1
|
Marranci A, Maresca L, Lodovichi S, Luserna di Rorà AG, Stecca B, Poliseno L. PARP1 in melanoma: Mechanistic insights and implications for basic and clinical research. Cancer Lett 2025; 617:217599. [PMID: 40024566 DOI: 10.1016/j.canlet.2025.217599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma and have set a successful example for the treatment of other cancers. A similar breakthrough was achieved with the advent of PARP inhibitors (PARPi) in breast and ovarian cancer. Recent evidence highlights the critical role of PARP1 in melanoma initiation and progression. High PARP1 expression correlates with aggressive melanoma characteristics and poor patient outcomes. Preclinical and clinical data suggest that PARPi, alone or in combination, can effectively reduce melanoma cell viability and inhibit tumor growth. However, integrating PARPi with current treatment approaches and identifying patients who could benefit the most from such combinations remain underexplored areas of investigation. This review highlights the need for further basic and clinical research on PARP1 in melanoma, to better understand its role and to tackle major challenges in the field, such as resistance to targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Andrea Marranci
- Oncohematology Unit, Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017, Pisa, Italy. http://www.fpscience.it/
| | - Luisa Maresca
- Tumor Cell Biology Unit, Core Research Laboratory (CRL), Institute for Cancer Research and Prevention (ISPRO), 50139, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, 50139, Florence, Italy
| | - Samuele Lodovichi
- Department of Biosciences, University of Milan, 20133, Milan, Italy; Institute of Clinical Physiology, National Research Council (CNR-IFC), 56124, Pisa, Italy
| | | | - Barbara Stecca
- Tumor Cell Biology Unit, Core Research Laboratory (CRL), Institute for Cancer Research and Prevention (ISPRO), 50139, Florence, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council (CNR-IFC), 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), 56124, Pisa, Italy.
| |
Collapse
|
2
|
Zhu T, Tan JZA, Zhang L, Huang H, Das SS, Cheng F, Padmanabhan P, Jones MJK, Lee M, Lee A, Widagdo J, Anggono V. FTO suppresses DNA repair by inhibiting PARP1. Nat Commun 2025; 16:2925. [PMID: 40133293 PMCID: PMC11937437 DOI: 10.1038/s41467-025-58309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Maintaining genomic integrity and faithful transmission of genetic information is essential for the survival and proliferation of cells and organisms. DNA damage, which threatens the integrity of the genome, is rapidly sensed and repaired by mechanisms collectively known as the DNA damage response. The RNA demethylase FTO has been implicated in this process; however, the underlying mechanism by which FTO regulates DNA repair remains unclear. Here, we use an unbiased quantitative proteomic approach to identify the proximal interactome of endogenous FTO protein. Our results demonstrate a direct interaction with the DNA damage sensor protein PARP1, which dissociates upon ultraviolet stimulation. FTO inhibits PARP1 catalytic activity and controls its clustering in the nucleolus. Loss of FTO enhances PARP1 enzymatic activity and the rate of PARP1 recruitment to DNA damage sites, accelerating DNA repair and promoting cell survival. Interestingly, FTO regulates PARP1 function and DNA damage response independent of its catalytic activity. We conclude that FTO is an endogenous negative regulator of PARP1 and the DNA damage response in cells beyond its role as an RNA demethylase.
Collapse
Affiliation(s)
- Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - He Huang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sooraj S Das
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- NHMRC Centre for Research Excellence in Mechanisms in NeuroDegeneration - Alzheimer's Disease (MIND-AD CRE), Brisbane, Australia
| | - Mathew J K Jones
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- School of Chemistry & Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
- NHMRC Centre for Research Excellence in Mechanisms in NeuroDegeneration - Alzheimer's Disease (MIND-AD CRE), Brisbane, Australia.
| |
Collapse
|
3
|
Lerksuthirat T, Prasopporn S, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Owneium P, Jirawatnotai S, Dejsuphong D. DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines. Oncol Lett 2025; 29:128. [PMID: 39822940 PMCID: PMC11736248 DOI: 10.3892/ol.2025.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/28/2024] [Indexed: 01/19/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA. The present study investigated the impact of an ATR inhibitor and various PARP inhibitors, individually and in combination, on CCA cell lines with different DDR mutation profiles. DDR gene alterations in these cell lines were analyzed, and the responses of the cells to treatment with the PARP inhibitors olaparib, veliparib and talazoparib and/or the ATR inhibitor AZD6738 were evaluated. Assessments focused on cellular viability, clonogenic survival and the combination index, alongside changes in DNA damage assessed via the formation of micronuclei and γ-H2A histone family member X foci. The results revealed that the CCA cell lines with more DDR mutations exhibited greater sensitivity to single and combination treatments. Talazoparib was found to be the most potent PARP inhibitor in the CCA cell lines. The combination of AZD6738 and talazoparib demonstrated varying synergistic effects depending on the genetic background of the CCA cells, with greater efficacy in the cell lines less sensitive to single drug treatments. Mechanistically, this combination promoted the accumulation of DNA damage, including DNA double-strand breaks. Overall, the study underscores the importance of HR in CCA. It reveals an association between the extent of DDR mutations and the response to AZD6738 and PARP inhibitors in CCA, both as single agents and in combination. These findings highlight that the number of mutated genes influences variability in the drug response.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rakkreat Wikiniyadhanee
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Paravee Owneium
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Donniphat Dejsuphong
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| |
Collapse
|
4
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LO. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. eLife 2025; 13:RP98152. [PMID: 39937575 PMCID: PMC11820137 DOI: 10.7554/elife.98152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
Affiliation(s)
- Kira Breunig
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Xuifen Lei
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical BranchGalvestonUnited States
- Department of Neurology, University of Texas Medical BranchGalvestonUnited States
| | | | - Shiva Ostadrahimi
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
| | - Victoria Alers
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health San AntonioSan AntonioUnited States
| | - Adam Kosti
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
| | - Jennifer Chiou
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at AustinAustinUnited States
| | - Nicole Klein
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Corina Vinarov
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Lily Wang
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Mujia Li
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Weidan Song
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical CenterDallasUnited States
| | - David S Libich
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health San AntonioSan AntonioUnited States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at AustinAustinUnited States
- Department of Pediatrics, Dell Medical School, University of Texas at AustinAustinUnited States
- Department of Oncology, Dell Medical School, University of Texas at AustinAustinUnited States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San AntonioSan AntonioUnited States
| | - Pedro AF Galante
- Centro de Oncologia Molecular, Hospital Sírio-LibanêsSão PauloBrazil
| | - Luiz O Penalva
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
| |
Collapse
|
5
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
6
|
De Rosa M, Barnes RP, Detwiler AC, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts. Nat Commun 2025; 16:893. [PMID: 39837827 PMCID: PMC11751180 DOI: 10.1038/s41467-024-55638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.
Collapse
Affiliation(s)
| | - Ryan P Barnes
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ariana C Detwiler
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Kechin A, Koryukov M, Mikheeva R, Filipenko M. Homologous recombination deficiency (HRD) diagnostics: underlying mechanisms and new perspectives. Cancer Metastasis Rev 2024; 44:19. [PMID: 39724448 DOI: 10.1007/s10555-024-10238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations. HRD tests, based on signatures of LGRs and copy number alterations, show in hindsight that some progenitor cells have possessed HRD status but not the current state of the genome. The aim of this review was to compare different methods of HRD detection and mechanisms of formation of HRD-specific LGRs. In the last several years, new data appeared implying a crucial role of proteins BRCA1 and BRCA2 in the resolution of stalled replication forks that may be associated with at least some of LGRs observed in HRD-positive tumors. Reviewing current knowledge on these mechanisms, distributions of different LGR types, and limitations of sequencing technologies and algorithms of data analysis, we offer some new perspectives on HRD diagnostics. We hope that this review will help to accelerate the development of new diagnostic approaches in this important field of molecular oncology.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Maksim Koryukov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Regina Mikheeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maksim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Lodovichi S, Nepomuceno TC, Woods NT, Rix U, Koomen JM, Pellicioli A, Galli A, Monteiro ANA. SART1 modulates poly-(ADP-ribose) chain accumulation and PARP1 chromatin localization. iScience 2024; 27:111252. [PMID: 39569366 PMCID: PMC11576398 DOI: 10.1016/j.isci.2024.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 02/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
PARP1 inhibitors (PARPis) are used for treatment of cancers with mutations in BRCA1 or BRCA2 that are deficient in homologous recombination. The identification of modulators of PARP1 activity is critical to understand and overcome resistance to PARPis. We integrated data from three omics-scale screens to discover new regulators of PARP1 activity. We identified SART1 and show that its silencing leads to an increase in poly-ADP ribosylation and chromatin-bound PARP1. SART1 is recruited to chromatin following DNA damage and limits PARP1 chromatin retention and activity. The SART1 N-terminus is sufficient to regulate the accumulation of PAR chains and PARP1 on chromatin, an activity dependent on the RGG/RG box. Silencing of SART1 leads to an increased sensitivity of cells to DNA damage induced by IR, irrespective of BRCA1 status and to PARPis only in absence of BRCA1. These results suggest that SART1 could be clinically utilized to improve PARPi efficacy.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, 56125 Pisa, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Thales C Nepomuceno
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nicholas T Woods
- Gastrointestinal Cancer Program, Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Molecular Oncology and Molecular Medicine Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, 56125 Pisa, Italy
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
10
|
Karam JAQ, Fréreux C, Mohanty BK, Dalton AC, Dincman TA, Palanisamy V, Howley BV, Howe PH. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J Biol Chem 2024; 300:107830. [PMID: 39342995 PMCID: PMC11538862 DOI: 10.1016/j.jbc.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
PCBP1, polycytosine (poly(C)) binding protein 1, an RNA and single-stranded DNA (ssDNA) binding protein, binds poly(C) DNA tracts but it remains unclear whether its ability to bind ssDNA contributes to transcriptional regulation. Here, we report that PCBP1's DNA binding sites are enriched at transcription start sites and that by binding to promoter regions, PCBP1 regulates transcription in addition to splicing and translation. At PCBP1 target genes, we show that PCBP1 interacts with several RNA/DNA hybrid (R-loop) associated G-quadruplex resolving helicases. Furthermore, we find that PCBP1 interacts with RNA Helicase A (DHX9) to modulate transcription by regulating DHX9 accumulation and activity. PCBP1 depletion leads to defects in R-loop processing and dysregulation of transcription of PCBP1 target genes. PCBP1's high sequence specificity and interaction with helicases suggest that its mechanism in transcription involves guiding helicases to specific loci during transcription, thereby modulating their activity.
Collapse
Affiliation(s)
- Joseph A Q Karam
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
11
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
12
|
Huang M, Zhu X, Wang C, He L, Li L, Wang H, Fan G, Wang Y. PINX1 loss confers susceptibility to PARP inhibition in pan-cancer cells. Cell Death Dis 2024; 15:610. [PMID: 39174499 PMCID: PMC11341912 DOI: 10.1038/s41419-024-07009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.
Collapse
Affiliation(s)
- Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
14
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 PMCID: PMC11877395 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Zhang H, Zha S. The dynamics and regulation of PARP1 and PARP2 in response to DNA damage and during replication. DNA Repair (Amst) 2024; 140:103690. [PMID: 38823186 DOI: 10.1016/j.dnarep.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
DNA strand breaks activate Poly(ADP-ribose) polymerase (PARP) 1 and 2, which use NAD+ as the substrate to covalently conjugate ADP-ribose on themselves and other proteins (e.g., Histone) to promote chromatin relaxation and recruit additional DNA repair factors. Enzymatic inhibitors of PARP1 and PARP2 (PARPi) are promising cancer therapy agents that selectively target BRCA1- or BRCA2- deficient cancers. As immediate early responders to DNA strand breaks with robust activities, PARP1 and PARP2 normally form transient foci (<10 minutes) at the micro-irradiation-induced DNA lesions. In addition to enzymatic inhibition, PARPi also extend the presence of PARP1 and PARP2 at DNA lesions, including at replication forks, where they may post a physical block for subsequent repair and DNA replication. The dynamic nature of PARP1 and PARP2 foci made live cell imaging a unique platform to detect subtle changes and the functional interaction among PARP1, PARP2, and their regulators. Recent imaging studies have provided new understandings of the biological consequence of PARP inhibition and uncovered functional interactions between PARP1 and PARP2 and new regulators (e.g., histone poly(ADP-ribosylation) factor). Here, we review recent advances in dissecting the temporal and spatial Regulation of PARP1 and PARP2 at DNA lesions and discuss their physiological implications on both cancer and normal cells.
Collapse
Affiliation(s)
- Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.
| |
Collapse
|
16
|
Zhang F, Sun J, Zhang L, Li R, Wang Y, Geng H, Shen C, Li L, Chen L. PARP inhibition leads to synthetic lethality with key splicing-factor mutations in myelodysplastic syndromes. Br J Cancer 2024; 131:231-242. [PMID: 38806724 PMCID: PMC11263539 DOI: 10.1038/s41416-024-02729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Splicing factors are frequently mutated in patients with myelodysplastic syndromes and acute myeloid leukaemia. Recent studies have revealed convergent molecular defects caused by splicing factor mutations, among which R-loop dysregulation and resultant genome instability are suggested as contributing factors to disease progression. On the other hand, understanding how mutant cells survive upon aberrant R-loop formation and genome instability is essential for developing novel therapeutics. METHODS The immunoprecipitation was performed to identify R-loops in association with PARP1/poly-ADP-ribosylation. The western blot, immunofluorescence, and flow cytometry assays were used to test the cell viability, cell cycle arrest, apoptosis, and ATM activation in mutant cells following the treatment of the PARP inhibitor. The Srsf2(P95H) knock-in murine hematopoietic cells and MLL-AF9 transformed leukaemia model were generated to investigate the potential of the PARP inhibitor as a therapy for haematological malignancies. RESULTS The disease-causing mutations in SRSF2 activate PARP and elevate the overall poly-ADP-ribosylation levels of proteins in response to R-loop dysregulation. In accordance, mutant cells are more vulnerable to the PARP inhibitors in comparison to the wild-type counterpart. Notably, the synthetic lethality was further validated in the Srsf2(P95H) knock-in murine hematopoietic cell and MLL-AF9 leukaemia model. CONCLUSIONS Our findings suggest that mutant cells antagonise the genome threat caused by R-loop disruption by PARP activation, thus making PARP targeting a promising therapeutic strategy for myeloid cancers with mutations in SRSF2.
Collapse
Affiliation(s)
- Fangliang Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianai Sun
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Ruiqi Li
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanzhen Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chao Shen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA.
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Saldanha J, Rageul J, Patel J, Phi A, Lo N, Park J, Kim H. The TIMELESS and PARP1 interaction suppresses replication-associated DNA gap accumulation. Nucleic Acids Res 2024; 52:6424-6440. [PMID: 38801073 PMCID: PMC11194094 DOI: 10.1093/nar/gkae445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
TIMELESS (TIM) in the fork protection complex acts as a scaffold of the replisome to prevent its uncoupling and ensure efficient DNA replication fork progression. Nevertheless, its underlying basis for coordinating leading and lagging strand synthesis to limit single-stranded DNA (ssDNA) exposure remains elusive. Here, we demonstrate that acute degradation of TIM at ongoing DNA replication forks induces the accumulation of ssDNA gaps stemming from defective Okazaki fragment (OF) processing. Cells devoid of TIM fail to support the poly(ADP-ribosyl)ation necessary for backing up the canonical OF processing mechanism mediated by LIG1 and FEN1. Consequently, recruitment of XRCC1, a known effector of PARP1-dependent single-strand break repair, to post-replicative ssDNA gaps behind replication forks is impaired. Physical disruption of the TIM-PARP1 complex phenocopies the rapid loss of TIM, indicating that the TIM-PARP1 interaction is critical for the activation of this compensatory pathway. Accordingly, combined deficiency of FEN1 and the TIM-PARP1 interaction leads to synergistic DNA damage and cytotoxicity. We propose that TIM is essential for the engagement of PARP1 to the replisome to coordinate lagging strand synthesis with replication fork progression. Our study identifies TIM as a synthetic lethal target of OF processing enzymes that can be exploited for cancer therapy.
Collapse
Affiliation(s)
- Joanne Saldanha
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- The Graduate program in Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Amy L Phi
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Natalie Lo
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- The Graduate program in Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Marugán C, Sanz‐Gómez N, Ortigosa B, Monfort‐Vengut A, Bertinetti C, Teijo A, González M, Alonso de la Vega A, Lallena MJ, Moreno‐Bueno G, de Cárcer G. TPX2 overexpression promotes sensitivity to dasatinib in breast cancer by activating YAP transcriptional signaling. Mol Oncol 2024; 18:1531-1551. [PMID: 38357786 PMCID: PMC11161735 DOI: 10.1002/1878-0261.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer aggressiveness, providing genetic plasticity and tumor heterogeneity that allows the tumor to evolve and adapt to stress conditions. CIN is considered a cancer therapeutic biomarker because healthy cells do not exhibit CIN. Despite recent efforts to identify therapeutic strategies related to CIN, the results obtained have been very limited. CIN is characterized by a genetic signature where a collection of genes, mostly mitotic regulators, are overexpressed in CIN-positive tumors, providing aggressiveness and poor prognosis. We attempted to identify new therapeutic strategies related to CIN genes by performing a drug screen, using cells that individually express CIN-associated genes in an inducible manner. We find that the overexpression of targeting protein for Xklp2 (TPX2) enhances sensitivity to the proto-oncogene c-Src (SRC) inhibitor dasatinib due to activation of the Yes-associated protein 1 (YAP) pathway. Furthermore, using breast cancer data from The Cancer Genome Atlas (TCGA) and a cohort of cancer-derived patient samples, we find that both TPX2 overexpression and YAP activation are present in a significant percentage of cancer tumor samples and are associated with poor prognosis; therefore, they are putative biomarkers for selection for dasatinib therapy.
Collapse
Grants
- 2018-20I114 Spanish National Research Council (CSIC)
- 2021-AEP035 Spanish National Research Council (CSIC)
- 2022-20I018 Spanish National Research Council (CSIC)
- FJC2020-044620-I Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2019-104644RB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2021-125705OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2022-136854OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- RTI2018-095496-B-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- CB16/12/00295 Instituto de Salud Carlos III - CIBERONC
- LABAE16017DECA Spanish Association Against Cancer (AECC) Scientific Foundation
- POSTD234371SANZ Spanish Association Against Cancer (AECC) Scientific Foundation
- PROYE19036MOR Spanish Association Against Cancer (AECC) Scientific Foundation
- Spanish National Research Council (CSIC)
- Spanish Association Against Cancer (AECC) Scientific Foundation
Collapse
Affiliation(s)
- Carlos Marugán
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Natalia Sanz‐Gómez
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Monfort‐Vengut
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Cristina Bertinetti
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Teijo
- Pathology DepartmentMD Anderson Cancer CenterMadridSpain
| | - Marta González
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Alicia Alonso de la Vega
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - María José Lallena
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Gema Moreno‐Bueno
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- MD Anderson International FoundationMadridSpain
- Biomedical Cancer Research Network (CIBERONC)MadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| |
Collapse
|
19
|
Gong Y, Wang Z, Zong W, Shi R, Sun W, Wang S, Peng B, Takeda S, Wang ZQ, Xu X. PARP1 UFMylation ensures the stability of stalled replication forks. Proc Natl Acad Sci U S A 2024; 121:e2322520121. [PMID: 38657044 PMCID: PMC11066985 DOI: 10.1073/pnas.2322520121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.
Collapse
Affiliation(s)
- Yamin Gong
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena07745, Germany
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Ruifeng Shi
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena07745, Germany
| | - Wenli Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Sijia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena07745, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena07743, Germany
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| |
Collapse
|
20
|
Cunningham ML, Schiewer MJ. PARP-ish: Gaps in Molecular Understanding and Clinical Trials Targeting PARP Exacerbate Racial Disparities in Prostate Cancer. Cancer Res 2024; 84:743102. [PMID: 38635890 PMCID: PMC11217733 DOI: 10.1158/0008-5472.can-23-3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
PARP is a nuclear enzyme with a major function in the DNA damage response. PARP inhibitors (PARPi) have been developed for treating tumors harboring homologous recombination repair (HRR) defects that lead to a dependency on PARP. There are currently three PARPi approved for use in advanced prostate cancer (PCa), and several others are in clinical trials for this disease. Recent clinical trial results have reported differential efficacy based on the specific PARPi utilized as well as patient race. There is a racial disparity in PCa, where African American (AA) males are twice as likely to develop and die from the disease compared to European American (EA) males. Despite the disparity, there continues to be a lack of diversity in clinical trial cohorts for PCa. In this review, PARP nuclear functions, inhibition, and clinical relevance are explored through the lens of racial differences. This review will touch on the biological variations that have been explored thus far between AA and EA males with PCa to offer rationale for investigating PARPi response in the context of race at both the basic science and the clinical development levels.
Collapse
Affiliation(s)
- Moriah L. Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Fang Y, Fu M, Li X, Zhang B, Wan C. Enterohemorrhagic Escherichia coli effector EspF triggers oxidative DNA lesions in intestinal epithelial cells. Infect Immun 2024; 92:e0000124. [PMID: 38415639 PMCID: PMC11003234 DOI: 10.1128/iai.00001-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Attaching/effacing (A/E) pathogens induce DNA damage and colorectal cancer by injecting effector proteins into host cells via the type III secretion system (T3SS). EspF is one of the T3SS-dependent effector proteins exclusive to A/E pathogens, which include enterohemorrhagic Escherichia coli. The role of EspF in the induction of double-strand breaks (DSBs) and the phosphorylation of the repair protein SMC1 has been demonstrated previously. However, the process of damage accumulation and DSB formation has remained enigmatic, and the damage response is not well understood. Here, we first showed a compensatory increase in the mismatch repair proteins MutS homolog 2 (MSH2) and MSH6, as well as poly(ADP-ribose) polymerase 1, followed by a dramatic decrease, threatening cell survival in the presence of EspF. Flow cytometry revealed that EspF arrested the cell cycle at the G2/M phase to facilitate DNA repair. Subsequently, 8-oxoguanine (8-oxoG) lesions, a marker of oxidative damage, were assayed by ELISA and immunofluorescence, which revealed the accumulation of 8-oxoG from the cytosol to the nucleus. Furthermore, the status of single-stranded DNA (ssDNA) and DSBs was confirmed. We observed that EspF accelerated the course of DNA lesions, including 8-oxoG and unrepaired ssDNA, which were converted into DSBs; this was accompanied by the phosphorylation of replication protein A 32 in repair-defective cells. Collectively, these findings reveal that EspF triggers various types of oxidative DNA lesions with impairment of the DNA damage response and may result in genomic instability and cell death, offering novel insight into the tumorigenic potential of EspF.IMPORTANCEOxidative DNA lesions play causative roles in colitis-associated colon cancer. Accumulating evidence shows strong links between attaching/effacing (A/E) pathogens and colorectal cancer (CRC). EspF is one of many effector proteins exclusive to A/E pathogens with defined roles in the induction of oxidative stress, double-strand breaks (DSBs), and repair dysregulation. Here, we found that EspF promotes reactive oxygen species generation and 8-oxoguanine (8-oxoG) lesions when the repair system is activated, contributing to sustained cell survival. However, infected cells exposed to EspF presented 8-oxoG, which results in DSBs and ssDNA accumulation when the cell cycle is arrested at the G2/M phase and the repair system is defective or saturated by DNA lesions. In addition, we found that EspF could intensify the accumulation of nuclear DNA lesions through oxidative and replication stress. Overall, our work highlights the involvement of EspF in DNA lesions and DNA damage response, providing a novel avenue by which A/E pathogens may contribute to CRC.
Collapse
Affiliation(s)
- Yuting Fang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinyue Li
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Bao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengsong Wan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
23
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
24
|
Fütterer A, Rodriguez-Acebes S, Méndez J, Gutiérrez J, Martínez-A C. PARP1, DIDO3, and DHX9 Proteins Mutually Interact in Mouse Fibroblasts, with Effects on DNA Replication Dynamics, Senescence, and Oncogenic Transformation. Cells 2024; 13:159. [PMID: 38247850 PMCID: PMC10814579 DOI: 10.3390/cells13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The regulated formation and resolution of R-loops is a natural process in physiological gene expression. Defects in R-loop metabolism can lead to DNA replication stress, which is associated with a variety of diseases and, ultimately, with cancer. The proteins PARP1, DIDO3, and DHX9 are important players in R-loop regulation. We previously described the interaction between DIDO3 and DHX9. Here, we show that, in mouse embryonic fibroblasts, the three proteins are physically linked and dependent on PARP1 activity. The C-terminal truncation of DIDO3 leads to the impairment of this interaction; concomitantly, the cells show increased replication stress and senescence. DIDO3 truncation also renders the cells partially resistant to in vitro oncogenic transformation, an effect that can be reversed by immortalization. We propose that PARP1, DIDO3, and DHX9 proteins form a ternary complex that regulates R-loop metabolism, preventing DNA replication stress and subsequent senescence.
Collapse
Affiliation(s)
- Agnes Fütterer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| | - Sara Rodriguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (S.R.-A.); (J.M.)
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (S.R.-A.); (J.M.)
| | - Julio Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
25
|
Laspata N, Muoio D, Fouquerel E. Multifaceted Role of PARP1 in Maintaining Genome Stability Through Its Binding to Alternative DNA Structures. J Mol Biol 2024; 436:168207. [PMID: 37481154 PMCID: PMC11552663 DOI: 10.1016/j.jmb.2023.168207] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Alternative DNA structures that differ from the canonical B-form of DNA can arise from repetitive sequences and play beneficial roles in many cellular processes such as gene regulation and chromatin organization. However, they also threaten genomic stability in several ways including mutagenesis and collisions with replication and/or transcription machinery, which lead to genomic instability that is associated with human disease. Thus, the careful regulation of non-B-DNA structure formation and resolution is crucial for the maintenance of genome integrity. Several protein factors have been demonstrated to associate with alternative DNA structures to facilitate their removal, one of which is the ADP-ribose transferase (ART) PARP1 (also called ADP-ribosyltransferase diphtheria toxin-like 1 or ARTD1), a multifaceted DNA repair enzyme that recognizes single- and double-stranded DNA breaks and synthesizes chains of poly (ADP-ribose) (PAR) to recruit DNA repair proteins. It is now well appreciated that PARP1 recognizes several nucleic acid structures beyond DNA lesions, including stalled replication forks, DNA hairpins and cruciforms, R-loops, and DNA G-quadruplexes (G4 DNA). In this review, we summarize the current evidence of a direct association of PARP1 with each of these aforementioned alternative DNA structures, as well as discuss the role of PARP1 in the prevention of non-B-DNA structure-induced genetic instability. We will focus on the mechanisms of the recognition and binding by PARP1 to each alternative structure and the structure-based stimulation of PARP1 catalytic activity upon binding. Finally, we will discuss some of the outstanding gaps in the literature and offer speculative insight for questions that remain to be experimentally addressed.
Collapse
Affiliation(s)
- Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA.
| |
Collapse
|
26
|
Zheng K, Hai Y, Xi Y, Zhang Y, Liu Z, Chen W, Hu X, Zou X, Hao J. Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: prognostic and therapeutic significance. J Transl Med 2023; 21:789. [PMID: 37936202 PMCID: PMC10629187 DOI: 10.1186/s12967-023-04683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Prostate cancer (PCA) is the fifth leading cause of cancer-related deaths worldwide, with limited treatment options in the advanced stages. The immunosuppressive tumor microenvironment (TME) of PCA results in lower sensitivity to immunotherapy. Although molecular subtyping is expected to offer important clues for precision treatment of PCA, there is currently a shortage of dependable and effective molecular typing methods available for clinical practice. Therefore, we aim to propose a novel stemness-based classification approach to guide personalized clinical treatments, including immunotherapy. METHODS An integrative multi-omics analysis of PCA was performed to evaluate stemness-level heterogeneities. Unsupervised hierarchical clustering was used to classify PCAs based on stemness signature genes. To make stemness-based patient classification more clinically applicable, a stemness subtype predictor was jointly developed by using four PCA datasets and 76 machine learning algorithms. RESULTS We identified stemness signatures of PCA comprising 18 signaling pathways, by which we classified PCA samples into three stemness subtypes via unsupervised hierarchical clustering: low stemness (LS), medium stemness (MS), and high stemness (HS) subtypes. HS patients are sensitive to androgen deprivation therapy, taxanes, and immunotherapy and have the highest stemness, malignancy, tumor mutation load (TMB) levels, worst prognosis, and immunosuppression. LS patients are sensitive to platinum-based chemotherapy but resistant to immunotherapy and have the lowest stemness, malignancy, and TMB levels, best prognosis, and the highest immune infiltration. MS patients represent an intermediate status of stemness, malignancy, and TMB levels with a moderate prognosis. We further demonstrated that these three stemness subtypes are conserved across pan-tumor. Additionally, the 9-gene stemness subtype predictor we developed has a comparable capability to 18 signaling pathways to make tumor diagnosis and to predict tumor recurrence, metastasis, progression, prognosis, and efficacy of different treatments. CONCLUSIONS The three stemness subtypes we identified have the potential to be a powerful tool for clinical tumor molecular classification in PCA and pan-cancer, and to guide the selection of immunotherapy or other sensitive treatments for tumor patients.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youlong Hai
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yukun Zhang
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, 277000, Shandong, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wantao Chen
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Guo T, Zhao S, Zhu W, Zhou H, Cheng H. Research progress on the biological basis of Traditional Chinese Medicine syndromes of gastrointestinal cancers. Heliyon 2023; 9:e20653. [PMID: 38027682 PMCID: PMC10643116 DOI: 10.1016/j.heliyon.2023.e20653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Gastrointestinal cancers account for 11.6 % of all cancers, and are the second most frequently diagnosed type of cancer worldwide. Traditional Chinese medicine (TCM), together with Western medicine or alone, has unique advantages for the prevention and treatment of cancers, including gastrointestinal cancers. Syndrome differentiation and treatment are basic characteristics of the theoretical system of TCM. TCM syndromes are the result of the differentiation of the syndrome and the basis of treatment. Genomics, transcriptomics, proteomics, metabolomics, intestinal microbiota, and serology, generated around the central law, are used to study the biological basis of TCM syndromes in gastrointestinal cancers. This review summarizes current research on the biological basis of TCM syndrome in gastrointestinal cancers and provides useful references for future research on TCM syndrome in gastrointestinal cancers.
Collapse
Affiliation(s)
- Tianhao Guo
- Institute of Health and Regimen, Jiangsu Open University, Nanjing, Jiangsu 210036, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuoqi Zhao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenjian Zhu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hongguang Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
29
|
Raja SJ, Van Houten B. UV-DDB as a General Sensor of DNA Damage in Chromatin: Multifaceted Approaches to Assess Its Direct Role in Base Excision Repair. Int J Mol Sci 2023; 24:10168. [PMID: 37373320 PMCID: PMC10298998 DOI: 10.3390/ijms241210168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Base excision repair (BER) is a cellular process that removes damaged bases arising from exogenous and endogenous sources including reactive oxygen species, alkylation agents, and ionizing radiation. BER is mediated by the actions of multiple proteins which work in a highly concerted manner to resolve DNA damage efficiently to prevent toxic repair intermediates. During the initiation of BER, the damaged base is removed by one of 11 mammalian DNA glycosylases, resulting in abasic sites. Many DNA glycosylases are product-inhibited by binding to the abasic site more avidly than the damaged base. Traditionally, apurinic/apyrimidinic endonuclease 1, APE1, was believed to help turn over the glycosylases to undergo multiple rounds of damaged base removal. However, in a series of papers from our laboratory, we have demonstrated that UV-damaged DNA binding protein (UV-DDB) stimulates the glycosylase activities of human 8-oxoguanine glycosylase (OGG1), MUTY DNA glycosylase (MUTYH), alkyladenine glycosylase/N-methylpurine DNA glycosylase (AAG/MPG), and single-strand selective monofunctional glycosylase (SMUG1), between three- and five-fold. Moreover, we have shown that UV-DDB can assist chromatin decompaction, facilitating access of OGG1 to 8-oxoguanine damage in telomeres. This review summarizes the biochemistry, single-molecule, and cell biology approaches that our group used to directly demonstrate the essential role of UV-DDB in BER.
Collapse
Affiliation(s)
- Sripriya J. Raja
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
De Rosa M, Barnes RP, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536247. [PMID: 37090589 PMCID: PMC10120708 DOI: 10.1101/2023.04.10.536247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Telomeres are prone to formation of the common oxidative lesion 8-oxoguanine (8oxoG), and the acute production of 8oxoG damage at telomeres is sufficient to drive rapid cellular senescence. OGG1 and MUTYH glycosylases initiate base excision repair (BER) at 8oxoG sites to remove the lesion or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced senescence, and loss of both glycosylases results in a near complete rescue. Loss of these glycosylases also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that single-stranded break (SSB) intermediates arising downstream of glycosylase activity impair telomere replication. The failure to initiate BER in glycosylase-deficient cells suppresses PARylation at SSB intermediates and confers resistance to the synergistic effects of PARP inhibitors on damage-induced senescence. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which impair telomere replication and stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P. Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Deparment of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L. Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|