing the heterologous CRISPR/Cas12a from Francisella novicida and NHEJ proteins from Mycobacterium tuberculosis. FnCas12a nuclease generated both small and large DNA deletions at the target sites as well as it enabled multiplex genome editing, gene cluster deletion, and plasmid curing in the Xoo PXO99A strain. Accordingly, a non-TAL effector-free polymutant strain PXO99AD25E, which lacks all 25 xop genes involved in Xoo pathogenesis, has been engineered through iterative genome editing. Whole-genome sequencing analysis indicated that FnCas12a did not have a noticeable off-target effect. In addition, we revealed that these strategies are also suitable for targeted genome editing in another bacterial plant pathogen Pseudomonas syringae pv. tomato (Pst). We believe that our bacterial genome editing method will greatly expand the CRISPR study on microorganisms and advance our understanding of the physiology and pathogenesis of Xoo.
Collapse
Affiliation(s)
- Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sujie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, China
| | - Zhenwan Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, China
| | - Shaofang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Congfeng Song
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Gongyou Chen
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, China
| |
Collapse
|
10
|
Kiattisewee C, Karanjia AV, Legut M, Daniloski Z, Koplik SE, Nelson J, Kleinstiver BP, Sanjana NE, Carothers JM, Zalatan JG. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants. ACS Synth Biol 2022; 11:4103-4112. [PMID: 36378874 PMCID: PMC10516241 DOI: 10.1021/acssynbio.2c00405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CRISPR-Cas transcriptional tools have been widely applied for programmable regulation of complex biological networks. In comparison to eukaryotic systems, bacterial CRISPR activation (CRISPRa) has stringent target site requirements for effective gene activation. While genes may not always have an NGG protospacer adjacent motif (PAM) at the appropriate position, PAM-flexible dCas9 variants can expand the range of targetable sites. Here we systematically evaluate a panel of PAM-flexible dCas9 variants for their ability to activate bacterial genes. We observe that dxCas9-NG provides a high dynamic range of gene activation for sites with NGN PAMs while dSpRY permits modest activity across almost any PAM. Similar trends were observed for heterologous and endogenous promoters. For all variants tested, improved PAM-flexibility comes with the trade-off that CRISPRi-mediated gene repression becomes less effective. Weaker CRISPR interference (CRISPRi) gene repression can be partially rescued by expressing multiple sgRNAs to target many sites in the gene of interest. Our work provides a framework to choose the most effective dCas9 variant for a given set of gene targets, which will further expand the utility of CRISPRa/i gene regulation in bacterial systems.
Collapse
Affiliation(s)
- Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
| | - Ava V. Karanjia
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
- Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States
| | - Mateusz Legut
- New York Genome Center, New York, NY 10013, United
States
- Department of Biology, New York University, New York, NY
10013, United States
| | - Zharko Daniloski
- New York Genome Center, New York, NY 10013, United
States
- Department of Biology, New York University, New York, NY
10013, United States
| | - Samantha E. Koplik
- Department of Bioengineering, University of Washington,
Seattle, WA 98195, United States
| | - Joely Nelson
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General
Hospital, Boston, MA 02114, United States
- Department of Pathology, Massachusetts General Hospital,
Boston, MA 02114, United States
- Department of Pathology, Harvard Medical School, Boston,
MA 02115, United States
| | - Neville E. Sanjana
- New York Genome Center, New York, NY 10013, United
States
- Department of Biology, New York University, New York, NY
10013, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
- Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States
- Department of Bioengineering, University of Washington,
Seattle, WA 98195, United States
| | - Jesse G. Zalatan
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
- Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States
- Department of Chemistry, University of Washington,
Seattle, WA 98195, United States
| |
Collapse
|
11
|
Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Front Mol Biosci 2022; 9:1070526. [PMID: 36589238 PMCID: PMC9795063 DOI: 10.3389/fmolb.2022.1070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the CRISPR-Cas technology has gained widespread popularity in different fields from genome editing and detecting specific DNA/RNA sequences to gene expression control. At the heart of this technology is the ability of CRISPR-Cas complexes to be programmed for targeting particular DNA loci, even when using catalytically inactive dCas-proteins. The repertoire of naturally derived and engineered dCas-proteins including fusion proteins presents a promising toolbox that can be used to construct functional synthetic genetic circuits. Rational genetic circuit design, apart from having practical relevance, is an important step towards a deeper quantitative understanding of the basic principles governing gene expression regulation and functioning of living organisms. In this minireview, we provide a succinct overview of the application of CRISPR-dCas-based systems in the emerging field of synthetic genetic circuit design. We discuss the diversity of dCas-based tools, their properties, and their application in different types of genetic circuits and outline challenges and further research directions in the field.
Collapse
Affiliation(s)
- A. K. Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Computer Science, HSE University, Moscow, Russia,*Correspondence: A. K. Shaytan,
| | - R. V. Novikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - R. S. Vinnikov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - A. K. Gribkova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Glukhov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, China
| |
Collapse
|