1
|
Zaretsky M, Vershinin Z, Erez L, Grossman-Haham I, Eichler J. Two different sulfotransferases modify sugars of the N-linked tetrasaccharide decorating Halobacterium salinarum glycoproteins. mBio 2025; 16:e0353424. [PMID: 39998273 PMCID: PMC11980604 DOI: 10.1128/mbio.03534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Despite providing the first example of archaeal N-glycosylation almost 50 years ago, detailed insight into the pathway used by Halobacterium salinarum to assemble and attach an N-linked tetrasaccharide decorating glycoproteins in this haloarchaea has only recently appeared. Still, numerous components of this pathway remain to be identified, including sulfotransferase(s), which modify the third and fourth tetrasaccharide sugars. In the present report, a series of bioinformatics, genetic, biochemical, and structural approaches served to reveal how membrane-associated VNG1056C and soluble VNG1057C respectively sulfate the iduronic acid at tetrasaccharide position three and the terminal glucuronic acid, seemingly independent of each other. Deletion of VNG1056C but not of VNG1057C reduced cell motility to a minor degree and did not cause archaellum filament bundling. Finally, transcription of VNG1056C or VNG1057C was augmented upon deletion of the other when cells were grown in low but not high salinity conditions possibly in an attempt to compensate for the loss of sugar sulfation resulting from the deletion. This augmented transcription, however, had no effect on the extent of tetrasaccharide sulfation. With demonstrated roles in Hbt. salinarum N-glycosylation, VNG1056C and VNG1057C were respectively re-annotated as Agl30 and Agl31, employing the nomenclature used to define archaeal N-glycosylation pathway components. IMPORTANCE Like essentially all Archaea, the halophile Halobacterium salinarum performs N-glycosylation, namely, the covalent attachment of a glycan moiety to select asparagine residues in a target protein. Moreover, Hbt. salinarum represents one of the few current archaeal examples in which the pathway of N-glycosylation has been largely defined. Still, several components of this pathway remain to be defined, including the sulfotransferase(s) responsible for modifying the iduronic acid and glucuronic acid corresponding to the third and final sugars of the N-linked tetrasaccharide that decorates glycoproteins in this haloarchaeon. In the present report, a series of bioinformatics, genetic, biochemical, and structural approaches served to reveal how membrane-associated VNG1056C and soluble VNG1057C respectively sulfate the iduronic acid at tetrasaccharide position three and the terminal glucuronic acid, seemingly independent of each other. The need for two different enzymes reflects the sulfation of these sugars at distinct positions.
Collapse
Affiliation(s)
- Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Zlata Vershinin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Lihi Erez
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Iris Grossman-Haham
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
2
|
Massenet S. In vivo assembly of eukaryotic signal recognition particle: A still enigmatic process involving the SMN complex. Biochimie 2019; 164:99-104. [PMID: 30978374 DOI: 10.1016/j.biochi.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022]
Abstract
The signal recognition particle (SRP) is a universally conserved non-coding ribonucleoprotein complex that is essential for targeting transmembrane and secretory proteins to the endoplasmic reticulum. Its composition and size varied during evolution. In mammals, SRP contains one RNA molecule, 7SL RNA, and six proteins: SRP9, 14, 19, 54, 68 and 72. Despite a very good understanding of the SRP structure and of the SRP assembly in vitro, how SRP is assembled in vivo remains largely enigmatic. Here we review current knowledge on how the 7SL RNA is assembled with core proteins to form functional RNP particles in cells. SRP biogenesis is believed to take place both in the nucleolus and in the cytoplasm and to rely on the survival of motor neuron complex, whose defect leads to spinal muscular atrophy.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-University of Lorraine, Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
3
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
4
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Gupta S, Roy M, Ghosh A. The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective. Curr Microbiol 2016; 74:284-297. [DOI: 10.1007/s00284-016-1167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
6
|
AglS, a novel component of the Haloferax volcanii N-glycosylation pathway, is a dolichol phosphate-mannose mannosyltransferase. J Bacteriol 2012; 194:6909-16. [PMID: 23086206 DOI: 10.1128/jb.01716-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Haloferax volcanii, a series of Agl proteins mediates protein N-glycosylation. The genes encoding all but one of the Agl proteins are sequestered into a single gene island. The same region of the genome includes sequences also suspected but not yet verified as serving N-glycosylation roles, such as HVO_1526. In the following, HVO_1526, renamed AglS, is shown to be necessary for the addition of the final mannose subunit of the pentasaccharide N-linked to the surface (S)-layer glycoprotein, a convenient reporter of N-glycosylation in Hfx. volcanii. Relying on bioinformatics, topological analysis, gene deletion, mass spectrometry, and biochemical assays, AglS was shown to act as a dolichol phosphate-mannose mannosyltransferase, mediating the transfer of mannose from dolichol phosphate to the tetrasaccharide corresponding to the first four subunits of the pentasaccharide N-linked to the S-layer glycoprotein.
Collapse
|
7
|
Compositional and Structural Features Related to Thermal Stability in the Archaea SRP19 and SRP54 Signal Recognition Particle Proteins. J Mol Evol 2011; 72:450-65. [DOI: 10.1007/s00239-011-9443-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
|
8
|
Archaea signal recognition particle shows the way. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:485051. [PMID: 20672053 PMCID: PMC2905702 DOI: 10.1155/2010/485051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/14/2010] [Indexed: 01/24/2023]
Abstract
Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY). Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY) are strikingly diverse or absent even among the members of a taxonomic subgroup.
Collapse
|
9
|
Calo D, Eichler J. Crossing the membrane in Archaea, the third domain of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:885-91. [PMID: 20347718 DOI: 10.1016/j.bbamem.2010.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/16/2022]
Abstract
Many of the recent advancements in the field of protein translocation, particularly from the structural perspective, have relied on Archaea. For instance, the solved structures of the translocon from the methanoarchaeon Methanocaldococcus jannaschii of the ribosomal large subunit from the haloarchaeon Haloarcula marismortui and of components of the SRP pathway from several archaeal species have provided novel insight into various aspects of the translocation event. Given the major contribution that Archaea have made to our understanding of how proteins enter and traverse membranes, it is surprising that relatively little is known of protein translocation in Archaea in comparison to the well-defined translocation pathways of Eukarya and Bacteria. What is known, however, points to archaeal translocation as comprising a mosaic of eukaryal and bacterial traits together with aspects of the process seemingly unique to this, the third domain of life. Here, current understanding of archaeal protein translocation is considered. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Doron Calo
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | | |
Collapse
|
10
|
Wild K, Bange G, Bozkurt G, Segnitz B, Hendricks A, Sinning I. Structural insights into the assembly of the human and archaeal signal recognition particles. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:295-303. [DOI: 10.1107/s0907444910000879] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/07/2010] [Indexed: 11/10/2022]
Abstract
The signal recognition particle (SRP) is a conserved ribonucleoprotein (RNP) complex that co-translationally targets membrane and secretory proteins to membranes. The assembly of the particle depends on the proper folding of the SRP RNA, which in mammalia and archaea involves an induced-fit mechanism within helices 6 and 8 in the S domain of SRP. The two helices are juxtaposed and clamped together upon binding of the SRP19 protein to their apices. In the current assembly paradigm, archaeal SRP19 causes the asymmetric loop of helix 8 to bulge out and expose the binding platform for the key player SRP54. Based on a heterologous archaeal SRP19–human SRP RNA structure, mammalian SRP19 was thought not to be able to induce this change, thus explaining the different requirements of SRP19 for SRP54 recruitment. In contrast, the crystal structures of a crenarchaeal and the all-human SRP19–SRP RNA binary complexes presented here show that the asymmetric loop is bulged out in both binary complexes. Differences in SRP assembly between mammalia and archaea are therefore independent of SRP19 and are based on differences in SRP RNA itself. A new SRP-assembly scheme is presented.
Collapse
|
11
|
Magidovich H, Yurist-Doutsch S, Konrad Z, Ventura VV, Dell A, Hitchen PG, Eichler J. AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii. Mol Microbiol 2010; 76:190-9. [PMID: 20149102 DOI: 10.1111/j.1365-2958.2010.07090.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While pathways for N-glycosylation in Eukarya and Bacteria have been solved, considerably less is known of this post-translational modification in Archaea. In the halophilic archaeon Haloferax volcanii, proteins encoded by the agl genes are involved in the assembly and attachment of a pentasaccharide to select asparagine residues of the S-layer glycoprotein. AglP, originally identified based on the proximity of its encoding gene to other agl genes whose products were shown to participate in N-glycosylation, was proposed, based on sequence homology, to serve as a methyltransferase. In the present report, gene deletion and mass spectrometry were employed to reveal that AglP is responsible for adding a 14 Da moiety to a hexuronic acid found at position four of the pentasaccharide decorating the Hfx. volcanii S-layer glycoprotein. Subsequent purification of a tagged version of AglP and development of an in vitro assay to test the function of the protein confirmed that AglP is a S-adenosyl-L-methionine-dependent methyltransferase.
Collapse
Affiliation(s)
- Hilla Magidovich
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Miralles F. Compositional properties and thermal adaptation of SRP-RNA in bacteria and archaea. J Mol Evol 2010; 70:181-9. [PMID: 20069286 DOI: 10.1007/s00239-009-9319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have reported a positive correlation between the GC content of the double-stranded regions of structural RNAs and the optimal growth temperature (OGT) in prokaryotes. These observations led to the hypothesis that natural selection favors an increase in GC content to ensure the correct folding and the structural stability of the molecule at high temperature. To date these studies have focused mainly on ribosomal and transfer RNAs. Therefore, we addressed the question of the relationship between GC content and OGT in a different and universally conserved structural RNA, the RNA component of the signal recognition particle (SRP). To this end we generated the secondary structures of SRP-RNAs for mesophilic, thermophilic, and hyperthermophilic bacterial and archaeal species. The analysis of the GC content in the stems and loops of the SRP-RNA of these organisms failed to detect a relationship between the GC contents in the stems of this structural RNA and the growth temperature of bacteria. By contrast, we found that in archaea the GC content in the stem regions of SRP-RNA is highest in hyperthermophiles, intermediate in thermophiles, and lower in mesophiles. In these organisms, we demonstrated a clear positive correlation between the GC content of the stem regions of their SRP-RNAs and their OGT. This correlation was confirmed by a phylogenetic nonindependence analysis. Thus we conclude that in archaea the increase in GC content in the stem regions of SRP-RNA is an adaptation response to environmental temperature.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot-Paris 7, Bat. Buffon, 75205 Paris Cedex 13, France.
| |
Collapse
|
13
|
Yuan J, Zweers JC, van Dijl JM, Dalbey RE. Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 2010; 67:179-99. [PMID: 19823765 PMCID: PMC11115550 DOI: 10.1007/s00018-009-0160-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/13/2009] [Accepted: 09/21/2009] [Indexed: 12/21/2022]
Abstract
In the three domains of life, the Sec, YidC/Oxa1, and Tat translocases play important roles in protein translocation across membranes and membrane protein insertion. While extensive studies have been performed on the endoplasmic reticular and Escherichia coli systems, far fewer studies have been done on archaea, other Gram-negative bacteria, and Gram-positive bacteria. Interestingly, work carried out to date has shown that there are differences in the protein transport systems in terms of the number of translocase components and, in some cases, the translocation mechanisms and energy sources that drive translocation. In this review, we will describe the different systems employed to translocate and insert proteins across or into the cytoplasmic membrane of archaea and bacteria.
Collapse
Affiliation(s)
- Jijun Yuan
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 USA
| | - Jessica C. Zweers
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 30001, 9700 RB Groningen, The Netherlands
| | - Ross E. Dalbey
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
14
|
Egea PF, Napetschnig J, Walter P, Stroud RM. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLoS One 2008; 3:e3528. [PMID: 18953414 PMCID: PMC2568955 DOI: 10.1371/journal.pone.0003528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/03/2008] [Indexed: 12/05/2022] Open
Abstract
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 Å resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely α-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 Å resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19•SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PFE); (RMS)
| | - Johanna Napetschnig
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PFE); (RMS)
| |
Collapse
|
15
|
Defining the topology of the N-glycosylation pathway in the halophilic archaeon Haloferax volcanii. J Bacteriol 2008; 190:8045-52. [PMID: 18931126 DOI: 10.1128/jb.01200-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Eukarya, N glycosylation involves the actions of enzymes working on both faces of the endoplasmic reticulum membrane. The steps of bacterial N glycosylation, in contrast, transpire essentially on the cytoplasmic side of the plasma membrane, with only transfer of the assembled glycan to the target protein occurring on the external surface of the cell. For Archaea, virtually nothing is known about the topology of enzymes involved in assembling those glycans that are subsequently N linked to target proteins on the external surface of the cell. To remedy this situation, subcellular localization and topology predictive algorithms, protease accessibility, and immunoblotting, together with cysteine modification following site-directed mutagenesis, were enlisted to define the topology of Haloferax volcanii proteins experimentally proven to participate in the N-glycosylation process. AglJ and AglD, involved in the earliest and latest stages, respectively, of assembly of the pentasaccharide decorating the H. volcanii S-layer glycoprotein, were shown to present their soluble N-terminal domain, likely containing the putative catalytic site of each enzyme, to the cytosol. The same holds true for Alg5-B, Dpm1-A, and Mpg1-D, proteins putatively involved in this posttranslational event. The results thus point to the assembly of the pentasaccharide linked to certain Asn residues of the H. volcanii S-layer glycoprotein as occurring within the cell.
Collapse
|
16
|
Iakhiaeva E, Wower J, Wower IK, Zwieb C. The 5e motif of eukaryotic signal recognition particle RNA contains a conserved adenosine for the binding of SRP72. RNA (NEW YORK, N.Y.) 2008; 14:1143-1153. [PMID: 18441046 PMCID: PMC2390789 DOI: 10.1261/rna.979508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/04/2008] [Indexed: 05/26/2023]
Abstract
The signal recognition particle (SRP) plays a pivotal role in transporting proteins to cell membranes. In higher eukaryotes, SRP consists of an RNA molecule and six proteins. The largest of the SRP proteins, SRP72, was found previously to bind to the SRP RNA. A fragment of human SRP72 (72c') bound effectively to human SRP RNA but only weakly to the similar SRP RNA of the archaeon Methanococcus jannaschii. Chimeras between the human and M. jannaschii SRP RNAs were constructed and used as substrates for 72c'. SRP RNA helical section 5e contained the 72c' binding site. Systematic alteration within 5e revealed that the A240G and A240C changes dramatically reduced the binding of 72c'. Human SRP RNA with a single A240G change was unable to form a complex with full-length human SRP72. Two small RNA fragments, one composed of helical section 5ef, the other of section 5e, competed equally well for the binding of 72c', demonstrating that no other regions of the SRPR RNA were required. The biochemical data completely agreed with the nucleotide conservation pattern observed across the phylogenetic spectrum. Thus, most eukaryotic SRP RNAs are likely to require for function an adenosine within their 5e motifs. The human 5ef RNA was remarkably resistant to ribonucleolytic attack suggesting that the 240-AUC-242 "loop" and its surrounding nucleotides form a peculiar compact structure recognized only by SRP72.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | | | |
Collapse
|
17
|
Identification of AglE, a second glycosyltransferase involved in N glycosylation of the Haloferax volcanii S-layer glycoprotein. J Bacteriol 2008; 190:3140-6. [PMID: 18310347 PMCID: PMC2347396 DOI: 10.1128/jb.00056-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea, like Eukarya and Bacteria, are able to N glycosylate select protein targets. However, in contrast to relatively advanced understanding of the eukaryal N glycosylation process and the information being amassed on the bacterial process, little is known of this posttranslational modification in Archaea. Toward remedying this situation, the present report continues ongoing efforts to identify components involved in the N glycosylation of the Haloferax volcanii S-layer glycoprotein. By combining gene deletion together with mass spectrometry, AglE, originally identified as a homologue of murine Dpm1, was shown to play a role in the addition of the 190-Da sugar subunit of the novel pentasaccharide decorating the S-layer glycoprotein. Topological analysis of an AglE-based chimeric reporter assigns AglE as an integral membrane protein, with its N terminus and putative active site facing the cytoplasm. These finding, therefore, contribute to the developing picture of the N glycosylation pathway in Archaea.
Collapse
|
18
|
Yurist S, Dahan I, Eichler J. SRP19 is a dispensable component of the signal recognition particle in Archaea. J Bacteriol 2006; 189:276-9. [PMID: 17071750 PMCID: PMC1797206 DOI: 10.1128/jb.01410-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro, archaeal SRP54 binds SRP RNA in the absence of SRP19, suggesting the latter to be expendable in Archaea. Accordingly, the Haloferax volcanii SRP19 gene was deleted. Although normally transcribed at a level comparable to that of the essential SRP54 gene, SRP19 deletion had no effect on cell growth, membrane protein insertion, protein secretion, or ribosome levels. The absence of SRP19 did, however, increase membrane bacterioruberin levels.
Collapse
Affiliation(s)
- Sophie Yurist
- Department of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel
| | | | | |
Collapse
|
19
|
Yin J, Huang Q, Pakhomova ON, Hinck AP, Zwieb C. The conserved adenosine in helix 6 of Archaeoglobus fulgidus signal recognition particle RNA initiates SRP assembly. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:269-75. [PMID: 15810437 PMCID: PMC2685576 DOI: 10.1155/2004/134861] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signal recognition particle (SRP) RNA helix 6 of archaea and eukaryotes is essential for the binding of protein SRP19 and the assembly of a functional complex. The conserved adenosine at the third position of the tetraloop of helix 6 (A149) is crucial for the binding of protein SRP19 in the mammalian SRP. Here we investigated the significance of the equivalent adenosine residue at position 159 (A159) of Archaeoglobus fulgidus SRP RNA. The A159 of A. fulgidus and A149 of human SRP RNA were changed to C, G or U, and fragments containing helix 6 or helices 6 and 8 were synthesized by run-off transcription with T7 RNA polymerase. The ability of recombinant A. fulgidus and human SRP19 to form ribonucleoprotein complexes was measured in vitro. The simultaneous presence of A149 and helix 8 is required for the high-affinity binding of SRP19 to the human SRP RNA. In contrast, A. fulgidus SRP19 binds to the SRP RNA fragments with high affinity irrespective of the nature of the nucleotide, demonstrating that A159 does not directly participate in protein binding. Instead, as indicated by the resistance of the wild-type A. fulgidus RNA towards digestion by RNase A, this residue allows the formation of a tightly folded RNA molecule. The high affinity between A.fulgidus SRP 19 and RNA molecules that contain both helices 6 and 8 suggests that A159 is likely to initiate archaeal SRP assembly by forming a conserved tertiary RNA-RNA interaction.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | - Qiaojia Huang
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
- Current address: Department of Laboratory Medicine, Fuzhou General Hospital, 156 North Xihuan Road, Fuzhou 350025, Fujian, P.R. China
| | - Olga N. Pakhomova
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Andrew P. Hinck
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Christian Zwieb
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
- Corresponding author ()
| |
Collapse
|
20
|
Haddad A, Rose RW, Pohlschröder M. The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain. J Bacteriol 2005; 187:4015-22. [PMID: 15937164 PMCID: PMC1151737 DOI: 10.1128/jb.187.12.4015-4022.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The targeting of many Sec substrates to the membrane-associated translocation pore requires the cytoplasmic signal recognition particle (SRP). In Eukarya and Bacteria it has been shown that membrane docking of the SRP-substrate complex occurs via the universally conserved SRP receptor (Sralpha/beta and FtsY, respectively). While much has been learned about the archaeal SRP in recent years, few studies have examined archaeal Sralpha/FtsY homologs. In the present study the FtsY homolog of Haloferax volcanii was characterized in its native host. Disruption of the sole chromosomal copy of ftsY in H. volcanii was possible only under conditions where either the full-length haloarchaeal FtsY or an amino-terminally truncated version of this protein lacking the A domain, was expressed in trans. Subcellular fractionation analysis of H. volcanii ftsY deletion strains expressing either one of the complementing proteins revealed that in addition to a cytoplasmic pool, both proteins cofractionate with the haloarchaeal cytoplasmic membrane. Moreover, membrane localization of the universally conserved SRP subunit SRP54, the key binding partner of FtsY, was detected in both H. volcanii strains. These analyses suggest that the H. volcanii FtsY homolog plays a crucial role but does not require its A domain for haloarchaeal growth.
Collapse
Affiliation(s)
- Alex Haddad
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
21
|
Ring G, Eichler J. In the Archaea Haloferax volcanii, Membrane Protein Biogenesis and Protein Synthesis Rates Are Affected by Decreased Ribosomal Binding to the Translocon. J Biol Chem 2004; 279:53160-6. [PMID: 15475349 DOI: 10.1074/jbc.m410590200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the haloarchaea Haloferax volcanii, ribosomes are found in the cytoplasm and membrane-bound at similar levels. Transformation of H. volcanii to express chimeras of the translocon components SecY and SecE fused to a cellulose-binding domain substantially decreased ribosomal membrane binding, relative to non-transformed cells, likely due to steric hindrance by the cellulose-binding domain. Treatment of cells with the polypeptide synthesis terminator puromycin, with or without low salt washes previously shown to prevent in vitro ribosomal membrane binding in halophilic archaea, did not lead to release of translocon-bound ribosomes, indicating that ribosome release is not directly related to the translation status of a given ribosome. Release was, however, achieved during cell starvation or stationary growth, pointing at a regulated manner of ribosomal release in H. volcanii. Decreased ribosomal binding selectively affected membrane protein levels, suggesting that membrane insertion occurs co-translationally in Archaea. In the presence of chimera-incorporating sterically hindered translocons, the reduced ability of ribosomes to bind in the transformed cells modulated protein synthesis rates over time, suggesting that these cells manage to compensate for the reduction in ribosome binding. Possible strategies for this compensation, such as a shift to a post-translational mode of membrane protein insertion or maintained ribosomal membrane-binding, are discussed.
Collapse
Affiliation(s)
- Gabriela Ring
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel
| | | |
Collapse
|
22
|
Abstract
Signal recognition particles and their receptors target ribosome nascent chain complexes of preproteins toward the protein translocation apparatus of the cell. The discovery of essential SRP components in the third urkingdom of the phylogenetic tree, the archaea (Woese, C. R., and Fox, G. E. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 5088-5090) raises questions concerning the structure and composition of the archaeal signal recognition particle as well as the functions that route nascent prepoly peptide chains to the membrane. Investigations of the archaeal SRP pathway could therefore identify novel aspects of this process not previously reported or unique to archaea when compared with the respective eukaryal and bacterial systems.
Collapse
Affiliation(s)
- Ralf G Moll
- Department of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
23
|
Abstract
Over the past three decades, transport of proteins across cellular membranes has been studied extensively in various model systems. One of the major transport routes, the so-called Sec pathway, is conserved in all domains of life. Very little is known about this pathway in the third domain of life, archaea. The core components of the archaeal, bacterial and eucaryal Sec machinery are similar, although the archaeal components appear more closely related to their eucaryal counterparts. Interestingly, the accessory factors of the translocation machinery are similar to bacterial components, which indicates a unique hybrid nature of the archaeal translocase complex. The mechanism of protein translocation in archaea is completely unknown. Based on genomic sequencing data, the most likely system for archaeal protein translocation is similar to the eucaryal co-translational translocation pathway for protein import into the endoplasmic reticulum, in which a protein is pushed across the translocation channel by the ribosome. However, other models can also be envisaged, such as a bacterial-like system in which a protein is translocated post-translationally with the aid of a motor protein analogous to the bacterial ATPase SecA. This review discusses the different models. Furthermore, an overview is given of some of the other components that may be involved in the protein translocation process, such as those required for protein targeting, folding and post-translational modification.
Collapse
Affiliation(s)
- Albert Bolhuis
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
24
|
Lichi T, Ring G, Eichler J. Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. ACTA ACUST UNITED AC 2004; 271:1382-90. [PMID: 15030489 DOI: 10.1111/j.1432-1033.2004.04050.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Across evolution, the signal recognition particle pathway targets extra-cytoplasmic proteins to membranous translocation sites. Whereas the pathway has been extensively studied in Eukarya and Bacteria, little is known of this system in Archaea. In the following, membrane association of FtsY, the prokaryal signal recognition particle receptor, and SRP54, a central component of the signal recognition particle, was addressed in the halophilic archaea Haloferax volcanii. Purified H. volcanii FtsY, the FtsY C-terminal GTP-binding domain (NG domain) or SRP54, were combined separately or in different combinations with H. volcanii inverted membrane vesicles and examined by gradient floatation to differentiate between soluble and membrane-bound protein. Such studies revealed that both FtsY and the FtsY NG domain bound to H. volcanii vesicles in a manner unaffected by proteolytic pretreatment of the membranes, implying that in Archaea, FtsY association is mediated through the membrane lipids. Indeed, membrane association of FtsY was also detected in intact H. volcanii cells. The contribution of the NG domain to FtsY binding in halophilic archaea may be considerable, given the low number of basic charges found at the start of the N-terminal acidic domain of haloarchaeal FtsY proteins (the region of the protein thought to mediate FtsY-membrane association in Bacteria). Moreover, FtsY, but not the NG domain, was shown to mediate membrane association of H. volcanii SRP54, a protein that did not otherwise interact with the membrane.
Collapse
Affiliation(s)
- Tovit Lichi
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | |
Collapse
|
25
|
Ring G, Eichler J. Membrane Binding of Ribosomes Occurs at SecYE-based Sites in the Archaea Haloferax volcanii. J Mol Biol 2004; 336:997-1010. [PMID: 15037064 DOI: 10.1016/j.jmb.2004.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/18/2003] [Accepted: 01/09/2004] [Indexed: 11/30/2022]
Abstract
Whereas ribosomes bind to membranes at eukaryal Sec61alphabetagamma and bacterial SecYEG sites, ribosomal membrane binding has yet to be studied in Archaea. Accordingly, functional ribosomes and inverted membrane vesicles were prepared from the halophilic archaea Haloferax volcanii. The ability of the ribosomes to bind to the membranes was determined using a flotation approach. Proteolytic pretreatment of the vesicles, as well as quantitative analyses, revealed the existence of a proteinaceous ribosome receptor, with the affinity of binding being comparable to that found in Eukarya and Bacteria. Inverted membrane vesicles prepared from cells expressing chimeras of SecE or SecY fused to a cytoplasmically oriented cellulose-binding domain displayed reduced ribosome binding due to steric hindrance. Pretreatment with cellulose drastically reduced ribosome binding to chimera-containing but not wild-type vesicles. Thus, as in Eukarya and Bacteria, ribosome binding in Archaea occurs at Sec-based sites. However, unlike the situation in the other domains of Life, ribosome binding in haloarchaea requires molar concentrations of salt. Structural information on ribosome-Sec complexes may provide insight into this high salt-dependent binding.
Collapse
Affiliation(s)
- Gabriela Ring
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel
| | | |
Collapse
|
26
|
Pohlschröder M, Dilks K, Hand NJ, Wesley Rose R. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 2004; 28:3-24. [PMID: 14975527 DOI: 10.1016/j.femsre.2003.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Mechthild Pohlschröder
- Department of Biology, University of Pennsylvania, 415 University Avenue, 201 Leidy Labs, Philadelphia, PA 19104-6018, USA.
| | | | | | | |
Collapse
|
27
|
Moll RG. Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. Biochem J 2003; 374:247-54. [PMID: 12775213 PMCID: PMC1223587 DOI: 10.1042/bj20030475] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Revised: 05/06/2003] [Accepted: 05/30/2003] [Indexed: 11/17/2022]
Abstract
The signal-recognition particle (SRP) of one of the most acidophilic and hyperthermophilic archaeal cells, Acidianus ambivalens, and its putative receptor component, FtsY (prokaryotic SRP receptor), were investigated in detail. A. ambivalens Ffh (fifty-four-homologous protein) was shown to be a soluble protein with strong affinity to membranes. In its membrane-residing form, Ffh was extracted from plasma membranes with chaotropic agents like urea, but not with agents diminishing electrostatic interactions. Using unilamellar tetraether phospholipid vesicles, both Ffh and FtsY associate independently from each other in the absence of other factors, suggesting an equilibrium of soluble and membrane-bound protein forms under in vivo conditions. The Ffh protein precipitated from cytosolic cell supernatants with anti-Ffh antibodies, together with an 7 S-alike SRP-RNA, suggesting a stable core ribonucleoprotein composed of both components under native conditions. The SRP RNA of A. ambivalens depicted a size of about 309 nucleotides like the SRP RNA of the related organism Sulfolobus acidocaldarius. A stable heterodimeric complex composed of Ffh and FtsY was absent in cytosolic supernatants, indicating a transiently formed complex during archaeal SRP targeting. The FtsY protein precipitated in cytosolic supernatants with anti-FtsY antisera as a homomeric protein lacking accessory protein components. However, under in vitro conditions, recombinantly generated Ffh and FtsY associate in a nucleotide-independent manner, supporting a structural receptor model with two interacting apoproteins.
Collapse
Affiliation(s)
- Ralf G Moll
- Department of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
28
|
Irihimovitch V, Eichler J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J Biol Chem 2003; 278:12881-7. [PMID: 12566448 DOI: 10.1074/jbc.m210762200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although protein secretion occurs post-translationally in bacteria and is mainly a cotranslational event in Eukarya, the relationship between the translation and translocation of secreted proteins in Archaea is not known. To address this question, the signal peptide-encoding region of the surface layer glycoprotein gene from the Haloarchaea Haloferax volcanii was fused either to the cellulose-binding domain of the Clostridium thermocellum cellulosome or to the cytoplasmic enzyme dihydrofolate reductase from H. volcanii. Signal peptide-cleaved mature versions of both the cellulose-binding domain and dihydrofolate reductase could be detected in the growth medium of transformed H. volcanii cells. Immunoblot analysis revealed, however, the presence of full-length signal peptide-bearing forms of both proteins inside the cytoplasm of the transformed cells. Proteinase accessibility assays confirmed that the presence of cell-associated signal peptide-bearing proteins was not due to medium contamination. Moreover, the pulse-radiolabeled signal peptide cellulose-binding domain chimera could be chased from the cytoplasm into the growth medium even following treatment with anisomycin, an antibiotic inhibitor of haloarchaeal protein translation. Thus, these results provide evidence that, in Archaea, at least some secreted proteins are first synthesized inside the cell and only then translocated across the plasma membrane into the medium.
Collapse
Affiliation(s)
- Vered Irihimovitch
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | | |
Collapse
|
29
|
Abstract
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein that associates with ribosomes to mediate the targeting of membrane and secretory proteins to biological membranes. In higher eukaryotes, SRP biogenesis involves the sequential binding of SRP19 and SRP54 proteins to the S domain of 7S RNA. The recently determined crystal structures of SRP19 in complex with the S domain, and that of the ternary complex of SRP19, the S domain and the M domain of SRP54, provide insight into the molecular basis of S-domain assembly and SRP function.
Collapse
|