1
|
Wu Q, Zhang SY, Liao SY, Cao JQ, Zheng WJ, Li L, Mei WJ. Chiral Ru(ii) complexes act as a potential non-viral gene carrier for directional transportation to the nucleus and cytoplasm. Metallomics 2020; 12:504-513. [PMID: 32051986 DOI: 10.1039/c9mt00192a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanine-rich DNA sequences can spontaneously fold into four-stranded structures called G-quadruplexes (G4s). G4s have been identified extensively in the promoter regions of several proto-oncogenes, including c-myc, as well as telomeres. G4s have attracted an increasing amount of attention in the field of nanotechnology because of their use as versatile building blocks of DNA-based nanostructures. In this study, we report the self-assembly of c-myc G-quadruplex DNA controlled by a pair of chiral ruthenium(ii) complexes coordinated by 2-(4-phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline (PBEPIP), Λ-[Ru(bpy)2(PBEPIP)](ClO4)2 (Λ-RM0627, bpy = bipyridine) and Δ-[Ru(bpy)2(PBEPIP)](ClO4)2 (Δ-RM0627). Λ-RM0627 could promote the high-order self-assembly of c-myc G-quadruplex DNA into a nanowire structure, whereas Δ-RM0627 could induce DNA condensation into G-quadruplex aggregates. Moreover, in vitro studies on human liver carcinoma HepG2 cells showed that the nanowire of c-myc G-quadruplex DNA promoted by Λ-RM0627 could be localized in the nuclei of cells, whereas the nanoparticle of c-myc G-quadruplex DNA generated by Δ-RM0627 was taken up and localized in the cytoplasm. This study provides examples of the enantioselective self-assembly of G4 DNA molecules controlled by chiral ruthenium(ii) complexes and suggests the potential applications of assembled nanostructures as non-viral DNA vectors for gene therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
2
|
Umek T, Sollander K, Bergquist H, Wengel J, Lundin KE, Smith CIE, Zain R. Oligonucleotide Binding to Non-B-DNA in MYC. Molecules 2019; 24:E1000. [PMID: 30871121 PMCID: PMC6429085 DOI: 10.3390/molecules24051000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
MYC, originally named c-myc, is an oncogene deregulated in many different forms of cancer. Translocation of the MYC gene to an immunoglobulin gene leads to an overexpression and the development of Burkitt's lymphoma (BL). Sporadic BL constitutes one subgroup where one of the translocation sites is located at the 5'-vicinity of the two major MYC promoters P₁ and P₂. A non-B-DNA forming sequence within this region has been reported with the ability to form an intramolecular triplex (H-DNA) or a G-quadruplex. We have examined triplex formation at this site first by using a 17 bp triplex-forming oligonucleotide (TFO) and a double strand DNA (dsDNA) target corresponding to the MYC sequence. An antiparallel purine-motif triplex was detected using electrophoretic mobility shift assay. Furthermore, we probed for H-DNA formation using the BQQ-OP based triplex-specific cleavage assay, which indicated the formation of the structure in the supercoiled plasmid containing the corresponding region of the MYC promoter. Targeting non-B-DNA structures has therapeutic potential; therefore, we investigated their influence on strand-invasion of anti-gene oligonucleotides (ON)s. We show that in vitro, non-B-DNA formation at the vicinity of the ON target site facilitates dsDNA strand-invasion of the anti-gene ONs.
Collapse
Affiliation(s)
- Tea Umek
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - Karin Sollander
- Department of Molecular Biology and Functional Genomics, Stockholm University, 171 65 Stockholm, Sweden.
| | - Helen Bergquist
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - Jesper Wengel
- Biomolecular Nanoscale Engineerng Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, M5230 Odense, Denmark.
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
3
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
4
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
5
|
Aviñó A, Huertas CS, Lechuga LM, Eritja R. Sensitive and label-free detection of miRNA-145 by triplex formation. Anal Bioanal Chem 2015; 408:885-93. [DOI: 10.1007/s00216-015-9180-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/01/2022]
|
6
|
Okamura H, Taniguchi Y, Sasaki S. An Isocytidine Derivative with a 2-Amino-6-methylpyridine Unit for Selective Recognition of the CG Interrupting Site in an Antiparallel Triplex DNA. Chembiochem 2014; 15:2374-8. [DOI: 10.1002/cbic.201402328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 11/11/2022]
|
7
|
Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism mediated by miRNA-DNA•DNA triplex structure stabilized by Argonaute. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1079-83. [PMID: 25086339 DOI: 10.1016/j.bbagrm.2014.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Transcription regulation depends on interactions between repressor or activator proteins with promoter sequences, while post-transcriptional regulation typically relies on microRNA (miRNA) interaction with sequences in 5' and 3'-Untranslated regions (UTRs) of messenger RNA (mRNA). However, several pieces of evidence suggest that miRNA:Argonaute (AGO) complexes may also suppress transcription through RNA interference (RNAi) components and epigenetic mechanisms. However, recent observations suggest that miRNA-induced transcriptional silencing could be exerted by an unknown mechanism independent of chromatin modifiers. The RNA-DNA•DNA triplex structure has emerged as an important RNA tertiary motif in which successive non-canonical base pairs form between a DNA-DNA duplex and a third strand. Frequently, promoters have Purine (PU)-rich tracts, and some Triplex-forming oligonucleotides (TFOs) targeting these regulatory regions have been shown to inhibit transcription selectively. Here, we summarize observations suggesting that miRNAs exert regulation over promoter regions through miRNA-DNA•DNA triplex structure formation stabilized by AGO proteins which represents a plausible model of RNA-mediated Transcriptional gene silencing (TGS).
Collapse
Affiliation(s)
- Julia D Toscano-Garibay
- Laboratorio de Medicina Regenerativa, Dirección de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena de las Salinas Del., Gustavo A. Madero, Distrito Federal C.P. 07760, Mexico
| | - Guillermo Aquino-Jarquin
- Laboratorio de Genómica, Genética y Bioinformática, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Delegación: Cuauhtémoc, México D.F. C.P. 06720, Mexico.
| |
Collapse
|
8
|
Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour AA, Avner S, Henry C, Percevault F, Belaud-Rotureau MA, Huet S, Watrin E, Eeckhoute J, Legagneux V, Salbert G, Métivier R. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol 2014; 34:2418-36. [PMID: 24752895 PMCID: PMC4054307 DOI: 10.1128/mcb.00918-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 04/09/2014] [Indexed: 12/28/2022] Open
Abstract
Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.
Collapse
Affiliation(s)
- Justine Quintin
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Christine Le Péron
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Gaëlle Palierne
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Maud Bizot
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Stéphanie Cunha
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Aurélien A Sérandour
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Stéphane Avner
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Catherine Henry
- Cytogenetics and Cellular Biology Department, CHU, Rennes, France
| | - Frédéric Percevault
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Cytogenetics and Cellular Biology Department, CHU, Rennes, France BIOSIT, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Sébastien Huet
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Erwan Watrin
- Equipe CC, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Jérôme Eeckhoute
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France INSERM U1011, Université Lille-Nord de France, Faculté de Médecine de Lille-Pôle Recherche, Lille, France
| | - Vincent Legagneux
- Equipe EGD, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Gilles Salbert
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Raphaël Métivier
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| |
Collapse
|
9
|
In vitro antiviral activity of circular triple helix forming oligonucleotide RNA towards Feline Infectious Peritonitis virus replication. BIOMED RESEARCH INTERNATIONAL 2014; 2014:654712. [PMID: 24707494 PMCID: PMC3950953 DOI: 10.1155/2014/654712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/02/2014] [Accepted: 01/14/2014] [Indexed: 02/06/2023]
Abstract
Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.
Collapse
|
10
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
11
|
Moreno PMD, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CSJ, Oprea II, Bestas B, Andaloussi SE, Jørgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CIE. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 2013; 41:3257-73. [PMID: 23345620 PMCID: PMC3597675 DOI: 10.1093/nar/gkt007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Papadakis G, Gizeli E. In silico search of DNA drugs targeting oncogenes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1826-1830. [PMID: 23221090 DOI: 10.1109/tcbb.2012.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Triplex forming oligonucleotides (TFOs) represent a class of drug candidates for antigene therapy. Based on strict criteria, we investigated the potential of 25 known oncogenes to be regulated by TFOs in the mRNA synthesis level and we report specific target sequences found in seven of these genes.
Collapse
Affiliation(s)
- George Papadakis
- Department of Biology, University of Crete and Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), 100 Nikolaou Plastira str, Heraklion 70013, Greece.
| | | |
Collapse
|
13
|
Russo Krauss I, Merlino A, Giancola C, Randazzo A, Mazzarella L, Sica F. Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res 2011; 39:7858-67. [PMID: 21715374 PMCID: PMC3177225 DOI: 10.1093/nar/gkr522] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human α-thrombin was solved at 2.9-Å resolution, but did not provide details of the aptamer conformation and the interactions with the protein molecule. TBA is rapidly processed by nucleases. To improve the properties of TBA, a number of modified analogs have been produced. In particular, a modified TBA containing a 5′-5′ polarity inversion site, mTBA, has higher stability and higher affinity toward thrombin with respect to TBA, although it has a lower inhibitory activity. We present the crystal structure of the thrombin–mTBA complex at 2.15-Å resolution; the resulting model eventually provides a clear picture of thrombin–aptamers interaction, and also highlights the structural bases of the different properties of TBA and mTBA. Our findings open the way for a rational design of modified aptamers with improved potency as anticoagulant drugs.
Collapse
|
14
|
Ohkubo A, Nishino Y, Yokouchi A, Ito Y, Noma Y, Kakishima Y, Masaki Y, Tsunoda H, Seio K, Sekine M. Stable triplex formation using the strong stacking effect of consecutive thionucleoside moieties. Chem Commun (Camb) 2011; 47:12556-8. [DOI: 10.1039/c1cc14339e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Chen C, Song G, Yang X, Ren J, Qu X. A gold nanoparticle-based strategy for label-free and colorimetric screening of DNA triplex binders. Biochimie 2010; 92:1416-21. [DOI: 10.1016/j.biochi.2010.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/05/2010] [Indexed: 11/28/2022]
|
16
|
Jenjaroenpun P, Kuznetsov VA. TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 2009; 10 Suppl 3:S9. [PMID: 19958507 PMCID: PMC2788396 DOI: 10.1186/1471-2164-10-s3-s9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background DNA triplexes can naturally occur, co-localize and interact with many other regulatory DNA elements (e.g. G-quadruplex (G4) DNA motifs), specific DNA-binding proteins (e.g. transcription factors (TFs)), and micro-RNA (miRNA) precursors. Specific genome localizations of triplex target DNA sites (TTSs) may cause abnormalities in a double-helix DNA structure and can be directly involved in some human diseases. However, genome localization of specific TTSs, their interconnection with regulatory DNA elements and physiological roles in a cell are poor defined. Therefore, it is important to identify comprehensive and reliable catalogue of specific potential TTSs (pTTSs) and their co-localization patterns with other regulatory DNA elements in the human genome. Results "TTS mapping" database is a web-based search engine developed here, which is aimed to find and annotate pTTSs within a region of interest of the human genome. The engine provides descriptive statistics of pTTSs in a given region and its sequence context. Different annotation tracks of TTS-overlapping gene region(s), G4 motifs, CpG Island, miRNA precursors, miRNA targets, transcription factor binding sites (TFBSs), Single Nucleotide Polymorphisms (SNPs), small nucleolar RNAs (snoRNA), and repeat elements are also mapped based onto a sequence location provided by UCSC genome browser, G4 database http://www.quadruplex.org and several other datasets. The results pages provide links to UCSC genome browser annotation tracks and relative DBs. BLASTN program was included to check the uniqueness of a given pTTS in the human genome. Recombination- and mutation-prone genes (e.g. EVI-1, MYC) were found to be significantly enriched by TTSs and multiple co-occurring with our regulatory DNA elements. TTS mapping reveals that a high-complementary and evolutionarily conserved polypurine and polypyrimidine DNA sequence pair linked by a non-conserved short DNA sequence can form miR-483 transcribed from intron 2 of IGF2 gene and bound double-strand nucleic acid TTSs forming natural triplex structures. Conclusion TTS mapping provides comprehensive visual and analytical tools to help users to find pTTSs, G-quadruplets and other regulatory DNA elements in various genome regions. TTS Mapping not only provides sequence visualization and statistical information, but also integrates knowledge about co-localization TTS with various DNA elements and facilitates that data analysis. In particular, TTS Mapping reveals complex structural-functional regulatory module of gene IGF2 including TF MZF1 binding site and ncRNA precursor mir-483 formed by the high-complementary and evolutionarily conserved polypurine- and polypyrimidine-rich DNA pair. Such ncRNAs capable of forming helical triplex structures with a polypurine strand of a nucleic acid duplexes (DNA or RNA) via Hoogsteen or reverse Hoogsteen hydrogen bonds. Our web tool could be used to discover biologically meaningful genome modules and to optimize experimental design of anti-gene treatment.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, 30 Biopolis str #07-01, Singapore.
| | | |
Collapse
|
17
|
Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc-Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol 2009; 63:615-25. [PMID: 18509642 PMCID: PMC2752825 DOI: 10.1007/s00280-008-0774-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/09/2008] [Indexed: 12/28/2022]
Abstract
OBJECTIVES c-Myc is commonly activated in many human tumors and is functionally important in cellular proliferation, differentiation, apoptosis and cell cycle progression. The activity of c-Myc requires noncovalent interaction with its client protein Max. In vitro studies indicate the thioxothiazolidinone, 10058-F4, inhibits c-Myc/Max dimerization. In this study, we report the efficacy, pharmacokinetics and metabolism of this novel protein-protein disruptor in mice. METHODS SCID mice bearing DU145 or PC-3 human prostate cancer xenografts were treated with either 20 or 30 mg/kg 10058-F4 on a qdx5 schedule for 2 weeks for efficacy studies. For pharmacokinetics and metabolism studies, mice bearing PC-3 or DU145 xenografts were treated with 20 mg/kg of 10058-F4 i.v. Plasma and tissues were collected 5-1440 min after dosing. The concentration of 10058-F4 in plasma and tissues was determined by HPLC, and metabolites were characterized by LC-MS/MS. RESULTS Following a single iv dose, peak plasma 10058-F4 concentrations of approximately 300 muM were seen at 5 min and declined to below the detection limit at 360 min. Plasma concentration versus time data were best approximated by a two-compartment, open, linear model. The highest tissue concentrations of 10058-F4 were found in fat, lung, liver, and kidney. Peak tumor concentrations of 10058-F4 were at least tenfold lower than peak plasma concentrations. Eight metabolites of 10058-F4 were identified in plasma, liver, and kidney. The terminal half-life of 10058-F4 was approximately 1 h, and the volume of distribution was >200 ml/kg. No significant inhibition of tumor growth was seen after i.v. treatment of mice with either 20 or 30 mg/kg 10058-F4. CONCLUSION The lack of significant antitumor activity of 10058-F4 in tumor-bearing mice may have resulted from its rapid metabolism and low concentration in tumors.
Collapse
Affiliation(s)
- Jianxia Guo
- Hillman Cancer Center, The University of Pittsburgh Cancer Institute, Room G27b. 5117 Centre Ave., Pittsburgh, PA 15213, USA, e-mail: ;
| | - Robert A. Parise
- Hillman Cancer Center, The University of Pittsburgh Cancer Institute, Room G27b. 5117 Centre Ave., Pittsburgh, PA 15213, USA, e-mail: ;
| | - Erin Joseph
- Hillman Cancer Center, The University of Pittsburgh Cancer Institute, Room G27b. 5117 Centre Ave., Pittsburgh, PA 15213, USA, e-mail: ;
| | - Merrill J. Egorin
- Hillman Cancer Center, The University of Pittsburgh Cancer Institute, Room G27b. 5117 Centre Ave., Pittsburgh, PA 15213, USA, e-mail: ;
| | - John S. Lazo
- Department of Pharmacology, The University of Pittsburgh Cancer Institute, Room G27b. 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | | | - Julie L. Eiseman
- Hillman Cancer Center, The University of Pittsburgh Cancer Institute, Room G27b. 5117 Centre Ave., Pittsburgh, PA 15213, USA, e-mail: ;
| |
Collapse
|
18
|
Kumar N, Patowary A, Sivasubbu S, Petersen M, Maiti S. Silencing c-MYC expression by targeting quadruplex in P1 promoter using locked nucleic acid trap. Biochemistry 2009; 47:13179-88. [PMID: 19053274 DOI: 10.1021/bi801064j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nuclease hypersensitive element of P1 promoter in c-MYC gene harbors a potential of unusual structure called quadruplex, which is involved in molecular recognition and function. This Hoogsteen bonded structure is in dynamic equilibrium with the usual Watson-Crick duplex structure, and these competing secondary structures undergo interconversion for execution of their respective biological roles. Herein, we investigate the sensitivity of the c-MYC quadruplex-duplex equilibrium by employing a locked nucleic acid (LNA) modified complementary strand as a pharmacological agent. Our biophysical experiments indicate that the c-MYC quadruplex under physiological conditions is stable and dominates the quadruplex-WC duplex equilibrium in both sodium and potassium buffers. This equilibrium is perturbed upon introducing the LNA modified complementary strand, which demonstrates efficient invasion of stable c-MYC quadruplex and duplex formation in contrast to the unmodified complementary strand. Our data indicate that LNA modifications confer increased thermodynamic stability to the duplex and thus favor the predominance of the duplex population over that of the quadruplex. Further, we demonstrate that this perturbation of equilibrium by a pharmacological agent results in altered gene expression. Our in vivo experiment performed using the LNA modified complementary strand suggests the influence of the quadruplex-duplex structural switch in the modulation of gene expression. We believe that this exploratory approach utilizing the selectivity and specificity of Watson-Crick base pairing of LNA bases would allow the modulation of quadruplex regulated gene expression.
Collapse
Affiliation(s)
- Niti Kumar
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110007, India
| | | | | | | | | |
Collapse
|
19
|
Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ, Prochownik EV. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther 2007; 6:2399-408. [PMID: 17876039 DOI: 10.1158/1535-7163.mct-07-0005] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited by their low potency. We describe here several chemical modifications of one of these original compounds, 10058-F4, which result in significant improvements in efficacy. Compared with the parent structure, these analogues show enhanced growth inhibition of c-Myc-expressing cells in a manner that generally correlates with their ability to disrupt c-Myc-Max association and DNA binding. Furthermore, we show by use of a sensitive fluorescence polarization assay that both 10058-F4 and its active analogues bind specifically to monomeric c-Myc. These studies show that improved Myc-Max compounds can be generated by a directed approach involving deliberate modification of an index compound. They further show that the compounds specifically target c-Myc, which exists in a dynamic and relatively unstructured state with only partial and transient alpha-helical content.
Collapse
Affiliation(s)
- Huabo Wang
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Arvanitis C, Bendapudi PK, Bachireddy P, Felsher DW. Identifying critical signaling molecules for the treatment of cancer. Recent Results Cancer Res 2007; 172:5-24. [PMID: 17607933 DOI: 10.1007/978-3-540-31209-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Constadina Arvanitis
- Department of Medicine, Stanford University School of Medicine, CA 94305-5151, USA
| | | | | | | |
Collapse
|
21
|
Daunomycin-TFO Conjugates for Downregulation of Gene Expression. Top Curr Chem (Cham) 2007; 283:45-71. [DOI: 10.1007/128_2007_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Gaddis SS, Wu Q, Thames HD, DiGiovanni J, Walborg EF, MacLeod MC, Vasquez KM. A web-based search engine for triplex-forming oligonucleotide target sequences. Oligonucleotides 2006; 16:196-201. [PMID: 16764543 DOI: 10.1089/oli.2006.16.196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Triplex technology offers a useful approach for site-specific modification of gene structure and function both in vitro and in vivo. Triplex-forming oligonucleotides (TFOs) bind to their target sites in duplex DNA, thereby forming triple-helical DNA structures via Hoogsteen hydrogen bonding. TFO binding has been demonstrated to site-specifically inhibit gene expression, enhance homologous recombination, induce mutation, inhibit protein binding, and direct DNA damage, thus providing a tool for gene-specific manipulation of DNA. We have developed a flexible web-based search engine to find and annotate TFO target sequences within the human and mouse genomes. Descriptive information about each site, including sequence context and gene region (intron, exon, or promoter), is provided. The engine assists the user in finding highly specific TFO target sequences by eliminating or flagging known repeat sequences and flagging overlapping genes. A convenient way to check for the uniqueness of a potential TFO binding site is provided via NCBI BLAST. The search engine may be accessed at spi.mdanderson.org/tfo.
Collapse
Affiliation(s)
- Sara S Gaddis
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Myc expression is deregulated in a wide range of human cancers and is often associated with aggressive, poorly differentiated tumors. The Myc protein is a transcription factor that regulates a variety of cellular processes including cell growth and proliferation, cell-cycle progression, transcription, differentiation, apoptosis, and cell motility. Potential strategies that either inhibit the growth promoting effect of Myc and/or activate its pro-apoptotic function are presently being explored. In this review, we give an overview of Myc activation in human tumors and discuss current strategies aimed at targeting Myc for cancer treatment. Such therapies could have potential in combination with mechanistically different cytotoxic drugs to combat and eradicate tumors cells.
Collapse
Affiliation(s)
- Marina Vita
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
24
|
Napoli S, Negri U, Arcamone F, Capobianco ML, Carbone GM, Catapano CV. Growth inhibition and apoptosis induced by daunomycin-conjugated triplex-forming oligonucleotides targeting the c-myc gene in prostate cancer cells. Nucleic Acids Res 2006; 34:734-44. [PMID: 16449206 PMCID: PMC1356532 DOI: 10.1093/nar/gkj473] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Covalent attachment of intercalating agents to triplex-forming oligonucleotides (TFOs) is a promising strategy to enhance triplex stability and biological activity. We have explored the possibility to use the anticancer drug daunomycin as triplex stabilizing agent. Daunomycin-conjugated TFOs (dauno-TFOs) bind with high affinity and maintain the sequence-specificity required for targeting individual genes in the human genome. Here, we examined the effects of two dauno-TFOs targeting the c-myc gene on gene expression, cell proliferation and survival. The dauno-TFOs were directed to sequences immediately upstream (dauno-GT11A) and downstream (dauno-GT11B) the major transcriptional start site in the c-myc gene. Both dauno-TFOs were able to down-regulate promoter activity and transcription of the endogenous gene. Myc-targeted dauno-TFOs inhibited growth and induced apoptosis of prostate cancer cells constitutively expressing the gene. Daunomycin-conjugated control oligonucleotides with similar sequences had only minimal effects, confirming that the activity of dauno-TFOs was sequence-specific and triplex-mediated. To test the selectivity of dauno-TFOs, we examined their effects on growth of normal human fibroblasts, which express low levels of c-myc. Despite their ability to inhibit c-myc transcription, both dauno-TFOs failed to inhibit growth of normal fibroblasts at concentrations that inhibited growth of prostate cancer cells. In contrast, daunomycin inhibited equally fibroblasts and prostate cancer cells. Thus, daunomycin per se did not contribute to the antiproliferative activity of dauno-TFOs, although it greatly enhanced their ability to form stable triplexes at the target sites and down-regulate c-myc. Our data indicate that dauno-TFOs are attractive gene-targeting agents for development of new cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlo V. Catapano
- To whom correspondence should be addressed at Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland. Tel: +41 91 820 0365; Fax: +41 91 820 0397;
| |
Collapse
|
25
|
Ponzielli R, Katz S, Barsyte-Lovejoy D, Penn LZ. Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer 2005; 41:2485-501. [PMID: 16243519 DOI: 10.1016/j.ejca.2005.08.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The potent Myc oncoprotein plays a pivotal role as a regulator of tumorigenesis in numerous human cancers of diverse origin. Experimental evidence shows that inhibiting Myc significantly halts tumour cell growth and proliferation. This review summarises recent progress in understanding the function of Myc as a transcription factor, with emphasis on key protein interactions and target gene regulation. In addition, major advances in drug development aimed at eliminating Myc are described, including antisense and triple helix forming oligonucleotides, porphyrins and siRNA. Future anti-Myc strategies are also discussed that inhibit Myc at the level of expression and/or function. Targeting the dark side of Myc with novel therapeutic agents promises to have a profound impact in combating cancer.
Collapse
Affiliation(s)
- Romina Ponzielli
- Ontario Cancer Institute/Princess Margaret Hospital, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ont., Canada M5G 2M9
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Ali Hachem
- University of Maryland Greenebaum Cancer Center, 9-011 BRB, 655 West Baltimore St, Baltimore MD 21201, USA
| | | |
Collapse
|
27
|
Carbone GM, McGuffie E, Napoli S, Flanagan CE, Dembech C, Negri U, Arcamone F, Capobianco ML, Catapano CV. DNA binding and antigene activity of a daunomycin-conjugated triplex-forming oligonucleotide targeting the P2 promoter of the human c-myc gene. Nucleic Acids Res 2004; 32:2396-410. [PMID: 15121897 PMCID: PMC419437 DOI: 10.1093/nar/gkh527] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Triplex-forming oligonucleotides (TFO) that bind DNA in a sequence-specific manner might be used as selective repressors of gene expression and gene-targeted therapeutics. However, many factors, including instability of triple helical complexes in cells, limit the efficacy of this approach. In the present study, we tested whether covalent linkage of a TFO to daunomycin, which is a potent DNA-intercalating agent and anticancer drug, could increase stability of the triple helix and activity of the oligonucleotide in cells. The 11mer daunomycin-conjugated GT (dauno-GT11) TFO targeted a sequence upstream of the P2 promoter, a site known to be critical for transcription of the c-myc gene. Band-shift assays showed that the dauno-GT11 formed triplex DNA with enhanced stability compared to the unmodified TFO. Band shift and footprinting experiments demonstrated that binding of dauno-GT11 was highly sequence-specific with exclusive binding to the 11 bp target site in the c-myc promoter. The daunomycin-conjugated TFO inhibited transcription in vitro and reduced c-myc promoter activity in prostate and breast cancer cells. The daunomycin-conjugated TFO was taken up by cells with a distinctive intracellular distribution compared to free daunomycin. However, cationic lipid-mediated delivery was required for enhanced cellular uptake, nuclear localization and biological activity of the TFO in cells. Dauno-GT11 reduced transcription of the endogenous c-myc gene in cells, but did not affect expression of non-target genes, such as ets-1 and ets-2, which contained very similar target sequences in their promoters. Daunomycin-conjugated control oligonucleotides unable to form triplex DNA with the target sequence did not have any effect in these assays, indicating that daunomycin was not directly responsible for the activity of daunomycin-conjugated TFO. Thus, attachment of daunomycin resulted in increased triplex stability and biological activity of the 11mer GT-rich TFO without compromising its specificity. These results encourage further testing of this approach to develop novel antigene therapeutics.
Collapse
Affiliation(s)
- Giuseppina M Carbone
- Laboratory of Experimental Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Via Vela 6, 6500 Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review summarizes recent applications of somatic cell gene therapy to the treatment of monogenetic renal diseases, renal cell carcinoma, and for the induction of tolerance in solid organ transplantation. In addition, several new gene therapy techniques will be discussed including gene and messenger RNA repair strategies, as well as methods designed to modify the expression of normal genes that may have application in the treatment of multigenetic disorders. RECENT FINDINGS Animal studies have demonstrated prolonged graft survival after the successful induction of tolerance to alloantigens via hematopoietic molecular chimerism. Ongoing clinical trials for renal cell carcinoma are encouraging, in that IL-2 gene therapy using non-viral vector systems can reduce the tumor burden. However, limited progress has been made towards applying gene therapy for the most common genetic disorders of the kidney, autosomal dominant polycystic kidney disease and Alport syndrome. Basic research on novel gene repair and expression modulation techniques provide additional gene therapy options for the treatment of viral infections such as HIV-1 and monogenetic disorders. SUMMARY Gene therapy holds enormous potential for the treatment of genetic and acquired diseases. Current pre-clinical studies and clinical trials provide encouraging results that gene therapy can become a useful treatment option. However, before gene therapy has widespread application, technical progress must be made in all aspects of treatment design, including optimizing vector and delivery systems and the ability to modify long-term cell populations such as stem cells.
Collapse
Affiliation(s)
- Basil Hanss
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
29
|
Carbone GM, McGuffie EM, Collier A, Catapano CV. Selective inhibition of transcription of the Ets2 gene in prostate cancer cells by a triplex-forming oligonucleotide. Nucleic Acids Res 2003; 31:833-43. [PMID: 12560478 PMCID: PMC149218 DOI: 10.1093/nar/gkg198] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor Ets2 has a role in cancer development and represents an attractive therapeutic target. In this study, we designed a triplex-forming oligonucleotide (TFO) directed to a homopurine:homopyrimidine sequence in the Ets2 promoter. Transcription factors of the Sp family bound to this sequence and mutation of the Sp1 site reduced Ets2 promoter activity. The Ets2-TFO had high binding affinity for the target sequence and inhibited binding of Sp1/Sp3 to the overlapping site. This effect occurred with a high degree of sequence specificity. Mismatched oligonucleotides did not inhibit Sp1/Sp3 binding and mutations in the target sequence that abolished triplex formation prevented inhibition of Sp1/Sp3 binding by the TFO. The Ets2-TFO inhibited Ets2 promoter activity and expression of the endogenous gene in prostate cancer cells at nanomolar concentrations. The TFO did not affect reporter constructs with mutations in the TFO binding site and promoters of non-targeted genes. Expression of non-targeted genes was also not affected in TFO-treated cells. Collectively, these data demonstrated that the anti-transcriptional activity of the Ets2-TFO was sequence- and target-specific, and ruled out alternative, non-triplex mediated mechanisms of action. This anti-transcriptional approach may be useful to examine the effects of selective downregulation of Ets2 expression and may have therapeutic applications.
Collapse
Affiliation(s)
- Giuseppina M Carbone
- Laboratory of Cancer Genomics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
For gene therapy, the last few years have been an exciting period. Encouraging results from several successful gene therapy trials were reported. Children born with a life-threatening immune system disorder, severe combined immune deficiency (SCID), were cured after receiving gene therapy for replacement of their defective adenosine deaminase (ADA) gene. Gene therapy successes related to vascular complications were also reported. The first human gene therapy trial for a blood-vessel disorder was performed successfully, in which copies of an angiogenic gene, the vascular endothelial growth factor (VEGF) gene, were directly delivered to the area surrounding the diseased artery of the leg of a patient with peripheral artery disease. Within a few days, this stimulated the growth of new blood vessels around the blockage in the ailing blood vessel and helped avoid amputation. In 1998, a patient with genetically small arteries became the first to receive VEGF gene therapy in the heart. Multiple copies of a plasmid with the VEGF gene were delivered into the damaged area of the heart, and a few days later angiogenesis ensued that helped bypass the blocked vessel, with markedly reduced chest pain in the patient. Gene therapy is becoming a reality and, more importantly, it appears to be safe and does not require supplementary immuno-suppressing drugs. Gene therapy seems to have begun delivering on its promises.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Ophthlamology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|