1
|
Uchibori Y, Suekuni M, Kokaji Y, Yoshida K, Kiyono T, Kasahara Y, Fujita M. AmNA-Modified Antisense Oligonucleotide Targeting MCM8 as a Cancer-Specific Chemosensitizer for Platinum Compounds. Cancer Sci 2025. [PMID: 40098305 DOI: 10.1111/cas.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
MCM8 and MCM9 participate in homologous recombination with long-tract gene conversion to repair double-strand breaks caused by replication stress, which is generally higher in cancer cells than in normal cells. MCM8 is highly expressed in certain cancer cells, where it is necessary for maintaining cell growth, migration, and invasion, although the molecular mechanisms remain unclear. Knockdown with siRNAs or knockout of MCM8 or MCM9 selectively sensitizes cancer cells to cisplatin. Thus, drugs inhibiting MCM8 or MCM9 could serve as novel anti-neoplastic agents and/or chemosensitizers that selectively sensitize cancer cells to platinum compounds. The present study describes the development of an amido-bridged nucleic acid (AmNA)-modified gapmer antisense oligonucleotide (ASO) targeting MCM8, called ASO 8-3419. In vitro, ASO 8-3419 inhibited MCM8 expression in several human cell lines and selectively sensitized cancer cells to cisplatin. Moreover, ASO 8-3419 modestly suppressed the growth of several cancer cell lines whose proliferation has been reported to depend on MCM8. In vivo, ASO 8-3419 inhibited the expression of MCM8 in xenografted tumors of colon cancer-derived HCT116 cells in nude mice and increased tumor sensitivity to cisplatin with minimal toxicity. These findings suggest that AmNA-modified, MCM8-specific ASOs hold promise as novel anti-cancer agents.
Collapse
Affiliation(s)
- Yuki Uchibori
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masaki Suekuni
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yuko Kokaji
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
2
|
Bai HW, Li N, Zhang YX, Luo JQ, Tian RH, Li P, Huang YH, Bai FR, Deng CZ, Zhao FJ, Mo R, Chi N, Zhou YC, Li Z, Yao CC, Zhi EL. Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia. Asian J Androl 2025; 27:268-275. [PMID: 39789727 PMCID: PMC11949460 DOI: 10.4103/aja202495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/08/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Collapse
Affiliation(s)
- Hao-Wei Bai
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Na Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yu-Xiang Zhang
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jia-Qiang Luo
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Ru-Hui Tian
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Peng Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yu-Hua Huang
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fu-Rong Bai
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Cun-Zhong Deng
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fu-Jun Zhao
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Ren Mo
- Department of Urology, Inner Mongolia People’s Hospital, Inner Mongolia Urological Institute, Hohhot 010017, China
| | - Ning Chi
- Department of Urology, Inner Mongolia People’s Hospital, Inner Mongolia Urological Institute, Hohhot 010017, China
| | - Yu-Chuan Zhou
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200000, China
| | - Zheng Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Chen-Cheng Yao
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Er-Lei Zhi
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
3
|
Wen C, Cao L, Wang S, Xu W, Yu Y, Zhao S, Yang F, Chen ZJ, Zhao S, Yang Y, Qin Y. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J 2024; 43:3044-3071. [PMID: 38858601 PMCID: PMC11251167 DOI: 10.1038/s44318-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.
Collapse
Affiliation(s)
- Canxin Wen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Lili Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuhan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Weiwei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongze Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Simin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yajuan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Cao L, Liu H, Han Z, Huang C, Guo C, Zhao L, Gao C, Xu Y, Wang G, Feng Z, Li S. MCM8 promotes lung cancer progression through upregulating DNAJC10. J Cell Mol Med 2024; 28:e18488. [PMID: 39031896 PMCID: PMC11190951 DOI: 10.1111/jcmm.18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024] Open
Abstract
MCM8 is a helicase, which participates in DNA replication and tumorigenesis and is upregulated in many human cancers, including lung cancer (LC); however, the function of MCM8 in LC tumour progression is unclear. In this study, we found that MCM8 was expressed at high levels in LC cells and tissues. Further, MCM8 upregulation was associated with advanced tumour grade and lymph node metastasis, and indicated poor prognosis. Silencing of MCM8 suppressed cell growth and migration in vitro and in vivo, while ectopic MCM8 expression promoted cell cycle progression, as well as cell migration, proliferation, and apoptosis. Mechanistically, DNAJC10 was identified as a downstream target of MCM8, using gene array and CO-IP assays. DNAJC10 overexpression combatted the inhibitory activity of MCM8 knockdown on LC progression, while silencing DNAJC10 alleviated the oncogenic function of MCM8 overexpression. MCM8 expression was positively correlated with that of DNAJC10 in LC samples from The Cancer Genome Atlas database, and DNAJC10 upregulation was also associated with poor overall survival of patients with LC. This study indicated that MCM8/DNAJC10 axis plays an important role in in LC development, and maybe as a new potential therapeutic target or a diagnostic biomarker for treating patients with LC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhijun Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guige Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhe Feng
- Department of Thoracic Surgery, Beijing Sixth Hospital, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
6
|
McKinzey DR, Li C, Gao Y, Trakselis MA. Activity, substrate preference and structure of the HsMCM8/9 helicase. Nucleic Acids Res 2023; 51:7330-7341. [PMID: 37309874 PMCID: PMC10415141 DOI: 10.1093/nar/gkad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
The minichromosomal maintenance proteins, MCM8 and MCM9, are more recent evolutionary additions to the MCM family, only cooccurring in selected higher eukaryotes. Mutations in these genes are directly linked to ovarian insufficiency, infertility, and several cancers. MCM8/9 appears to have ancillary roles in fork progression and recombination of broken replication forks. However, the biochemical activity, specificities and structures have not been adequately illustrated, making mechanistic determination difficult. Here, we show that human MCM8/9 (HsMCM8/9) is an ATP dependent DNA helicase that unwinds fork DNA substrates with a 3'-5' polarity. High affinity ssDNA binding occurs in the presence of nucleoside triphosphates, while ATP hydrolysis weakens the interaction with DNA. The cryo-EM structure of the HsMCM8/9 heterohexamer was solved at 4.3 Å revealing a trimer of heterodimer configuration with two types of interfacial AAA+ nucleotide binding sites that become more organized upon binding ADP. Local refinements of the N or C-terminal domains (NTD or CTD) improved the resolution to 3.9 or 4.1 Å, respectively, and shows a large displacement in the CTD. Changes in AAA+ CTD upon nucleotide binding and a large swing between the NTD and CTD likely implies that MCM8/9 utilizes a sequential subunit translocation mechanism for DNA unwinding.
Collapse
Affiliation(s)
- David R McKinzey
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
7
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Griffin WC, McKinzey DR, Klinzing KN, Baratam R, Eliyapura A, Trakselis MA. A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress. Nat Commun 2022; 13:5090. [PMID: 36042199 PMCID: PMC9427862 DOI: 10.1038/s41467-022-32583-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.
Collapse
Affiliation(s)
- Wezley C. Griffin
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA ,grid.240871.80000 0001 0224 711XPresent Address: St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - David R. McKinzey
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Kathleen N. Klinzing
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Rithvik Baratam
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Achini Eliyapura
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Michael A. Trakselis
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| |
Collapse
|
9
|
Hao J, Deng H, Yang Y, Chen L, Wu Q, Yao P, Li J, Li B, Jin X, Wang H, Duan H. Downregulation of MCM8 expression restrains the malignant progression of cholangiocarcinoma. Oncol Rep 2021; 46:235. [PMID: 34523691 PMCID: PMC8453687 DOI: 10.3892/or.2021.8186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor with an extremely poor prognosis. Minichromosome maintenance 8 homologous recombination repair factor (MCM8) is a helicase involved in the elongation step of DNA replication and tumorigenesis. In the present study, the clinical significance and biological function of MCM8 in CCA were investigated. The expression levels of MCM8 in CCA and paracancerous tissues were analyzed using immunohistochemical staining. The potential mechanisms underlying MCM8 and the biological effects of MCM8 in CCA cells were explored using in vitro assays and in vivo mouse xenograft models. The high expression levels of MCM8 in CCA has important clinical significance in predicting disease progression. Knockdown of MCM8 decreased proliferation, promoted apoptosis and suppressed migration of CCA cells. MCM8 knockdown also suppressed tumor growth in vivo. Mechanistically, MCM8 knockdown led to the abnormal downregulation of survivin, XIAP, HSP27, IGF‑1sR, sTNF‑R1, sTNF‑R2, TNF‑α and TNF‑β. Furthermore, downregulation of MCM8 expression inhibited the PI3K/Akt signaling pathway and induced the MAPK9 signaling pathway. MCM8 promoted the malignant progression of CCA, indicating that inhibition of MCM8 may have the potential to serve as a novel molecular targeted therapy.
Collapse
Affiliation(s)
- Jingcheng Hao
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Haimin Deng
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuan Yang
- Department of Rheumatology and Immunology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Lidan Chen
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Qiang Wu
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Pei Yao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Junen Li
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Bowen Li
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Xueli Jin
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
10
|
Wang X, Zhang L, Song Y, Jiang Y, Zhang D, Wang R, Hu T, Han S. MCM8 is regulated by EGFR signaling and promotes the growth of glioma stem cells through its interaction with DNA-replication-initiating factors. Oncogene 2021; 40:4615-4624. [PMID: 34131285 DOI: 10.1038/s41388-021-01888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins are critical components of DNA-replication-licensing factors. MCM8 is an MCM protein that exhibits oncogenic functions in several human malignancies. However, the role of MCM8 in glioblastomas (GBMs) has remained unclear. In the present study, we investigated the biological functions and mechanisms of MCM8 in glioma stem cells (GSCs). The clinical relevance of MCM8 mRNA expression was explored via TCGA and REMBRANDT datasets. The effects of MCM8 on the self-renewal and tumorigenicity of GSCs were examined both in vitro and in vivo. The regulation of MCM8 expression and its interacting proteins were also evaluated. We found that the expression of MCM8 was elevated in high-grade gliomas and classical molecular subtypes and was inversely correlated with patient prognosis. GSCs had a significantly higher expression of MCM8 compared with that in normal glioma cells. Silencing of MCM8 induced G0/G1 arrest and apoptosis, as well as inhibited the proliferation and self-renewal of GSCs. Forced expression of MCM8 enhanced clonogenicity of GSCs both in vitro and in vivo. MCM8 expression was regulated by EGFR signaling, which was mediated by NF-κB (p65). MCM8 interacted with DNA-replication-initiating factors-including EZH2, CDC6, and CDCA2-and influenced these factors to associate with chromatin. In addition, MCM8 knockdown increased the sensitivity of GSCs to radiation and TMZ treatments. Our findings suggest that MCM8, regulated by the EGFR pathway, maintains the clonogenic and tumorigenic potential of GSCs through interaction with DNA-replication-initiating factors; hence, MCM8 may represent a novel therapeutic target in GBMs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Zhu W, Gao F, Zhou H, Jin K, Shao J, Xu Z. Knockdown of MCM8 inhibits development and progression of bladder cancer in vitro and in vivo. Cancer Cell Int 2021; 21:242. [PMID: 33931059 PMCID: PMC8086360 DOI: 10.1186/s12935-021-01948-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bladder cancer is a frequently diagnosed urinary system tumor, whose mortality remains rising. Minichromosome maintenance eight homologous recombination repair factor (MCM8), a newly discovered MCM family member, has been shown to be required for DNA replication. Unfortunately, little is known concerning the roles of MCM8 in bladder cancer. METHODS The present study, we aimed at probing into the impacts and detailed mechanisms of MCM8 in bladder cancer progression. In this study, MCM8 expression level was detected through immunohistochemistry staining (IHC), qRT-PCR and Western blot assay. Silenced MCM8 cell models were constructed by lentivirus transfection. In vitro, the cell proliferation was evaluated by the MTT assay. The wound-healing assay and the transwell assay were utilized to assess the cell migration. Also, the cell apoptosis and the cell cycle were determined by flow cytometry. Moreover, the Human Apoptosis Antibody Array assay was performed to analyze the alterations of apoptosis-related proteins. The in vivo experiments were conducted to verify the effects of MCM8 knockdown on the tumor growth of bladder cancer. RESULTS The results demonstrated that compared with normal adjacent tissues, MCM8 expression in bladder cancer tissues was strongly up-regulated. The up-regulation of MCM8 expression in bladder cancer may be a valuable independent prognostic indicator. Of note, MCM8 inhibition modulated the malignant phenotypes of bladder cancer cells. In terms of mechanism, it was validated that MCM8 knockdown made Akt, P-Akt, CCND1 and CDK6 levels down-regulated, as well as MAPK9 up-regulated. CONCLUSIONS Taken together, our study demonstrated an important role of MCM8 in bladder cancer and created a rationale for the therapeutic potential of MCM8 inhibition in human bladder cancer therapy.
Collapse
Affiliation(s)
- Wei Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Fei Gao
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China
| | - Hongyi Zhou
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China
| | - Ke Jin
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China
| | - Jianfeng Shao
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China.
| | - Zhuoqun Xu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China.
| |
Collapse
|
12
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Comparative genomic analysis reveals evolutionary and structural attributes of MCM gene family in Arabidopsis thaliana and Oryza sativa. J Biotechnol 2020; 327:117-132. [PMID: 33373625 DOI: 10.1016/j.jbiotec.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022]
Abstract
The mini-chromosome maintenance (MCM) family, a large and functionally diverse protein family belonging to the AAA+ superfamily, is essential for DNA replication in all eukaryotic organisms. The MCM 2-7 form a hetero-hexameric complex which serves as licensing factor necessary to ensure the proper genomic DNA replication during the S phase of cell cycle. MCM 8-10 are also associated with the DNA replication process though their roles are particularly unclear. In this study, we report an extensive in silico analysis of MCM gene family (MCM 2-10) in Arabidopsis and rice. Comparative analysis of genomic distribution across eukaryotes revealed conservation of core MCMs 2-7 while MCMs 8-10 are absent in some taxa. Domain architecture analysis underlined MCM 2-10 subfamily specific features. Phylogenetic analyses clustered MCMs into 9 clades as per their subfamily. Duplication events are prominent in plant MCM family, however no duplications are observed in Arabidopsis and rice MCMs. Synteny analysis among Arabidopsis thaliana, Oryza sativa, Glycine max and Zea mays MCMs demonstrated orthologous relationships and duplication events. Further, estimation of synonymous and non-synonymous substitution rates illustrated evolution of MCM family under strong constraints. Expression profiling using available microarray data and qRT-PCR revealed differential expression under various stress conditions, hinting at their potential use to develop stress resilient crops. Homology modeling of Arabidopsis and rice MCM 2-7 and detailed comparison with yeast MCMs identified conservation of eukaryotic specific insertions and extensions as compared to archeal MCMs. Protein-protein interaction analysis revealed an extensive network of putative interacting partners mainly involved in DNA replication and repair. The present study provides novel insights into the MCM family in Arabidopsis and rice and identifies unique features, thus opening new perspectives for further targeted analyses.
Collapse
|
14
|
Huang B, Lin M, Lu L, Chen W, Tan J, Zhao J, Cao Z, Zhu X, Lin J. Identification of mini-chromosome maintenance 8 as a potential prognostic marker and its effects on proliferation and apoptosis in gastric cancer. J Cell Mol Med 2020; 24:14415-14425. [PMID: 33155430 PMCID: PMC7753872 DOI: 10.1111/jcmm.16062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Mini-chromosome maintenance (MCM) proteins play important roles in initiating eukaryotic genome replication. The MCM family of proteins includes several members associated with the development and progression of certain cancers. We performed online data mining to assess the expression of MCMs in gastric cancer (GC) and the correlation between their expression and survival in patients with GC. Notably, MCM8 expression was undoubtedly up-regulated in GC, and higher expression correlated with shorter overall survival (OS) and progression-free survival (PFS) in patients with GC. However, the role of MCM8 in GC has not been previously explored. Our in vitro experiments revealed that MCM8 knockdown inhibited cell growth and metastasis. Moreover, MCM8 knockdown induced apoptosis. Mechanistically, the expression levels of Bax and cleaved caspase-3 were increased, whereas Bcl-2 expression decreased. Additionally, we demonstrated that MCM8 knockdown suppressed tumorigenesis in vivo. Overall, these results suggest that MCM8 plays a significant role in GC progression.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Minghe Lin
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Lisha Lu
- Department of OncologyAffiliated People’s Hospital of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Wujin Chen
- Department of OncologyAffiliated People’s Hospital of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Jingzhuang Tan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jinyan Zhao
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Zhiyun Cao
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xiaoqin Zhu
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jiumao Lin
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
15
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
16
|
Morii I, Iwabuchi Y, Mori S, Suekuni M, Natsume T, Yoshida K, Sugimoto N, Kanemaki MT, Fujita M. Inhibiting the MCM8-9 complex selectively sensitizes cancer cells to cisplatin and olaparib. Cancer Sci 2019; 110:1044-1053. [PMID: 30648820 PMCID: PMC6398883 DOI: 10.1111/cas.13941] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
MCM8 and MCM9 are paralogues of the MCM2‐7 eukaryotic DNA replication helicase proteins and play a crucial role in a homologous recombination‐mediated repair process to resolve replication stress by fork stalling. Thus, deficiency of MCM8‐9 sensitizes cells to replication stress caused, for example, by platinum compounds that induce interstrand cross‐links. It is suggested that cancer cells undergo more replication stress than normal cells due to hyperstimulation of growth. Therefore, it is possible that inhibiting MCM8‐9 selectively hypersensitizes cancer cells to platinum compounds and poly(ADP‐ribose) polymerase inhibitors, both of which hamper replication fork progression. Here, we inhibited MCM8‐9 in transformed and nontransformed cells and examined their sensitivity to cisplatin and olaparib. We found that knockout of MCM9 or knockdown of MCM8 selectively hypersensitized transformed cells to cisplatin and olaparib. In agreement with reported findings, RAS‐ and human papilloma virus type 16 E7‐mediated transformation of human fibroblasts increased replication stress, as indicated by induction of multiple DNA damage responses (including formation of Rad51 foci). Such replication stress induced by oncogenes was further increased by knockdown of MCM8, providing a rationale for cancer‐specific hypersensitization to cisplatin and olaparib. Finally, we showed that knocking out MCM9 increased the sensitivity of HCT116 xenograft tumors to cisplatin. Taken together, the data suggest that conceptual MCM8‐9 inhibitors will be powerful cancer‐specific chemosensitizers for platinum compounds and poly(ADP‐ribose) polymerase inhibitors, thereby opening new avenues to the design of novel cancer chemotherapeutic strategies.
Collapse
Affiliation(s)
- Issay Morii
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Iwabuchi
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sumiko Mori
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Suekuni
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Griffin WC, Trakselis MA. The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair (Amst) 2019; 76:1-10. [PMID: 30743181 DOI: 10.1016/j.dnarep.2019.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
There are several DNA helicases involved in seemingly overlapping aspects of homologous and homoeologous recombination. Mutations of many of these helicases are directly implicated in genetic diseases including cancer, rapid aging, and infertility. MCM8/9 are recent additions to the catalog of helicases involved in recombination, and so far, the evidence is sparse, making assignment of function difficult. Mutations in MCM8/9 correlate principally with primary ovarian failure/insufficiency (POF/POI) and infertility indicating a meiotic defect. However, they also act when replication forks collapse/break shuttling products into mitotic recombination and several mutations are found in various somatic cancers. This review puts MCM8/9 in context with other replication and recombination helicases to narrow down its genomic maintenance role. We discuss the known structure/function relationship, the mutational spectrum, and dissect the available cellular and organismal data to better define its role in recombination.
Collapse
Affiliation(s)
- Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA.
| |
Collapse
|
18
|
Canovas Nunes S, Manzoni M, Pizzi M, Mandato E, Carrino M, Quotti Tubi L, Zambello R, Adami F, Visentin A, Barilà G, Trentin L, Manni S, Neri A, Semenzato G, Piazza F. The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma. Blood Cancer J 2018; 8:20. [PMID: 29440639 PMCID: PMC5811530 DOI: 10.1038/s41408-018-0053-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression.
Collapse
Affiliation(s)
- Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Martina Manzoni
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marilena Carrino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy. .,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
19
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
20
|
Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene 2017; 36:3629-3639. [PMID: 28481876 PMCID: PMC5481462 DOI: 10.1038/onc.2017.123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
Abstract
Miniature chromosome maintenance (MCM) proteins play critical roles in DNA replication licensing, initiation and elongation. MCM8, one of the MCM proteins playing a critical role in DNA repairing and recombination, was found to have over-expression and increased DNA copy number in a variety of human malignancies. The gain of MCM8 is associated with aggressive clinical features of several human cancers. Increased expression of MCM8 in prostate cancer is associated with cancer recurrence. Forced expression of MCM8 in RWPE1 cells, the immortalized but non-transformed prostate epithelial cell line, exhibited fast cell growth and transformation, while knocked down of MCM8 in PC3, DU145 and LNCaP cells induced cell growth arrest, and decreased tumor volumes and mortality of severe combined immunodeficiency mice xenografted with PC3 and DU145 cells. MCM8 bound cyclin D1 and activated Rb protein phosphorylation by cyclin-dependent kinase 4 in vitro and in vivo. The cyclin D1/MCM8 interaction is required for Rb phosphorylation and S phase entry in cancer cells. As a result, our study showed that copy number increase and overexpression of MCM8 may play critical roles in human cancer development.
Collapse
|
21
|
Li TF, Gong N, Wang YX. Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Front Pharmacol 2016; 7:367. [PMID: 27761113 PMCID: PMC5051147 DOI: 10.3389/fphar.2016.00367] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aconitines, including bulleyaconitine A, probably the most bioactive and abundant alkaloids in Aconitum plant, are a group of diester C19-diterpenoid alkaloids with one acetylester group attached to C8 of the diterpenoid skeleton and one benzoylester group to C14. Hydrolysis of both groups is involved in the processing of Aconitum, a traditional Chinese medicinal approach. We recently demonstrated that bulleyaconitine A produced anti-hypersensitivity, which was mediated by stimulation of spinal microglial dynorphin A expression. This study aimed to elucidate whether the acetylester and benzoylester groups are involved in aconitine-induced dynorphin A expression, anti-hypersensitivity, neurotoxicity in neuropathic rats. Intrathecal administration of aconitine and benzoylaconine (but not aconine) attenuated mechanical allodynia and heat hyperalgesia, with normalized ED50 values of 35 pmol and 3.6 nmol, respectively. Aconitine and benzoylaconine anti-allodynia was completely blocked by the microglial inhibitor, dynorphin A antiserum, and κ-opioid receptor antagonist. Aconitine and benzoylaconine, but not aconine, stimulated dynorphin A expression in cultured primary spinal microglia, with EC50 values of 32 nM and 3 μM, respectively. Intrathecal aconitine, benzoylaconine and aconine induced flaccid paralysis and death, with normalized TD50 values of 0.5 nmol, 0.2 μmol, and 1.6 μmol, respectively. The TD50/ED50 ratios of aconitine and benzolyaconine were 14:1 and 56:1. Our results suggest that both the C8-acetyl and C14-benzoyl groups are essential for aconitine to stimulate spinal microglial dynorphin A expression and subsequent anti-hypersensitivity, which can be separated from neurotoxicity, because both benzoylaconine and aconine differentially produced anti-hypersensitivity and neurotoxicity due to their different stimulatory ability on dynorphin A expression. Our results support the scientific rationale for Aconitum processing, but caution should be taken to avoid overprocessing and excess hydrolysis of benzolyaconine to aconine.
Collapse
Affiliation(s)
- Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| |
Collapse
|
22
|
Wang Z, Zhu F. Minichromosome maintenance protein 7 regulates phagocytosis in kuruma shrimp Marsupenaeus japonicas against white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2016; 55:293-303. [PMID: 27276115 DOI: 10.1016/j.fsi.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/26/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Minichromosome maintenance protein (MCM7) belongs to the MCM protein family and participates in the MCM complex by playing a role in the cell replication cycle and chromosome initiation of eukaryotes. Previously, we found that several genes, including MCM7, were over-expressed in Drosophila melanogaster after white spot syndrome virus (WSSV) infection. In this study, we aimed to further research the MCM7 of kuruma shrimp, Marsupenaeus japonicus (mjMCM7) and determine its role in the innate immune system. To this end, we cloned the entire 2307-bp mjMCM7 sequence, including a 1974-bp open reading frame (ORF) encoding a 658-aa-long protein. Real-time PCR showed that the gene was primarily expressed in the hemolymph and hepatopancreas and over-expressed in shrimp challenged with WSSV. Gene function study was carried out by knocking down the expression of MCM7 using small interference RNA (siRNA). The results revealed that β-actin, hemocyanin, prophenoloxidase (proPO) and tumor necrosis factor-α (TNF-α) were up-regulated while the cytoskeleton proteins such as myosin and Rho were significantly down-regulated at 24 h after treatment. The results indicate a possible relationship between mjMCM7 and the innate immune system, and suggest that mjMCM7 may play a role in phagocytosis. After WSSV challenge, WSSV copies and mortality count were both higher in the MCM7-siRNA-treated groups at 60 h after treatment, and the mortality count approached that of the control groups over time. The phagocytosis rate was significantly lower in the MCM7-siRNA-treated group than in the WSSV group. The findings of this study confirm that mjMCM7 positively regulates phagocytosis and plays an important role against WSSV. These results could help researchers to further understand the function of the MCM7 protein and reveal its potential role in the innate immunity of invertebrates.
Collapse
Affiliation(s)
- Zhi Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
23
|
The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes. Biochim Biophys Acta Gen Subj 2016; 1860:2725-34. [PMID: 26801878 DOI: 10.1016/j.bbagen.2016.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/26/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Oncogenes are a type of genes that have the potential to cause cancer. Most normal cells undergo programmed cell death, namely apoptosis, but activated oncogenes can help cells avoid apoptosis and survive. Thus, studying oncogenes is helpful for obtaining a good understanding of the formation and development of various types of cancers. METHODS In this study, we proposed a computational method, called OPM, for investigating oncogenes from the view of Gene Ontology (GO) and biological pathways. All investigated genes, including validated oncogenes retrieved from some public databases and other genes that have not been reported to be oncogenes thus far, were encoded into numeric vectors according to the enrichment theory of GO terms and KEGG pathways. Some popular feature selection methods, minimum redundancy maximum relevance and incremental feature selection, and an advanced machine learning algorithm, random forest, were adopted to analyze the numeric vectors to extract key GO terms and KEGG pathways. RESULTS Along with the oncogenes, GO terms and KEGG pathways were discussed in terms of their relevance in this study. Some important GO terms and KEGG pathways were extracted using feature selection methods and were confirmed to be highly related to oncogenes. Additionally, the importance of these terms and pathways in predicting oncogenes was further demonstrated by finding new putative oncogenes based on them. CONCLUSIONS This study investigated oncogenes based on GO terms and KEGG pathways. Some important GO terms and KEGG pathways were confirmed to be highly related to oncogenes. We hope that these GO terms and KEGG pathways can provide new insight for the study of oncogenes, particularly for building more effective prediction models to identify novel oncogenes. The program is available upon request. GENERAL SIGNIFICANCE We hope that the new findings listed in this study may provide a new insight for the investigation of oncogenes. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
24
|
Cai L, Zhao K, Yuan X. Expression of minichromosome maintenance 8 in chronic myelogenous leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14180-14188. [PMID: 26823731 PMCID: PMC4713517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Minichromosome maintenance 8 (MCM8) is identified as an initiating helicase involved in DNA elongation and involved in cancer. However, little information is available for the role of MCM8 on chronic myelogenous leukemia (CML). We aimed to explore the expression and effect of MCM8 on CML. METHODS Peripheral blood mononuclear cells (PBMC) and bone marrow mononuclear cells (BMMC) were prepared from six patients with CML and three healthy individuals. The mRNA levels of MCM8 were determined and compared. The expression of MCM8 was silenced by small interfering RNA (siRNA) approach in human CML cell line K562. After transfection with MCM8 siRNA, cell viability and apoptotic rate were analyzed, as well as the protein expression levels of Caspase-3 and B-cell lymphoma (Bcl)-xL. RESULTS Relative mRNA levels of MCM8 were both significantly higher in PBMC and BMMC from CML patients than those in healthy individuals (P < 0.05). The cell viability was significantly reduced while the apoptotic rate was statistically increased by knockdown of MCM8 compared to control group or the scramble siRNA group (both P < 0.05). Moreover, the protein expression levels of Caspase-3 were significantly increased (P < 0.05), and while the levels of Bcl-xL were statistically reduced (P < 0.05) compared to the control group or the scramble siRNA group. CONCLUSION MCM8 plays a significant role in CML, and knockdown of MCM8 might be a potentially targeted therapy for CML.
Collapse
MESH Headings
- Apoptosis
- Case-Control Studies
- Caspase 3/metabolism
- Cell Survival
- Gene Expression Regulation, Leukemic
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Minichromosome Maintenance Proteins/genetics
- Minichromosome Maintenance Proteins/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Time Factors
- Transfection
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Lili Cai
- Department of Blood Transfusion, The First People’s Hospital of Shangqiu CityShangqiu 476000, Henan Province, P. R. China
| | - Kai Zhao
- Department of Clinical Laboratory, The First People’s Hospital of Shangqiu CityShangqiu 476000, Henan Province, P. R. China
| | - Xuejie Yuan
- Shangqiu Medical CollegeShangqiu 476000, Henan Province, P. R. China
| |
Collapse
|
25
|
Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure. Cancer Genet 2015; 208:621-4. [PMID: 26806154 DOI: 10.1016/j.cancergen.2015.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Mutations in MCM9, which encodes DNA helicase, were recently shown to cause a clinical phenotype of primary ovarian failure and chromosomal instability. MCM9 plays an essential role in homologous recombination-mediated double-strand break repair. We describe a multiplex family with early colorectal carcinoma and mixed polyposis associated with primary hypergonadotropic hypogonadism. A combination of whole genome homozygosity mapping as well as exome sequencing and targeted gene sequencing identified a homozygous c.672_673delGGinsC mutation that predicts a truncated protein, p.Glu225Lysfs*4. Our data expand the phenotypic spectrum of MCM9 mutations and suggest a link between MCM9 and inherited predisposition to mixed polyposis and early-onset colorectal cancer.
Collapse
|
26
|
Luo Y, Schimenti JC. MCM9 deficiency delays primordial germ cell proliferation independent of the ATM pathway. Genesis 2015; 53:678-84. [DOI: 10.1002/dvg.22901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Yunhai Luo
- Department of Biomedical Sciences; Cornell University; Ithaca New York
| | - John C. Schimenti
- Department of Biomedical Sciences; Cornell University; Ithaca New York
| |
Collapse
|
27
|
Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P, Lobel O, Eideh H, Gulsuner S, Dahary D, Abu-Rayyan A, Kanaan M, Levy-Lahad E, Bercovich D, Zangen D. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet 2015; 52:391-9. [DOI: 10.1136/jmedgenet-2014-102921] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/25/2015] [Indexed: 11/03/2022]
|
28
|
Wood-Trageser MA, Gurbuz F, Yatsenko SA, Jeffries EP, Kotan LD, Surti U, Ketterer DM, Matic J, Chipkin J, Jiang H, Trakselis MA, Topaloglu AK, Rajkovic A. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet 2014; 95:754-62. [PMID: 25480036 DOI: 10.1016/j.ajhg.2014.11.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022] Open
Abstract
Premature ovarian failure (POF) is genetically heterogeneous and manifests as hypergonadotropic hypogonadism either as part of a syndrome or in isolation. We studied two unrelated consanguineous families with daughters exhibiting primary amenorrhea, short stature, and a 46,XX karyotype. A combination of SNP arrays, comparative genomic hybridization arrays, and whole-exome sequencing analyses identified homozygous pathogenic variants in MCM9, a gene implicated in homologous recombination and repair of double-stranded DNA breaks. In one family, the MCM9 c.1732+2T>C variant alters a splice donor site, resulting in abnormal alternative splicing and truncated forms of MCM9 that are unable to be recruited to sites of DNA damage. In the second family, MCM9 c.394C>T (p.Arg132(∗)) results in a predicted loss of functional MCM9. Repair of chromosome breaks was impaired in lymphocytes from affected, but not unaffected, females in both families, consistent with MCM9 function in homologous recombination. Autosomal-recessive variants in MCM9 cause a genomic-instability syndrome associated with hypergonadotropic hypogonadism and short stature. Preferential sensitivity of germline meiosis to MCM9 functional deficiency and compromised DNA repair in the somatic component most likely account for the ovarian failure and short stature.
Collapse
Affiliation(s)
- Michelle A Wood-Trageser
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana 01330, Turkey
| | - Svetlana A Yatsenko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - L Damla Kotan
- Department of Biotechnology, Institute of Sciences, Cukurova University, Adana 01330, Turkey
| | - Urvashi Surti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deborah M Ketterer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jelena Matic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jacqueline Chipkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huaiyang Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Trakselis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - A Kemal Topaloglu
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana 01330, Turkey
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Human Genetics, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
AlAsiri S, Basit S, Wood-Trageser MA, Yatsenko SA, Jeffries EP, Surti U, Ketterer DM, Afzal S, Ramzan K, Faiyaz-Ul Haque M, Jiang H, Trakselis MA, Rajkovic A. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest 2014; 125:258-62. [PMID: 25437880 DOI: 10.1172/jci78473] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/30/2014] [Indexed: 11/17/2022] Open
Abstract
Premature ovarian failure (POF) is a genetically and phenotypically heterogeneous disorder that includes individuals with manifestations ranging from primary amenorrhea to loss of menstrual function prior to age 40. POF presents as hypergonadotropic hypogonadism and can be part of a syndrome or occur in isolation. Here, we studied 3 sisters with primary amenorrhea, hypothyroidism, and hypergonadotropic hypogonadism. The sisters were born to parents who are first cousins. SNP analysis and whole-exome sequencing revealed the presence of a pathogenic variant of the minichromosome maintenance 8 gene (MCM8, c.446C>G; p.P149R) located within a region of homozygosity that was present in the affected daughters but not in their unaffected sisters. Because MCM8 participates in homologous recombination and dsDNA break repair, we tested fibroblasts from the affected sisters for hypersensitivity to chromosomal breaks. Compared with fibroblasts from unaffected daughters, chromosomal break repair was deficient in fibroblasts from the affected individuals, likely due to inhibited recruitment of MCM8 p.P149R to sites of DNA damage. Our study identifies an autosomal recessive disorder caused by an MCM8 mutation that manifests with endocrine dysfunction and genomic instability.
Collapse
|
30
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2014. [DOI: 10.4161/cib.13844] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Zhong X, Guan X, Liu W, Zhang L. Aberrant expression of NEK2 and its clinical significance in non-small cell lung cancer. Oncol Lett 2014; 8:1470-1476. [PMID: 25202351 PMCID: PMC4156209 DOI: 10.3892/ol.2014.2396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 03/27/2014] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study was to identify a potential biomarker that is more effective than those already available for the prognosis of non-small cell lung cancer (NSCLC) patients. The expression of never in mitosis gene A (NIMA)-related kinase 2 (NEK2), minichromosome maintenance complex component 7 (Mcm7) and Ki67 was evaluated in 270 NSCLC tissues using immunohistochemical and immunofluorescence techniques. Associations between protein expression and clinicopathological characters were assessed, and the impact on overall survival was analyzed. High levels of NEK2, Mcm7 and Ki67 expression were detected in 25.9, 35.2 and 24.4% of the NSCLC tissues. Overexpression of NEK2 was detected more frequently in cases with high T and N stages (P<0.0001 and P=0.011, respectively). Correlations were present between the expression of NEK2, Mcm7 and Ki67. Kaplan-Meier curves indicated that the patients with overexpressed NEK2, Mcm7 and Ki67 had a poorer overall survival time compared to those with low expression for all stages (P<0.0001). In particular, the patients with NEK2 overexpression had a poorer prognosis. Multivariate Cox regression analysis showed that NEK2, Mcm7 and Ki67 are independent prognostic indicators for NSCLC. In conclusion, the data indicate that compared with Mcm7 and Ki67, NEK2 may be a more effective tumor proliferation marker of poor prognosis for NSCLC patients, and that NEK2 may represent a novel potential target for NSCLC therapeutic intervention.
Collapse
Affiliation(s)
- Xinwen Zhong
- Department of Thoracic Surgery, The First Clinical College, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaojiao Guan
- Department of Pathology, The Second Clinical College, China Medical University, Shenyang, Liaoning, P.R. China ; Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China
| | - Wenke Liu
- Department of Thoracic Surgery, The First Clinical College, China Medical University, Shenyang, Liaoning, P.R. China
| | - Lin Zhang
- Department of Thoracic Surgery, The First Clinical College, China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
32
|
Chang M, Liu R, Jin Q, Liu Y, Wang X. Scaffold/matrix attachment regions from CHO cell chromosome enhanced the stable transfection efficiency and the expression of transgene in CHO cells. Biotechnol Appl Biochem 2014; 61:510-6. [DOI: 10.1002/bab.1204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/27/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Ming Chang
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
33
|
Examining Nek2 as a better proliferation marker in non-small cell lung cancer prognosis. Tumour Biol 2014; 35:7155-62. [PMID: 24763826 DOI: 10.1007/s13277-014-1935-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022] Open
Abstract
The purpose of this study is to identify a better potential biomarker for the prognosis of patients with non-small cell lung cancer (NSCLC). The expressions of Nek2, MCM7, and Ki-67 were evaluated in 270 NSCLC tissues using immunohistochemical and immunofluorescence techniques. Associations between protein expression and clinical pathologic characters were assessed, and the impact on overall survival was analyzed. We detected high levels of Nek2, MCM7, and Ki-67 expression in 25.9, 35.2, and 24.4 % of NSCLC tissues, respectively. Overexpressions of Nek2 were detected more frequently in high T-stage and N-stage cases (P = 0.000, 0.011). The expressions of Nek2, MCM7, and Ki-67 were correlated with each other. Kaplan-Meier curves indicated that patients with overexpression of Nek2, MCM7, and Ki-67 had a poorer overall survival rate compared to those with low expression for all stages (P = 0.000). In particular, the patients with Nek2 overexpression had the most negative prognosis. Multivariate Cox regression analysis showed that Nek2, MCM7, and Ki-67 are independent prognostic indicators for NSCLC. Our data suggest that among Nek2 kinase, MCM7, and Ki-67, it is Nek2 kinase that is the more effective tumor proliferation marker of poor prognosis for NSCLC patients. Thus, Nek2 may represent a new potential target for NSCLC therapeutic intervention.
Collapse
|
34
|
Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel) 2014; 5:147-75. [PMID: 24705291 PMCID: PMC3978517 DOI: 10.3390/genes5010147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/27/2023] Open
Abstract
The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.
Collapse
|
35
|
Erkan EP, Ströbel T, Lewandrowski G, Tannous B, Madlener S, Czech T, Saydam N, Saydam O. Depletion of minichromosome maintenance protein 7 inhibits glioblastoma multiforme tumor growth in vivo. Oncogene 2013; 33:4778-85. [PMID: 24166506 DOI: 10.1038/onc.2013.423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 08/22/2013] [Accepted: 09/05/2013] [Indexed: 11/09/2022]
Abstract
Minichromosome maintenance (MCM) proteins are key elements that function as a part of the pre-replication complex to initiate DNA replication in eukaryotes. Consistent with their roles in initiating DNA replication, overexpression of MCM family members has been observed in several malignancies. Through bioinformatic analysis of The Cancer Genome Atlas's data on glioblastoma multiforme (GBM), we found that the genomic region containing MCM7 gene was amplified in more than 80% of the present cases. To validate this finding and to identify the possible contribution of the remaining members of the MCM family to GBM progression, we used quantitative real-time PCR to analyze the gene expression profiles of all MCM family members in Grade IV (GBM) tissue samples and observed a significant upregulation in GBM samples compared with normal white matter tissues. In addition, we compared the observed gene expression profiles with those of Grade II and Grade III astrocytoma samples and determined that the observed upregulation was restricted and specific to Grade IV. MCM7 was the most upregulated gene in the gene set we analyzed, and therefore we wanted to identify the role of MCM7 in GBM progression. We determined that siRNA-mediated knockdown of MCM7 expression reduced GBM cell proliferation and also inhibited tumor growth in both xenograft and orthotopic mouse models of GBM. Taken together, our data suggest that MCM7 can be a potential prognostic marker and a novel therapeutic target in GBM therapy.
Collapse
Affiliation(s)
- E P Erkan
- Molecular Neuro-Oncology Research Unit, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - T Ströbel
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - G Lewandrowski
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - B Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - S Madlener
- Molecular Neuro-Oncology Research Unit, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - T Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - N Saydam
- Molecular Neuro-Oncology Research Unit, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - O Saydam
- Molecular Neuro-Oncology Research Unit, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Gambus A, Blow JJ. Mcm8 and Mcm9 form a dimeric complex in Xenopus laevis egg extract that is not essential for DNA replication initiation. Cell Cycle 2013; 12:1225-32. [PMID: 23518502 PMCID: PMC3674087 DOI: 10.4161/cc.24310] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/22/2022] Open
Abstract
Hexameric complexes of the six related Mcm2-7 proteins form the core of the replicative helicase. Two other proteins, Mcm8 and Mcm9, with significant homology to Mcm2-7 were first shown to play distinct roles during DNA replication in Xenopus laevis egg extract. Recent work has revealed that Mcm8 and 9 form a complex that plays a role during homologous recombination in human, chicken and mouse cells. We have therefore re-examined the behavior of the Xenopus homologs of these proteins. We show that Mcm8 and Mcm9 form a dimeric complex in Xenopus egg extract. They both associate with chromatin at later stages of DNA replication, and this association is stimulated by DNA damage, suggesting that their function is analogous to the one described in higher eukaryotes. In contrast to previous reports, we do not find Mcm9 essential for loading of Mcm2-7 complex onto chromatin during origin licensing nor detect its interaction with Cdt1 origin licensing factor. Altogether, we conclude that the role Mcm8 and Mcm9 play in Xenopus egg extract is not different from recent findings in higher eukaryotes, consistent with an evolutionary conservation of their function.
Collapse
Affiliation(s)
- Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | |
Collapse
|
37
|
The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 2013; 33:1632-44. [PMID: 23401855 DOI: 10.1128/mcb.01503-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The minichromosome maintenance protein homologs MCM8 and MCM9 have previously been implicated in DNA replication elongation and prereplication complex (pre-RC) formation, respectively. We found that MCM8 and MCM9 physically associate with each other and that MCM8 is required for the stability of MCM9 protein in mammalian cells. Depletion of MCM8 or MCM9 in human cancer cells or the loss of function MCM9 mutation in mouse embryo fibroblasts sensitizes cells to the DNA interstrand cross-linking (ICL) agent cisplatin. Consistent with a role in the repair of ICLs by homologous recombination (HR), knockdown of MCM8 or MCM9 significantly reduces HR repair efficiency. Chromatin immunoprecipitation analysis using human DR-GFP cells or Xenopus egg extract demonstrated that MCM8 and MCM9 proteins are rapidly recruited to DNA damage sites and promote RAD51 recruitment. Thus, these two metazoan-specific MCM homologs are new components of HR and may represent novel targets for treating cancer in combination with DNA cross-linking agents.
Collapse
|
38
|
Ansari A, Tuteja R. Genome wide comparative comprehensive analysis of Plasmodium falciparum MCM family with human host. Commun Integr Biol 2013; 5:607-15. [PMID: 23336032 PMCID: PMC3541329 DOI: 10.4161/cib.21759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mini chromosome maintenance (MCM) proteins 2-7, a subgroup of the large AAA ATPase family are critically required for eukaryotic DNA replication. These proteins are most likely responsible for unwinding DNA at the replication forks. Besides this function, some MCMs are also involved in other chromosome transactions such as transcription, chromatin remodeling and genome stability. All the MCMs contain a conserved region of ~200 amino acids responsible for nucleotide binding. The importance of MCM proteins is evident by the fact that deregulation of the activity of MCM family of proteins appears to be directly linked to human carcinogenesis. This article will focus on members of this important family of proteins from the malaria parasite Plasmodium falciparum and their comparison with the human host.
Collapse
Affiliation(s)
- Abulaish Ansari
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
39
|
Santosa V, Martha S, Hirose N, Tanaka K. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication. J Biol Chem 2013; 288:6864-80. [PMID: 23322785 DOI: 10.1074/jbc.m112.432393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.
Collapse
Affiliation(s)
- Venny Santosa
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | | | | |
Collapse
|
40
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
41
|
Lutzmann M, Grey C, Traver S, Ganier O, Maya-Mendoza A, Ranisavljevic N, Bernex F, Nishiyama A, Montel N, Gavois E, Forichon L, de Massy B, Méchali M. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell 2012; 47:523-34. [PMID: 22771120 DOI: 10.1016/j.molcel.2012.05.048] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/21/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
We generated knockout mice for MCM8 and MCM9 and show that deficiency for these genes impairs homologous recombination (HR)-mediated DNA repair during gametogenesis and somatic cells cycles. MCM8(-/-) mice are sterile because spermatocytes are blocked in meiotic prophase I, and females have only arrested primary follicles and frequently develop ovarian tumors. MCM9(-/-) females also are sterile as ovaries are completely devoid of oocytes. In contrast, MCM9(-/-) testes produce spermatozoa, albeit in much reduced quantity. Mcm8(-/-) and Mcm9(-/-) embryonic fibroblasts show growth defects and chromosomal damage and cannot overcome a transient inhibition of replication fork progression. In these cells, chromatin recruitment of HR factors like Rad51 and RPA is impaired and HR strongly reduced. We further demonstrate that MCM8 and MCM9 form a complex and that they coregulate their stability. Our work uncovers essential functions of MCM8 and MCM9 in HR-mediated DSB repair during gametogenesis, replication fork maintenance, and DNA repair.
Collapse
Affiliation(s)
- Malik Lutzmann
- DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 Rue de la Cardonille, 34396 Montpellier, Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nishimura K, Ishiai M, Horikawa K, Fukagawa T, Takata M, Takisawa H, Kanemaki MT. Mcm8 and Mcm9 form a complex that functions in homologous recombination repair induced by DNA interstrand crosslinks. Mol Cell 2012; 47:511-22. [PMID: 22771115 DOI: 10.1016/j.molcel.2012.05.047] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023]
Abstract
DNA interstrand crosslinks (ICLs) are highly toxic lesions that stall the replication fork to initiate the repair process during the S phase of vertebrates. Proteins involved in Fanconi anemia (FA), nucleotide excision repair (NER), and translesion synthesis (TS) collaboratively lead to homologous recombination (HR) repair. However, it is not understood how ICL-induced HR repair is carried out and completed. Here, we showed that the replicative helicase-related Mcm family of proteins, Mcm8 and Mcm9, forms a complex required for HR repair induced by ICLs. Chicken DT40 cells lacking MCM8 or MCM9 are viable but highly sensitive to ICL-inducing agents, and exhibit more chromosome aberrations in the presence of mitomycin C compared with wild-type cells. During ICL repair, Mcm8 and Mcm9 form nuclear foci that partly colocalize with Rad51. Mcm8-9 works downstream of the FA and BRCA2/Rad51 pathways, and is required for HR that promotes sister chromatid exchanges, probably as a hexameric ATPase/helicase.
Collapse
Affiliation(s)
- Kohei Nishimura
- Center for Frontier Research, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Genetic markers of ovarian follicle number and menopause in women of multiple ethnicities. Hum Genet 2012; 131:1709-24. [PMID: 22696150 PMCID: PMC3470691 DOI: 10.1007/s00439-012-1184-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/23/2012] [Indexed: 01/22/2023]
Abstract
Oocyte loss has a significant impact on fertility and somatic health. Yet, we know little about factors that impact this process. We sought to identify genetic variants associated with ovarian reserve (oocyte number as measured by antral follicle count, AFC). Based on recently published genome-wide scans that identified loci associated with age of menopause, we also sought to test our hypothesis that follicle number and menopausal age share underlying genetic associations. We analyzed menopause-related variants for association with follicle number in an independent population of approximately 450 reproductive-aged women of European and African ancestry; these women were assessed for AFC, anthropometric, clinical, and lifestyle factors. One SNP strongly associated with later menopausal age in Caucasian women (+1.07 ± 0.11 years) in previous work was also associated with higher follicle counts in Caucasians (+2.79 ± 1.67 follicles) in our study. This variant is within the Minichromosome Maintenance Complex Component 8 (MCM8) gene, which we found was expressed within oocytes in follicles of the human ovary. In genome-wide scans of AFC, we also identified one marginally genome-wide and several nominally significant SNPs within several other genes associated with follicle number in both ethnic groups. Further, there were overlapping variants associated with multiple ovarian reserve markers (AFC, serum hormone levels, menopausal age). This study provides the first evidence for direct genetic associations underlying both follicle number and menopause and identifies novel candidate genes. Genetic variants associated with ovarian reserve may facilitate discovery of genetic markers to predict reproductive health and lifespan in women.
Collapse
|
44
|
Aves SJ, Liu Y, Richards TA. Evolutionary diversification of eukaryotic DNA replication machinery. Subcell Biochem 2012; 62:19-35. [PMID: 22918578 DOI: 10.1007/978-94-007-4572-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA replication research to date has focused on model organisms such as the vertebrate Xenopus laevis and the yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. However, animals and fungi both belong to the Opisthokonta, one of about six eukaryotic phylogenetic 'supergroups', and therefore represent only a fraction of eukaryotic diversity. To explore evolutionary diversification of the eukaryotic DNA replication machinery a bioinformatic approach was used to investigate the presence or absence of yeast/animal replisome components in other eukaryotic taxa. A comparative genomic survey was undertaken of 59 DNA replication proteins in a diverse range of 36 eukaryotes from all six supergroups. Twenty-three proteins including Mcm2-7, Cdc45, RPA1, primase, some DNA polymerase subunits, RFC1-5, PCNA and Fen1 are present in all species examined. A further 20 proteins are present in all six eukaryotic supergroups, although not necessarily in every species: with the exception of RNase H2B and the fork protection complex component Timeless/Tof1, all of these are members of anciently derived paralogous families such as ORC, MCM, GINS or RPA. Together these form a set of 43 proteins that must have been present in the last common eukaryotic ancestor (LCEA). This minimal LCEA replisome is significantly more complex than the related replisome in Archaea, indicating evolutionary events including duplications of DNA replication genes in the LCEA lineage which parallel the early evolution of other complex eukaryotic cellular features.
Collapse
Affiliation(s)
- Stephen J Aves
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | |
Collapse
|
45
|
Ding L, Forsburg SL. Schizosaccharomyces pombe minichromosome maintenance-binding protein (MCM-BP) antagonizes MCM helicase. J Biol Chem 2011; 286:32918-30. [PMID: 21813639 DOI: 10.1074/jbc.m111.282541] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The minichromosome maintenance (MCM) complex, a replicative helicase, is a heterohexamer essential for DNA duplication and genome stability. We identified Schizosaccharomyces pombe mcb1(+) (Mcm-binding protein 1), an apparent orthologue of the human MCM-binding protein that associates with a subset of MCM complex proteins. mcb1(+) is an essential gene. Deletion of mcb1(+) caused cell cycle arrest after several generations with a cdc phenotype and disrupted nuclear structure. Mcb1 is an abundant protein, constitutively present across the cell cycle. It is widely distributed in cytoplasm and nucleoplasm and bound to chromatin. Co-immunoprecipitation suggested that Mcb1 interacts robustly with Mcm3-7 but not Mcm2. Overproduction of Mcb1 disrupted the association of Mcm2 with other MCM proteins, resulting in inhibition of DNA replication, DNA damage, and activation of the checkpoint kinase Chk1. Thus, Mcb1 appears to antagonize the function of MCM helicase.
Collapse
Affiliation(s)
- Lin Ding
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089-2910, USA
| | | |
Collapse
|
46
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2011; 4:118-37. [PMID: 21509200 PMCID: PMC3073292 DOI: 10.4161/cib.4.1.13844] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 12/20/2022] Open
Abstract
Helicases are motor proteins that catalyze the unwinding of duplex nucleic acids in an ATP-dependent manner. They are involved in almost all the nucleic acid transactions. In the present study, we report a comprehensive analysis of helicase gene family in human and its comparison with homologs in model organisms. The human genome encodes for 95 non-redundant helicase proteins, of which 64 are RNA helicases and 31 are DNA helicases. 57 RNA helicases are validated based on annotations and occurrence of conserved helicase signature motifs. These include 14 DExH and 37 DExD subfamily members, six other members such as U5.snRNP, ATR-X, Suv3, FANCJ, and two of superkiller viralicidic activity 2-like helicases. 31 DNA helicases are also identified, which include RecQ, MCM and RuvB-like helicases. Finding a set of helicases in human and almost similar sequences in model organisms suggests that the "core" members of helicase gene family are highly conserved throughout evolution. The present study gives an overview of members of RNA and DNA helicases encoded by the human genome along with their conserved motifs, phylogeny and homologs in model organisms. The study on comparing these homologs will spread light on the organization and complexity of helicase gene family in model organisms. The comprehensive analysis of human helicases presented in this study will further provide an invaluable resource for elaborate biological research on these helicases.
Collapse
Affiliation(s)
- Pavan Umate
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | | | | |
Collapse
|
47
|
Tran NQ, Dang HQ, Tuteja R, Tuteja N. A single subunit MCM6 from pea forms homohexamer and functions as DNA helicase. PLANT MOLECULAR BIOLOGY 2010; 74:327-36. [PMID: 20730596 DOI: 10.1007/s11103-010-9675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/27/2010] [Indexed: 05/18/2023]
Abstract
The initiation of DNA replication starts from origins and is controlled by a multiprotein complex, which involves about twenty protein factors. One of the important factors is hetrohexameric minichromosome maintenance (MCM2-7) protein complex which is evolutionary conserved and functions as essential replicative helicase for DNA replication. Here we report the isolation and characterization of a single subunit of pea MCM protein complex, the MCM6. The deduced amino acid (827) sequence contains all the known canonical MCM motifs including zinc finger, MCM specific Walker A and Walker B and arginine finger. The purified recombinant protein contains ATP-dependent 3'-5' DNA helicase, ATP-binding and ATPase activities. The helicase activity was stimulated by replication fork like substrate and anti-MCM6 antibodies curtail all the enzyme activities of MCM6 protein. In vitro it self-interacts and forms a homohexamer which is active for DNA helicase and ATPase activities. The complete protein is required for self-interaction as the truncated MCM6 proteins were unable to self-interact. Western blot analysis and in vivo immunostaining followed by confocal microscopy showed the localization of MCM6 both in the nucleus and cytosol. These findings provide first direct evidence that single subunit MCM6 contains DNA helicase activity which is unique to plant MCM6 protein, as this activity was only reported for heteromultimers of MCM proteins in animal system. This discovery should make an important contribution to a better understanding of DNA replication in plants.
Collapse
Affiliation(s)
- Ngoc Quang Tran
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
48
|
Robertson PD, Chagot B, Chazin WJ, Eichman BF. Solution NMR structure of the C-terminal DNA binding domain of Mcm10 reveals a conserved MCM motif. J Biol Chem 2010; 285:22942-9. [PMID: 20489205 DOI: 10.1074/jbc.m110.131276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic DNA replication protein Mcm10 associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Xenopus laevis (X) Mcm10 binds DNA via a highly conserved internal domain (ID) and a C-terminal domain (CTD) that is unique to higher eukaryotes. Although the structural basis of the interactions of the ID with DNA and polymerase alpha is known, little information is available for the CTD. We have identified the minimal DNA binding region of the XMcm10-CTD and determined its three-dimensional structure by solution NMR. The CTD contains a globular domain composed of two zinc binding motifs. NMR chemical shift perturbation and mutational analysis show that ssDNA binds only to the N-terminal (CCCH-type) zinc motif, whose structure is unique to Mcm10. The second (CCCC-type) zinc motif is not involved in DNA binding. However, it is structurally similar to the CCCC zinc ribbon in the N-terminal oligomerization domain of eukaryotic and archaeal MCM helicases. NMR analysis of a construct spanning both the ID and CTD reveals that the two DNA binding domains are structurally independent in solution, supporting a modular architecture for vertebrate Mcm10. Our results provide insight in the action of Mcm10 in the replisome and support a model in which it serves as a central scaffold through coupling of interactions with partner proteins and the DNA.
Collapse
Affiliation(s)
- Patrick D Robertson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|