1
|
Liu S, Hu J, Zhang R, Tian H, Wang F, Chou SH, He J, Ma L, Yin W. Catalytic hairpin assembly assists CRISPR/Cas12a-mediated high-sensitivity detection of aflatoxin B1. Talanta 2025; 293:128043. [PMID: 40194458 DOI: 10.1016/j.talanta.2025.128043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Aflatoxin B1 (AFB1) is recognized the most toxic and carcinogenic mycotoxin and is widely present in cereals and various foods. Therefore, its precise detection is crucial to safeguard food quality and human health. In this study, we proposed a highly sensitive detection system for AFB1 by combining the catalytic hairpin assembly (CHA) and CRISPR/Cas12a techniques. The Aptamer of Aptamer-Initiator interacts with AFB1 to release the blocked Antisense. As a result, the Initiator of the Aptamer-Initiator becomes free and can act as a toehold to bind with H1, which can initiate the CHA to generate a large amount of double-stranded DNA, which hybridized with the Cas12a-crRNA duplex to form the Cas12a-crRNA-DNA ternary complex, wherein Cas12a subsequently cleaves the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. After optimization, we observed a linear relationship between fluorescence intensity and the AFB1 concentration in the range of 50 pM to 1 nM, with a limit of detection (LOD) of 10 pM. Also, the system was robust and could operate with excellent reliability and accuracy even in complex samples. The recovery values in food samples ranged from 92.23 % to 111.72 %, with relative standard deviation (RSD) below 5.68 %. The system exhibited remarkable advantages, including high sensitivity, strong specificity, and rapid response, thereby showed great potential in the efficient detection of AFB1 contaminants in food.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ji Hu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifeng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haixing Tian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Zhang T, Lu D, Zeng Y, Lv Y, Shi X. A simple post-processing approach induced Interface recombination to construct hollow cubic-shape Prussian blue analogs for biosensing and degradation of aflatoxins B1. Food Chem 2025; 479:143807. [PMID: 40088654 DOI: 10.1016/j.foodchem.2025.143807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Multifunctional Prussian blue analogs (PBAs) have received extensive attention in the detection and degradation of food hazards. However, the development of new structural adjustment strategies to further improve their performance remains a huge challenge. Herein, the "interface recombination" post-processing approach was established to regulate the structure of PBAs using a microwave-assisted solvothermal method combined with acid etching. Hollow cube-shaped M-NiMnFe-PBA with elevated peroxidase-mimetic activity, photothermal effect, and photo-Fenton performance was obtained. Based on M-NiMnFe-PBA, a dual-mode nanoenzyme-linked immunoassay sensing platform was constructed for aflatoxins B1 (AFB1) detection, achieving low detection limits of 4.96 fg/mL in the colorimetric mode and 1.5 pg/mL in the photothermal mode. Due to its admirable photo-Fenton performance, AFB1 was almost completely degraded within 3 h, resulting in a significant reduction in its cytotoxicity. This work provides a new solution for synthetic regulation and property enhancement of PBAs, which promotes their application in control of food hazards.
Collapse
Affiliation(s)
- Tianyu Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yini Zeng
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yan Lv
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
3
|
Guo C, Wang Y, Li Z, Guo Y, Duan F, He L, Zhang S, Wang M, Zhang Z. A Donor-Acceptor Covalent Triazine Framework-based "On-Off-On" Electrochemiluminescence Aptasensor for Detecting Aflatoxin B1 with the Assistance of Nicking Endonuclease-powered DNA Walking Machine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10372-10382. [PMID: 40231802 DOI: 10.1021/acs.langmuir.5c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
A designed "on-off-on" signal-switchable electrochemiluminescence (ECL) aptasensor based on a donor-acceptor (D-A) conjugated covalent triazine framework (CTF) has been constructed for the sensitive and accurate detection of aflatoxin B1 (AFB1) with the assistance of a nicking endonuclease (Nb.BbvCI)-powered DNA walking machine. The D-A conjugated CTF, generated from the reaction between 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (TFPT) and tris(4-aminophenyl)methane (TAPM) (denoted as TFPT-TAPM-CTF), simultaneously serves as a superior ECL emitter and a platform for anchoring the bioprobe. The high ECL response of TFPT-TAPM-CTF can be quenched by the anchored Cy5-labeled single-strand DNA (Cy5-ssDNA) via ECL resonance energy transfer. Furthermore, the immobilization of the double-strand DNA generated between the AFB1-targeting aptamer and the DNA walker (Hp) reduces the ECL response of TFPT-TAPM-CTF. When detecting AFB1, the aptamer separates from the double-strand DNA to capture specific targets, resulting in the hybridization of the free Hp strand and Cy5-ssDNA. With the assistance of Nb.BbvCI, the released partial Cy5-ssDNA helps recover the ECL response of TFPT-TAPM-CTF to some extent, further liberating the Hp strand to autonomously bind to another Cy5-ssDNA and trigger a new cleavage process. In addition to its high selectivity and promising practicality, the constructed ECL aptasensor shows an ultralow detection limit of 0.59 pg·mL-1 within a wide range from 1.0 pg·mL-1 to 5.0 × 104 pg·mL-1. This work broadens the application of CTF in the food safety field and provides a new aptasensing strategy for the sensitive and precise inspection of mycotoxins in food products.
Collapse
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Yifei Wang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zhenzhen Li
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Yuqi Guo
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Fenghe Duan
- College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuai Zhang
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Minghua Wang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
Yang Y, Zhong C, Huang J, Dai J, Zhou C. Nanopore single-molecule investigation of aflatoxin B1-aptamer interactions for evolving the aptamer. Chem Commun (Camb) 2025; 61:5782-5785. [PMID: 40125576 DOI: 10.1039/d5cc00623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
By utilizing characteristic blocking signatures, the interactions between aflatoxin B1 (AFB1) and its aptamer were investigated. Furthermore, its aptamer sequence was evolved to have a higher affinity (Kd) calculated to be 18.74 nM for AFB1 than previous reports. This evolved aptamer-based nanopore strategy enabled the sensitive detection of trace AFB1 with a linear range from 0.5 to 100 nM.
Collapse
Affiliation(s)
- Yongqi Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Chunmeng Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Junjie Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Li Z, Luo D, Zhang Y, Niu X, Liu H. Smart Health Monitoring: Review of Electrochemical Biosensors for Cortisol Monitoring. Adv Healthc Mater 2025; 14:e2404454. [PMID: 40099568 DOI: 10.1002/adhm.202404454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Cortisol, also known as the stress hormone, is a crucial corticosteroid hormone that significantly increases secretion in the human body when facing notable stress. Monitoring cortisol levels is crucial for personal stress management and the diagnosis and treatment of certain diseases. Electrochemical biosensors combine the efficient sensitivity of electrochemical technology with the high specificity of biological recognition processes, making them widely applicable in the analysis of human body fluid components. This work outlines the working mechanism of cortisol electrochemical biosensors, focusing particularly on sensing elements such as antibodies, aptamers, and molecularly imprinted polymers. It provides detailed explanations of the operational principles of these different recognition elements. This work summarizes and evaluates the latest advancements in electrochemical biosensors for detecting cortisol in human body fluids, discussing the influence of different recognition elements on sensor design and electrochemical performance. Subsequently, through a comparative analysis of various sensor performances, the work further discusses the challenges in translating laboratory achievements into practical applications, including enhancing key metrics such as sensor reusability, reproducibility, long-term stability, continuous monitoring capability, and response time. Finally, it offers insights and recommendations for achieving real-time, continuous, and long-term monitoring with cortisol electrochemical biosensors.
Collapse
Affiliation(s)
- Zhijie Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Yaqian Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Xin Niu
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- School of Arts, Tiangong University, Tianjin, 300387, China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
6
|
Yao L, Liu T, Sun L, Gao S, Liu S, Qu H, Mao Y, Zheng L. Selection of High-Affinity and Selectivity AFB 1 Circular Aptamer for Biosensor Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3222-3231. [PMID: 39843228 DOI: 10.1021/acs.jafc.4c10737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Detecting trace amounts of aflatoxin B1 (AFB1), one of the most toxic food contaminants, is crucial for efficiently preventing potential health risks. Circular aptamers are promising candidates for bioanalytical applications due to their enhanced biological and structural stability as well as their compatibility with rolling circle amplification (RCA). Herein, we employed a high-efficiency magnetic chain graphene oxide-based SELEX to generate circular aptamers that bind AFB1 with high affinity and selectivity. Notably, the selected circular aptamer, CAFB1-A-2, exhibited a significant sequence similarity to the classical AFB1 linear aptamer but demonstrated a distinct thermodynamic mechanism for binding. The binding of CAFB1-A-2 was driven by both enthalpy and entropy, whereas the classical linear aptamer exhibited a notable entropy loss that required a greater enthalpy compensation. Utilizing this circular aptamer, we developed a sensitive AFB1 detection system featuring an RCA-assisted allosteric DNAzyme biosensor with a detection limit (LOD) of 265 pM. Furthermore, the constructed aptasensor successfully detected AFB1 in spiked rice and corn, achieving LODs of 11 and 9 μg/kg, respectively, within approximately 4 h. This study provides a sensitive and reliable alternative to the development of an aptasensor for AFB1, holding great potential in the field of food safety detection.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Long Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengjie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Nirala NR, Sadhasivam S, Sionov E, Shtenberg G. A comparative study of aptasensor vs. immunosensor for ultrasensitive detection of aflatoxin B1 using Ag-pSi SERS substrate. Food Chem 2025; 464:141637. [PMID: 39423540 DOI: 10.1016/j.foodchem.2024.141637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Numerous SERS based platforms have been designed to address the emerging need for detecting fungal metabolite contamination in foodstuffs, and specifically the Group 1 carcinogen aflatoxin B1. Herein, 4-aminothiophenol modified silver-coated porous silicon was used as the SERS substrate. Two ratiometric responses were individually assessed upon direct target capture using specific aptamers or antibodies. Under optimized physical features, elevated enhancement factor, wide dynamic range, low detection limits and pronounced recycling capabilities were achieved (7.39 × 107, 0.2-200 ppb, 0.0085 and 0.0110 ppb, 7 and 1 regeneration cycles without impairing the performances for aptasensor and immunosensor, respectively). The accuracy and anti-interference responses in several intricate matrices (maize, peanut, wheat, oats and rice) were compared to a routine HPLC method with equivalent recoveries. Overall, the comparative assessment revealed preferable features of reusability, durability and accuracy of the aptasensor over the immunosensor. Furthermore, the results demonstrate the substantial potential of the proposed SERS substrate for diverse on-site analytical applications using simple and portable monitoring instrumentation.
Collapse
Affiliation(s)
- Narsingh R Nirala
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, Rishon LeZion, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Edward Sionov
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, Rishon LeZion, Israel.
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
8
|
Jiang W, Zhu Y, Tang Q, Kang X, Ji H, Guo C, Gu X, Zhang J, Mao Z, Wu L, Qin Y. On-site detection of OTA and AFB1 based on branched hybridization chain reaction coupled with lateral flow assay. Talanta 2025; 283:127095. [PMID: 39454347 DOI: 10.1016/j.talanta.2024.127095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Mycotoxins are widely prevalent in various agricultural commodities, whose excessive consumption can pose significant risks to human health. In this study, we developed a facile mycotoxin detection platform based on branched hybridization chain reaction coupled with lateral flow assay. Ochratoxin A/Aflatoxin B1 bind to aptamers triggering the release of initiators, which leads to bHCR amplification and forms three-dimensional dendritic DNA nanostructures. Using the functionalized quantum dots as a fluorescent label, by leveraging smartphones and handheld ultraviolet lamps, the qualitative and quantitative detection of OTA and AFB1 can be achieved with a significantly enhanced sensitivity level, surpassing that of commercial test strips by 2-3 orders of magnitude. The visual detection limits for OTA and AFB1 were 30 pg/mL and 4 pg/mL, respectively. This approach eliminates the necessity for enzyme catalysis or the preparation and purification of antibodies and/or hapten, thereby reducing testing expenses and streamlining operational procedures. Moreover, substituting aptamer and nucleic acid sequences can effectively expand the scope of detection targets. Consequently, the as-proposed strategy exhibits great potential as a versatile technique, suitable for various analytical scenarios due to its sensitivity, accuracy, simplicity, and portability.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaoxia Kang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Conglin Guo
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
9
|
Wang T, Cui R, Yu HF, Yang D, Zhang S, Nie Y, Teng CB. The impact of aflatoxin B1 on animal health: Metabolic processes, detection methods, and preventive measures. Toxicon 2025; 255:108262. [PMID: 39855607 DOI: 10.1016/j.toxicon.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops. The World Health Organization (WHO) has classified AFB1 as a highly potent natural Class 1A carcinogen. Excessive exposure to AFB1 can lead to poisoning in both humans and animals, posing substantial risks to food safety and livestock breeding industries. This review provides an overview of the metabolic processes, detection methods, and the detrimental impacts of AFB1 on animal reproduction, immunity, nerves, intestines, and metabolism. Furthermore, it explores the preventive and control capacities of natural active substances, trace elements, and microorganisms against AFB1. Ultimately, this paper serves as a reference for further research on the pathogenic mechanism of AFB1, the development of preventive drugs, and the selection of effective detoxification measures for AFB1 in animal feed.
Collapse
Affiliation(s)
- Tianyang Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Runzi Cui
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuting Zhang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuzhe Nie
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Cheng Q, Zhao Q. Fluorescence assay for aflatoxin B1 based on aptamer-binding triggered DNAzyme activity. Anal Bioanal Chem 2024; 416:6367-6375. [PMID: 39264462 DOI: 10.1007/s00216-024-05523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
As a kind of mycotoxin, aflatoxin B1 (AFB1), which is often found in agricultural products, poses a threat to human health. Developing a simple sensitive method for AFB1 detection is in great demand. Here, we reported an aptamer-based fluorescence assay for AFB1 detection by using DNAzyme to generate and amplify a signal. We redesigned a pair of DNA sequences, which originated from the anti-AFB1 aptamer and RNA-cleaving DNAzyme 10-23. In the absence of AFB1, the aptamer hybridized with the region of the substrate-binding arm of the DNAzyme, inhibiting the activity of the DNAzyme. In the presence of AFB1, the binding of AFB1 to the aptamer led to the displacement of the DNAzyme from the aptamer. The substrate-binding arm was unblocked, and the activity of the DNAzyme was restored for the hydrolysis of the fluorophore and quencher-labeled substrate, causing a significant fluorescence increase. This assay could detect AFB1 in the dynamic range from 0.98 to 2000 nmol/L with high selectivity, and the detection limit was 0.98 nmol/L. Moreover, the assay was able to detect AFB1 in a complex sample matrix. This work provides a useful tool for the analysis of AFB1.
Collapse
Affiliation(s)
- Qiuyi Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
11
|
Guo Z, Fu X, Zhou R, Zhang Y, El-Seedi H, Watson N, Zou X, Povey M. A silicon-based functional self-assembled aptasensor for the detection of aflatoxin B1 by SERS sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6994-7004. [PMID: 39282884 DOI: 10.1039/d4ay01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
One of the most harmful contaminants found in corn and its products is aflatoxin B1 (AFB1) and thus developing reliable detection methods is of great significance to consumers and the food industry. In this research, AuMBA@Ag nanoparticles (NPs) and AgNPs deposited on a silicon wafer (Si@AgNPs) were functionalized with an aptamer and its complementary strand, respectively, and self-assembled into a SERS aptasensor, which generated strong SERS signals. AFB1 bound to the aptamer prior to the complementary chain, causing AuMBA@Ag NPs to detach from Si@AgNPs. The complex dissociated, leading to a decrease in signal intensity from the solid-phase substrate. Under optimal conditions, the linear detection range was 0.05-20.0 ng mL-1, and the detection limit was 0.039 ng mL-1. Notably, the aptasensor demonstrated a recovery rate between 92.77% and 110.13% when utilized for the detection of AFB1 in corn flour and oil, indicating its good potential for detecting AFB1 in real sample matrices. In conclusion, a quantitative and reliable specific SERS detection system for AFB1 was developed in this study with significant applicability to food safety.
Collapse
Affiliation(s)
- Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xuan Fu
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Nicholas Watson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Xing C, Li G, Zheng X, Li P, Yuan J, Yan W. Characterization of a Novel Monoclonal Antibody with High Affinity and Specificity against Aflatoxins: A Discovery from Rosetta Antibody-Ligand Computational Simulation. J Chem Inf Model 2024; 64:6814-6826. [PMID: 39157865 DOI: 10.1021/acs.jcim.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Aflatoxin B1 (AFB1) accumulates in crops, where it poses a threat to human health. To detect AFB1, anti-AFB1 monoclonal antibodies have been developed and are widely used. While the sensitivity and specificity of these antibodies have been extensively studied, information regarding the atomic-level docking of AFB1 (and its derivatives) with these antibodies is limited. Such information is crucial for understanding the key interactions that are required for high affinity and specificity in aflatoxin binding. First, a 3D comparative model of anti-AFB1 antibody (Ab-4B5G6) was predicted from the sequence using RosettaAntibody. We then utilized RosettaLigand to dock AFB1 onto ten homology models, producing a total of 10,000 binding modes. Interestingly, the best-scoring mode predicted strong interactions involving four sites within the heavy chain: ALA33, ASN52, HIS95, and TRP99. Importantly, these strong binding interactions exclusively involve the variable domain of the heavy chain. The best-scoring mode with AFB1 was also obtained through AF multimer combined with RosettaLigand, and two interactions at TRP and HIS were consistent with those found by Rosetta antibody-ligand computational simulation. The role of tryptophan in π interactions in antibodies was confirmed through mutation experiments, and the resulting mutant (W99A) exhibited a >1000-fold reduction in binding affinity for AFB1 and analogs, indicating the effect of tryptophan on the stability of CDR-H3 region. Additionally, we evaluated the binding of two glycolic acid-derived molecular derivatives (with impaired hydrogen bonding potential), and these derivatives (AFB2-GA and AFG2-GA) demonstrated a very weak binding affinity for Ab-4B5G6. The heavy chain was successfully isolated, and its sensitivity and specificity were consistent with those of the intact antibody. The homology models of variable heavy (VH) single-domain antibodies were established by RosettaAntibody, and the docking analysis revealed the same residues, including Ala, His, and Trp. Compared to the potential binding mode of fragment variable (FV) region, the results from a model of VH indicated that there are seven models involved in hydrophobic interaction with TYR32, which is usually referred to as polar amino acid and has both hydrophobic and hydrophilic features depending on the circumstances. Our work encompasses the entire process of Rosetta antibody-ligand computational simulation, highlighting the significance of variable heavy domain structural design in enhancing molecular interactions.
Collapse
Affiliation(s)
- Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xin Zheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Samokhvalov AV, Mironova AA, Eremin SA, Zherdev AV, Dzantiev BB. Polycations as Aptamer-Binding Modulators for Sensitive Fluorescence Anisotropy Assay of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2024; 24:3230. [PMID: 38794084 PMCID: PMC11125339 DOI: 10.3390/s24103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.
Collapse
Affiliation(s)
- Alexey V. Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Alena A. Mironova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| |
Collapse
|
14
|
Zhu F, Yu H, Zhao Q. CRISPR/Cas12a-Amplified Aptamer Switch Microplate Assay for Small Molecules. Anal Chem 2024; 96:6853-6859. [PMID: 38646918 DOI: 10.1021/acs.analchem.4c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The presence of small molecule contaminants such as mycotoxins and heavy metals in foods and the environment causes a serious threat to human health and huge economic losses. The development of simple, rapid, sensitive, and on-site methods for small molecule pollutant detection is highly demanded. Here, combining the advantages of structure-switchable aptamer-mediated signal conversion and CRISPR/Cas12a-based signal amplification, we developed a CRISPR/Cas12a-amplified aptamer switch assay on a microplate for sensitive small molecule detection. In this assay, a short DNA strand complementary to the aptamer (cDNA) is immobilized on a microplate, which can capture the aptamer-linked active DNA probe (Apt-acDNA) in the sample solution when the target is absent. With the addition of the Cas12a reporter system, the captured Apt-acDNA probes activate Cas12a to indiscriminately cleave fluorescent DNA substrates, producing a high fluorescence signal. When the target is present, the Apt-acDNA probe specifically binds to the target rather than hybridizing with cDNA on the microplate, and the fluorescence signal is reduced. The analytical performance of our method was demonstrated by the detection of two highly toxic pollutants, aflatoxin B1 (AFB1) and cadmium ion (Cd2+), as examples. The assay exhibited good selectivity and high sensitivity, with detection limits of 31 pM AFB1 and 3.9 nM Cd2+. It also allowed the detection of targets in the actual sample matrix. With the general signal conversion strategy, this method can be used to detect other targets by simply changing the aptamer and cDNA, showing potential practical applications in broad fields.
Collapse
Affiliation(s)
- Fengxi Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
15
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
16
|
Peng K, Sha J, Fang X, Li M, Yu J, Hao L, Xu F. Detection of Cadmium(II) in Aquatic Products Using a Rolling-Circle Amplification-Coupled Ratio Fluorescent Probe Based on an Aptamer-Peptide Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8167-8179. [PMID: 38509823 DOI: 10.1021/acs.jafc.3c08636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The existing aptamers for cadmium (Cd2+), the common toxic heavy metal contaminant in food, cannot meet the requirements for detecting Cd2+ in rapid detection methods. In previous work, we found that coupling aptamer-peptide conjugates (APCs) with peptides and aptamers can provide a less disruptive method with a significantly improved affinity. Moreover, we found that the spatial conformation of aptamers and peptides is crucial for obtaining proper affinity in APC. Therefore, we describe a simple design strategy to obtain a series of APCs with different affinities by designing peptide orientations (N-terminal, C-terminal). The best affinity was found for APC(C1-N) with a binding constant (Ka) of 2.23 × 106 M-1, indicating that the APC(C1-N) affinity was significantly increased by 829.17% over aptamer. Finally, a rolling-circle amplification (RCA)-coupled ratio fluorescence-based biosensor for Cd2+ detection was established with a detection limit of 0.0036 nM, which has great potential for practical aquatic product detection.
Collapse
Affiliation(s)
- Kaimin Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Jiahao Sha
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Xinyu Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Mengqiu Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Jingsong Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Liling Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| |
Collapse
|
17
|
Ji C, Sun X, Fang Y, Li P. Determination of Aflatoxin B 1 in Grains by Aptamer Affinity Column Enrichment and Purification Coupled with High Performance Liquid Chromatography Detection. Foods 2024; 13:640. [PMID: 38472753 DOI: 10.3390/foods13050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a highly teratogenic and carcinogenic secondary metabolite produced by Aspergillus. It is commonly detected in agricultural products such as cereals, peanuts, corn, and feed. Grains have a complex composition. These complex components severely interfere with the effective extraction and separation of AFB1, and also cause problems such as matrix interference and instrument damage, thus posing a great challenge in the accurate analysis of AFB1. In this study, an aptamer affinity column for AFB1 analysis (AFB1-AAC) was prepared for the enrichment and purification of AFB1 from grain samples. AFB1-AAC with an AFB1-specific aptamer as the recognition element exhibited high affinity and specificity for AFB1. Grain samples were enriched and purified by AFB1-AAC, and subsequently analyzed by high performance liquid chromatography with post-column photochemical derivatization-fluorescence detection (HPLC-PCD-FLD). The average recoveries of AFB1 ranged from 88.7% to 99.1%, with relative standard deviations (RSDs) of 1.4-5.6% (n = 3) at the spiked levels of 5.0-20.0 μg kg-1. The limit of detection (LOD) for AFB1 (0.02 μg kg-1) was much below the maximum residue limits (MRLs) for AFB1. This novel method can be applied to the determination of AFB1 residues in peanut, corn, and rice.
Collapse
Affiliation(s)
- Cong Ji
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
18
|
Yang M, Li C, Ye G, Shen C, Shi H, Zhong L, Tian Y, Zhao M, Wu P, Hussain A, Zhang T, Yang H, Yang J, Weng Y, Liu X, Wang Z, Gan L, Zhang Q, Liu Y, Yang G, Huang Y, Zhao Y. Aptamers targeting SARS-CoV-2 nucleocapsid protein exhibit potential anti pan-coronavirus activity. Signal Transduct Target Ther 2024; 9:40. [PMID: 38355661 PMCID: PMC10866937 DOI: 10.1038/s41392-024-01748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.
Collapse
Affiliation(s)
- Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Guoguo Ye
- National Clinical Research Center for infectious disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Chenguang Shen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huiping Shi
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yuxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyuan Zhao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Wu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyue Liu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhimin Wang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Qianyu Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yingxia Liu
- National Clinical Research Center for infectious disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
19
|
Li Y, Meng S, Dong N, Wei Y, Wang Y, Ren Y, Li X, Liu D, You T. Wavelength-Resolved Janus Biosensing Interface for Ratiometric Electrochemical Analysis. Anal Chem 2024; 96:2582-2589. [PMID: 38294965 DOI: 10.1021/acs.analchem.3c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance. MB shows differential electrochemical signals under front (I532front) and back (I650back) laser illumination at 532 and 650 nm, respectively, owing to the selective wavelength-resolved effect. Thus, the presence of a wavelength-resolved laser enabled the design of a biosensing interface with Janus properties. The change in the distance between MB and AuNPs induced by aflatoxin B1 (AFB1) indicates that a sensitive response of the Janus biosensing interface can be achieved. A ratiometric strategy is introduced to describe the electrochemical signals of the I532front and I650back for improved robustness. The obtained linear range is 0.0005-50 ng mL-1, with a detection limit of 0.175 pg mL-1. Our study demonstrated that the wavelength-resolved Janus interface enables an electrochemical biosensor with excellent sensitivity. This finding provides an efficient approach for improving biosensor performance.
Collapse
Affiliation(s)
- Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
20
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
21
|
Yu H, Zhao Q. Profiling Additional Effects of Aptamer Fluorophore Modification on Microscale Thermophoresis Characterization of Aptamer-Target Binding. Anal Chem 2023; 95:17011-17019. [PMID: 37946406 DOI: 10.1021/acs.analchem.3c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Aptamers are promising affinity ligands with considerable applications, such as biosensors, disease diagnosis, therapy, etc. Characterization of aptamer-target binding is important in aptamer selection and aptamer applications. Microscale thermophoresis (MST) is an emerging optical technique for molecular interactions, which monitors fluorescence responses of fluorescent molecules in a microscopic temperature gradient. Harnessing merits in trace sample consumption, high speed, free separation, free immobilization, and ratiometric analysis, MST draws intense wide attention. MST is often applied for aptamer-target binding studies using fluorescently labeled aptamers. However, the MST signal is strongly dependent on fluorophore modifications at aptamers, which brings additional challenges and effects for MST analyzing aptamer affinity. Here, we systematically explored effects of fluorophore modifications (e.g., fluorophore types, fluorophore positions, etc.) of aptamer probes on MST characterizing aptamer-target interactions and identified gaps of MST analysis in aptamer affinity determination, taking aptamers against cadmium ions and aflatoxin B1 as two representatives. The same aptamers with different fluorophore modifications showed distinct MST signals in response magnitudes and signs as well as determined affinities, and some of them failed to respond to target binding and gave false affinity information in MST. A competitive MST method can be used to extract the affinity of unmodified aptamers, excluding effects of fluorophore modification. This work highlights that appropriate fluorophore modification is crucial in MST analysis of aptamer affinity, and caution is needed in MST applications, providing a basis for rational design of the MST method for the reliable molecular interaction study.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|