1
|
Geilenkeuser J, Armbrust N, Steinmaßl E, Du SW, Schmidt S, Binder EMH, Li Y, Warsing NW, Wendel SV, von der Linde F, Schiele EM, Niu X, Stroppel L, Berezin O, Santl TH, Orschmann T, Nelson K, Gruber C, Palczewska G, Menezes CR, Risaliti E, Engfer ZJ, Koleci N, Schmidts A, Geerlof A, Palczewski K, Westmeyer GG, Truong DJJ. Engineered nucleocytosolic vehicles for loading of programmable editors. Cell 2025; 188:2637-2655.e31. [PMID: 40209705 DOI: 10.1016/j.cell.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
Advanced gene editing methods have accelerated biomedical discovery and hold great therapeutic promise, but safe and efficient delivery of gene editors remains challenging. In this study, we present a virus-like particle (VLP) system featuring nucleocytosolic shuttling vehicles that retrieve pre-assembled Cas-effectors via aptamer-tagged guide RNAs. This approach ensures preferential loading of fully assembled editor ribonucleoproteins (RNPs) and enhances the efficacy of prime editing, base editing, trans-activators, and nuclease activity coupled to homology-directed repair in multiple immortalized, primary, stem cell, and stem-cell-derived cell types. We also achieve additional protection of inherently unstable prime editing guide RNAs (pegRNAs) by shielding the 3'-exposed end with Csy4/Cas6f, further enhancing editing performance. Furthermore, we identify a minimal set of packaging and budding modules that can serve as a platform for bottom-up engineering of enveloped delivery vehicles. Notably, our system demonstrates superior per-VLP editing efficiency in primary T lymphocytes and two mouse models of inherited retinal disease, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Julian Geilenkeuser
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Emily Steinmaßl
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Samuel W Du
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Sebastian Schmidt
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany; Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Eva Maria Hildegard Binder
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Yuchun Li
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Niklas Wilhelm Warsing
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Stephanie Victoria Wendel
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Florian von der Linde
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Elisa Marie Schiele
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Xiya Niu
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Luisa Stroppel
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Oleksandr Berezin
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Tobias Heinrich Santl
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Tanja Orschmann
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Keith Nelson
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Christoph Gruber
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Eleonora Risaliti
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zachary J Engfer
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Naile Koleci
- Department of Medicine III: Hematology/Oncology, Klinikum rechts der Isar of the Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Andrea Schmidts
- Department of Medicine III: Hematology/Oncology, Klinikum rechts der Isar of the Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Department of Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Gil Gregor Westmeyer
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany; Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Dipalo LL, Mikkelsen JG, Gijsbers R, Carlon MS. Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis. Hum Gene Ther 2025. [PMID: 40295092 DOI: 10.1089/hum.2024.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced "living drugs." We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in in vivo gene editing for this disease.
Collapse
Affiliation(s)
- Laudonia Lidia Dipalo
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Advanced Disease Modelling, Targeted Drug Discovery, and Gene Therapy (ADVANTAGE) labs, KU Leuven, Leuven, Belgium
- Leuven Viral Vector Core, group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Jia J, Hao Y, Zhang L, Cao X, An L, Wang H, Ma Q, Jin X, Ma X. Development and validation of optimized lentivirus-like particles for gene editing tool delivery with Gag-Only strategy. Eur J Med Res 2025; 30:242. [PMID: 40186294 PMCID: PMC11969815 DOI: 10.1186/s40001-025-02499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The development of gene editing tools such as CRISPR-Cas9 and base editors (BE) is critical for genetic diseases and cancer. Lentivirus-like particles (LVLPs) grows into an auspicious platform for delivering mRNA or ribonucleic proteins (RNPs) due to it integrates the advantage of viral and non-viral vectors. Current LVLP systems predominantly utilize HIV-Gag and Pol proteins. However, the reverse transcriptase and integrase of Pol, pose risks of genomic integration and potential tumorigenesis. Enhancing the safety of VLP system is essential. This study focuses on improving the LVLP to minimize these risks. METHODS We implemented a Gag-Only strategy, constructing LVLPs with HIV-Gag protein, thereby eliminating the integration risks linked to Pol. By leveraging the interactions between MS2-MCP (MS2 coat protein), PP7 and PP7 BP (PP7 binding protein), and the psi (HIV packaging signal) with HIV-Gag, we encapsulated PAMless andesine base editor (CE-8e-SpRY) mRNA and sgRNA targeting the PD1 start codon (ATG) into the LVLP. Using recombinant lentiviral vector technology, we developed a stable PD1-expressing 293T cell line (PD1-293T) to assess the editing efficiency of LVLP. RESULTS The psi-LVLP demonstrated effective packaging capabilities, achieving 15% base editing efficiency in 293T cells. By optimizing plasmid ratios, we observed increased CE-8e-SpRY mRNA copy numbers, with 30% base editing efficiency. Additionally, the integration of HDVrz (hepatitis delta virus ribozyme) and psi into sgRNA (HDVrz-psi-LVLP) substantially enhanced sgRNA copy numbers, resulting in approximately 50% base editing efficiency in 293T cells and 20% base editing efficiency in Jurkat cells. Mendelian randomization analyses revealed significant genetic correlations between PD1, B2M, CIITA, and TIGIT genes with various cancer risks. Furthermore, HDVrz-psi-LVLPs targeting the start codons of B2M, CIITA, and TIGIT exhibited high base editing activity in both Jurkat and 293T cells. CONCLUSION In conclusion, this optimized platform effectively encapsulates CE-8e-SpRY mRNA and sgRNA, achieving high editing efficiencies across multiple genes and cell types. We introduce a safer and more efficient gene editing tool delivery system by constructing LVLPs based on the Gag-Only strategy. Our study presents a promising implication for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinlin Jia
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Yanzhe Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China.
| | - Lu Zhang
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Xiaofang Cao
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Lisha An
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Hu Wang
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Qi Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Human Genetic Resources Center, Beijing, 100052, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Human Genetic Resources Center, Beijing, 100052, China.
| |
Collapse
|
4
|
Ling S, Zhang X, Dai Y, Jiang Z, Zhou X, Lu S, Qian X, Liu J, Selfjord N, Satir TM, Lundin A, Touza JL, Firth M, Van Zuydam N, Bilican B, Akcakaya P, Hong J, Cai Y. Customizable virus-like particles deliver CRISPR-Cas9 ribonucleoprotein for effective ocular neovascular and Huntington's disease gene therapy. NATURE NANOTECHNOLOGY 2025; 20:543-553. [PMID: 39930103 PMCID: PMC12015117 DOI: 10.1038/s41565-024-01851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/17/2024] [Indexed: 04/24/2025]
Abstract
In vivo CRISPR gene editing holds enormous potential for various diseases. Ideally, CRISPR delivery should be cell type-specific and time-restricted for optimal efficacy and safety, but customizable methods are lacking. Here we develop a cell-tropism programmable CRISPR-Cas9 ribonucleoprotein delivery system (RIDE) based on virus-like particles. The efficiency of RIDE was comparable to that of adeno-associated virus and lentiviral vectors and higher than lipid nanoparticles. RIDE could be readily reprogrammed to target dendritic cells, T cells and neurons, and significantly ameliorated the disease symptoms in both ocular neovascular and Huntington's disease models via cell-specific gene editing. In addition, RIDE could efficiently edit the huntingtin gene in patients' induced pluripotent stem cell-derived neurons and was tolerated in non-human primates. This study is expected to facilitate the development of in vivo CRISPR therapeutics.
Collapse
Affiliation(s)
- Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- BDGENE Therapeutics, Shanghai, China
| | - Xue Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tugce Munise Satir
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundin
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Natalie Van Zuydam
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bilada Bilican
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jiaxu Hong
- Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gene Editing and Cell-based Immunotherapy for Hematological Diseases, Shanghai, China.
| |
Collapse
|
5
|
Hazel K, Singh D, He S, Guertin Z, Husser MC, Helfield B. Focused ultrasound and microbubble-mediated delivery of CRISPR-Cas9 ribonucleoprotein to human induced pluripotent stem cells. Mol Ther 2025; 33:986-996. [PMID: 39797397 PMCID: PMC11897754 DOI: 10.1016/j.ymthe.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity, and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single-guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSCs with clinical Definity microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows for the first time the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.
Collapse
Affiliation(s)
- Kyle Hazel
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Davindra Singh
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Zakary Guertin
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Mathieu C Husser
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada.
| |
Collapse
|
6
|
Fan X, Lei Y, Wang L, Wu X, Li D. Advancing CRISPR base editing technology through innovative strategies and ideas. SCIENCE CHINA. LIFE SCIENCES 2025; 68:610-627. [PMID: 39231901 DOI: 10.1007/s11427-024-2699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Lei
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiushan Wu
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, 510100, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Murray JB, Harrison PT, Scholefield J. Prime editing: therapeutic advances and mechanistic insights. Gene Ther 2025; 32:83-92. [PMID: 39609594 PMCID: PMC11946880 DOI: 10.1038/s41434-024-00499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
We are often confronted with a simple question, "which gene editing technique is the best?"; the simple answer is "there isn't one". In 2021, a year after prime editing first made its mark, we evaluated the landscape of this potentially transformative advance in genome engineering towards getting treatments to the clinic [1]. Nearly 20% of the papers we cited were still in pre-print at the time which serves to indicate how early-stage the knowledge base was at that time. Now, three years later, we take a look at the landscape and ask what has been learnt to ensure this tech is broadly accessible, highlighting some key advances, especially those that push this towards the clinic. A big part of the appeal of prime editing is its ability to precisely edit DNA without double stranded breaks, and to install any of the 12 possible single-nucleotide conversion events as well as small insertions and/or deletions, or essentially any combination thereof. Over the last few decades, other transformative and Nobel prize-winning technologies that rely on Watson-Crick base-pairing such as PCR, site-directed mutagenesis, RNA interference, and one might say, "classic" CRISPR, were swiftly adopted across labs around the world because of the speed with which mechanistic rules governing their efficiency were determined. Whilst this perspective focuses on the context of gene therapy applications of prime editing, we also further look at the recent studies which have increased our understanding of the mechanism of PEs and simultaneously improved the efficiency and diversity of the PE toolbox.
Collapse
Affiliation(s)
- Joss B Murray
- Department of Physiology, University College Cork, Cork, Ireland
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork, Ireland.
- Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| | - Janine Scholefield
- Bioengineering and Integrated Genomics, NextGen Health, CSIR, Pretoria, South Africa.
| |
Collapse
|
8
|
Karp H, Zoltek M, Wasko K, Vazquez A, Brim J, Ngo W, Schepartz A, Doudna J. Packaged delivery of CRISPR-Cas9 ribonucleoproteins accelerates genome editing. Nucleic Acids Res 2025; 53:gkaf105. [PMID: 40036508 PMCID: PMC11878570 DOI: 10.1093/nar/gkaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/05/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Effective genome editing requires a sufficient dose of CRISPR-Cas9 ribonucleoproteins (RNPs) to enter the target cell while minimizing immune responses, off-target editing, and cytotoxicity. Clinical use of Cas9 RNPs currently entails electroporation into cells ex vivo, but no systematic comparison of this method to packaged RNP delivery has been made. Here we compared two delivery strategies, electroporation and enveloped delivery vehicles (EDVs), to investigate the Cas9 dosage requirements for genome editing. Using fluorescence correlation spectroscopy, we determined that >1300 Cas9 RNPs per nucleus are typically required for productive genome editing. EDV-mediated editing was >30-fold more efficient than electroporation, and editing occurs at least 2-fold faster for EDV delivery at comparable total Cas9 RNP doses. We hypothesize that differences in efficacy between these methods result in part from the increased duration of RNP nuclear residence resulting from EDV delivery. Our results directly compare RNP delivery strategies, showing that packaged delivery could dramatically reduce the amount of CRISPR-Cas9 RNPs required for experimental or clinical genome editing.
Collapse
Affiliation(s)
- Hannah Karp
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, United States
| | - Madeline Zoltek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Kevin Wasko
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Angel Luis Vazquez
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Jinna Brim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Wayne Ngo
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, United States
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, United States
- ARC Institute, Palo Alto, CA 94304, United States
- Chan Zuckerberg Biohub, San Francisco, CA 94158, United States
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, United States
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
9
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
10
|
Liu Y, Bai X, Feng X, Liu S, Hu Y, Chu H, Zhang L, Cai B, Ma Y. Revolutionizing animal husbandry: Breakthroughs in gene editing delivery systems. Gene 2025; 935:149044. [PMID: 39490705 DOI: 10.1016/j.gene.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry. It critically evaluates the strengths and weaknesses of these different delivery approaches while identifying potential directions for future development. The goal is to equip researchers with effective strategies to optimize delivery methods, ultimately facilitating the implementation and progress of gene editing technologies in animal husbandry.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Xue Bai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuang Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Hongen Chu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
11
|
Halegua T, Risson V, Carras J, Rouyer M, Coudert L, Jacquier A, Schaeffer L, Ohlmann T, Mangeot PE. Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles. Nat Commun 2025; 16:397. [PMID: 39755699 DOI: 10.1038/s41467-024-55604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells. We identify key features that unlock the potential of Nanoscribes, including the use of multiple fusogens, the improvement of pegRNAs structures, their encoding by a Pol II system and the optimization of Prime-Editors. Nanoscribes edit HEK293T with an efficiency of 68% at the HEK3 locus with increased fidelity over DNA-transfection and support pegRNA-multiplexing. Importantly, Nanoscribes permit editing of myoblasts, hiPSCs and hiPSCs-derived hematopoietic stem cells with an editing efficiency up to 25%. Nanoscribes is an asset for development of next generation genome editing approaches using VLPs.
Collapse
Affiliation(s)
- Thibaut Halegua
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
| | - Julien Carras
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
- Hospices Civils de Lyon, groupement Est, F-69, Bron, France
| | - Martin Rouyer
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Coudert
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
- Hospices Civils de Lyon, groupement Est, F-69, Bron, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
- Hospices Civils de Lyon, groupement Est, F-69, Bron, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Philippe Emmanuel Mangeot
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
12
|
Covo-Vergara Á, Salaberry L, Silva-Pilipich N, Hervas-Stubbs S, Smerdou C. Cell-specific delivery of CRISPR-Cas9 with pseudotyped lentiviral particles: Just change the envelope. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102395. [PMID: 39669702 PMCID: PMC11634983 DOI: 10.1016/j.omtn.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Affiliation(s)
- Ángela Covo-Vergara
- Division of Cancer, Cima Universidad de Navarra, Av. Pío XII 55, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
| | - Laura Salaberry
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Av. Pío XII 55, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
- Nanogrow Biotech, Montevideo, Uruguay
| | - Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Av. Pío XII 55, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
- Nanogrow Biotech, Montevideo, Uruguay
| | - Sandra Hervas-Stubbs
- Division of Cancer, Cima Universidad de Navarra, Av. Pío XII 55, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Av. Pío XII 55, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
| |
Collapse
|
13
|
Pulman J, Botto C, Malki H, Ren D, Oudin P, De Cian A, As M, Izabelle C, Saubamea B, Forster V, Fouquet S, Robert C, Portal C, El-Amraoui A, Fisson S, Concordet JP, Dalkara D. Direct delivery of Cas9 or base editor protein and guide RNA complex enables genome editing in the retina. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102349. [PMID: 39494148 PMCID: PMC11531619 DOI: 10.1016/j.omtn.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
Genome editing by CRISPR-Cas holds promise for the treatment of retinal dystrophies. For therapeutic gene editing, transient delivery of CRISPR-Cas9 is preferable to viral delivery which leads to long-term expression with potential adverse consequences. Cas9 protein and its guide RNA, delivered as ribonucleoprotein (RNP) complexes, have been successfully delivered into the retinal pigment epithelium in vivo. However, the delivery into photoreceptors, the primary focus in retinal dystrophies, has not been achieved. Here, we investigate the feasibility of direct RNP delivery into photoreceptors and retinal pigment epithelium cells. We demonstrate that Cas9 or adenine-base editors complexed with guide RNA, can enter retinal cells without the addition of any carrier compounds. Once in the retinal cells, editing rates vary based on the efficacy of the guide RNA and the specific location edited within the genes. Cas9 RNP delivery at high concentrations, however, leads to outer retinal toxicity. This underscores the importance of improving delivery efficiency for potential therapeutic applications in the future.
Collapse
Affiliation(s)
- Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Hugo Malki
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Duohao Ren
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paul Oudin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Anne De Cian
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS 7196, Muséum National d'Histoire Naturelle, CP26 43 rue Cuvier 75231 Paris Cedex, France
| | - Marie As
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS 7196, Muséum National d'Histoire Naturelle, CP26 43 rue Cuvier 75231 Paris Cedex, France
| | | | - Bruno Saubamea
- Université Paris Cité, Inserm, CNRS, P-MIM, PICMO, 75006 Paris, France
| | - Valerie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Céline Portal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Aziz El-Amraoui
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l’Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton 75012 Paris, France
| | - Sylvain Fisson
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS 7196, Muséum National d'Histoire Naturelle, CP26 43 rue Cuvier 75231 Paris Cedex, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
14
|
Nielsen IH, Rovsing AB, Janns JH, Thomsen EA, Ruzo A, Bøggild A, Nedergaard F, Møller CT, Boesen T, Degn SE, Shah JV, Mikkelsen JG. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102318. [PMID: 39329149 PMCID: PMC11426049 DOI: 10.1016/j.omtn.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.
Collapse
Affiliation(s)
- Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Bruun Rovsing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jacob Hørlück Janns
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Albert Ruzo
- Sana Biotechnology, Inc, Cambridge, MA 02139, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Frederikke Nedergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Liu Z, Guo D, Wang D, Zhou J, Chen Q, Lai J. Prime editing: A gene precision editing tool from inception to present. FASEB J 2024; 38:e70148. [PMID: 39530600 DOI: 10.1096/fj.202401692r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Genetic mutations significantly contribute to the onset of diseases, with over half of the cases caused by single-nucleotide mutations. Advances in gene editing technologies have enabled precise editing and correction of mutated genes, offering effective treatment methods for genetic disorders. CRISPR/Cas9, despite its power, poses risks of inducing gene mutations due to DNA double-strand breaks (DSB). The advent of base editing (BE) and prime editing (PE) has mitigated these risks by eliminating the hazards associated with DNA DSBs, allowing for more precise gene editing. This breakthrough lays a solid foundation for the clinical application of gene editing technologies. This review discusses the principles, development, and applications of PE gene editing technology in various genetic mutation-induced diseases.
Collapse
Affiliation(s)
- Zhihao Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dawei Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| |
Collapse
|
16
|
Raguram A, An M, Chen PZ, Liu DR. Directed evolution of engineered virus-like particles with improved production and transduction efficiencies. Nat Biotechnol 2024:10.1038/s41587-024-02467-x. [PMID: 39537813 PMCID: PMC12085157 DOI: 10.1038/s41587-024-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Engineered virus-like particles (eVLPs) are promising vehicles for transient delivery of proteins and RNAs, including gene editing agents. We report a system for the laboratory evolution of eVLPs that enables the discovery of eVLP variants with improved properties. The system uses barcoded guide RNAs loaded within DNA-free eVLP-packaged cargos to uniquely label each eVLP variant in a library, enabling the identification of desired variants following selections for desired properties. We applied this system to mutate and select eVLP capsids with improved eVLP production properties or transduction efficiencies in human cells. By combining beneficial capsid mutations, we developed fifth-generation (v5) eVLPs, which exhibit a 2-4-fold increase in cultured mammalian cell delivery potency compared to previous-best v4 eVLPs. Analyses of v5 eVLPs suggest that these capsid mutations optimize packaging and delivery of desired ribonucleoprotein cargos rather than native viral genomes and substantially alter eVLP capsid structure. These findings suggest the potential of barcoded eVLP evolution to support the development of improved eVLPs.
Collapse
Affiliation(s)
- Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | - Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Janns JH, Mikkelsen JG. Gene Editing by Ferrying of CRISPR/Cas Ribonucleoprotein Complexes in Enveloped Virus-Derived Particles. Hum Gene Ther 2024; 35:604-616. [PMID: 39150015 DOI: 10.1089/hum.2024.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for in vivo use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of "ready-to-work" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted in vivo, including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.
Collapse
|
18
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges. Hum Gene Ther 2024; 35:649-668. [PMID: 38832869 DOI: 10.1089/hum.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, in vivo barriers, and the future landscape of the technology are discussed.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Johnson GA, Gould SI, Sánchez-Rivera FJ. Deconstructing cancer with precision genome editing. Biochem Soc Trans 2024; 52:803-819. [PMID: 38629716 PMCID: PMC11088927 DOI: 10.1042/bst20230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.
Collapse
Affiliation(s)
- Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| |
Collapse
|
20
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Amrani N, Chen Z, Gaston N, Wagh A, Newby G, Xie J, Liu DR, Gao G, Wolfe S, Khvorova A, Watts J, Sontheimer E. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res 2024; 52:977-997. [PMID: 38033325 PMCID: PMC10810193 DOI: 10.1093/nar/gkad1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Atish Wagh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
Yang C, Lei Y, Ren T, Yao M. The Current Situation and Development Prospect of Whole-Genome Screening. Int J Mol Sci 2024; 25:658. [PMID: 38203828 PMCID: PMC10779205 DOI: 10.3390/ijms25010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
High-throughput genetic screening is useful for discovering critical genes or gene sequences that trigger specific cell functions and/or phenotypes. Loss-of-function genetic screening is mainly achieved through RNA interference (RNAi), CRISPR knock-out (CRISPRko), and CRISPR interference (CRISPRi) technologies. Gain-of-function genetic screening mainly depends on the overexpression of a cDNA library and CRISPR activation (CRISPRa). Base editing can perform both gain- and loss-of-function genetic screening. This review discusses genetic screening techniques based on Cas9 nuclease, including Cas9-mediated genome knock-out and dCas9-based gene activation and interference. We compare these methods with previous genetic screening techniques based on RNAi and cDNA library overexpression and propose future prospects and applications for CRISPR screening.
Collapse
Affiliation(s)
| | | | | | - Mingze Yao
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (C.Y.); (Y.L.); (T.R.)
| |
Collapse
|