1
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024; 31:1619-1631. [PMID: 39122831 PMCID: PMC11567890 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
2
|
Wang Y, Tsukioka D, Oda S, Mitani H, Aoki F. DNA repair is efficient in irradiated M phase zygotes. J Reprod Dev 2024; 70:197-201. [PMID: 38644217 PMCID: PMC11153116 DOI: 10.1262/jrd.2024-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
In somatic cells, DNA repair is attenuated during mitosis to prevent the formation of anaphase bridges and facilitate the proper segregation of sister chromatids. Irradiation-induced γH2AX foci persist for hours in M phase somatic cells. However, we observed that anaphase bridges formed in a significant fraction of mouse zygotes irradiated during mitosis. Additionally, γH2AX signals in M phase zygotes peaked 30 min after irradiation and subsequently reduced with a half-life within 1-2 h. These results suggest that the DNA repair system may operate efficiently in M phase zygotes following irradiation, leading to the frequent formation of anaphase bridges. The absence of H2AX promoted the successful segregation of sister chromatids and enhanced the development of embryos to the blastocyst stage. The DNA repair system may be differentially regulated during the M phase of the first cell cycle to ensure the immediate elimination of damaged zygotes, thereby efficiently preventing transmission of mutations to subsequent generations.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Dai Tsukioka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Fugaku Aoki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
3
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
4
|
DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules 2022; 27:molecules27051540. [PMID: 35268641 PMCID: PMC8911773 DOI: 10.3390/molecules27051540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Charged-particle radiotherapy (CPRT) utilizing low and high linear energy transfer (low-/high-LET) ionizing radiation (IR) is a promising cancer treatment modality having unique physical energy deposition properties. CPRT enables focused delivery of a desired dose to the tumor, thus achieving a better tumor control and reduced normal tissue toxicity. It increases the overall radiation tolerance and the chances of survival for the patient. Further improvements in CPRT are expected from a better understanding of the mechanisms governing the biological effects of IR and their dependence on LET. There is increasing evidence that high-LET IR induces more complex and even clustered DNA double-strand breaks (DSBs) that are extremely consequential to cellular homeostasis, and which represent a considerable threat to genomic integrity. However, from the perspective of cancer management, the same DSB characteristics underpin the expected therapeutic benefit and are central to the rationale guiding current efforts for increased implementation of heavy ions (HI) in radiotherapy. Here, we review the specific cellular DNA damage responses (DDR) elicited by high-LET IR and compare them to those of low-LET IR. We emphasize differences in the forms of DSBs induced and their impact on DDR. Moreover, we analyze how the distinct initial forms of DSBs modulate the interplay between DSB repair pathways through the activation of DNA end resection. We postulate that at complex DSBs and DSB clusters, increased DNA end resection orchestrates an increased engagement of resection-dependent repair pathways. Furthermore, we summarize evidence that after exposure to high-LET IR, error-prone processes outcompete high fidelity homologous recombination (HR) through mechanisms that remain to be elucidated. Finally, we review the high-LET dependence of specific DDR-related post-translational modifications and the induction of apoptosis in cancer cells. We believe that in-depth characterization of the biological effects that are specific to high-LET IR will help to establish predictive and prognostic signatures for use in future individualized therapeutic strategies, and will enhance the prospects for the development of effective countermeasures for improved radiation protection during space travel.
Collapse
|
5
|
Zhang L, Zhuang Y, Tu G, Li D, Fan Y, Ye S, Xu J, Zheng M, Wu Y, Wu L. Positive Feedback Regulation of Poly(ADP-ribose) Polymerase 1 and the DNA-PK Catalytic Subunit Affects the Sensitivity of Nasopharyngeal Carcinoma to Etoposide. ACS OMEGA 2022; 7:2571-2582. [PMID: 35097256 PMCID: PMC8793086 DOI: 10.1021/acsomega.1c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Etoposide (VP-16) is used for the treatment of various cancers, including nasopharyngeal carcinoma (NPC); however, cancers develop resistance to this agent by promoting DNA repair. The DNA-PK (DNA-PKcs) catalytic subunit and poly(ADP-ribose) polymerase 1 (PARP1) mediate acquired resistance and poor survival in NPC cells exposed to DNA damaging agents. DNA repair can alter the sensitivity of NPC cells to DNA damaging agents, and these two enzymes function concomitantly in response to DNA damage in vivo. Therefore, we explored the relationship between DNA-PKcs and PARP1, which may affect NPC cell survival by regulating DNA repair after VP-16 treatment. We performed quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunoassays and found that DNA-PKcs knockdown downregulated the PARP1 and PAR expression. Conversely, PARP1 knockdown reduced DNA-PKcs activity, indicating the mutual regulation between DNA-PKcs and PARP1 in VP-16-induced DNA repair. Moreover, a combination treatment with olaparib (a PARP1 inhibitor) and NU7441 (a DNA-PKcs inhibitor) sensitized NPC cells to VP-16 in vitro and in vivo, suggesting that the combined treatment of olaparib, NU7441, and a DNA-damaging agent may be a successful treatment regimen in patients with NPC.
Collapse
Affiliation(s)
- Lingyu Zhang
- Fujian
Medical University Cancer Hospital, Fujian
Cancer Hospital, Fuzhou 350001, China
- Fujian
Key Laboratory of Translational Cancer Medicine, Fuzhou 350001, China
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
| | - Yingting Zhuang
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
| | - Guihui Tu
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
| | - Ding Li
- Department
of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, P. R. China
| | - Yingjuan Fan
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
| | - Shengnan Ye
- The First
Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jianhua Xu
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
- Institute
of Materia Medical, Fujian Medical University
(FMU), Fuzhou 350005, P. R. China
| | - Ming Zheng
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
| | - Ying Wu
- Key
Laboratory of Natural Drug Pharmacology in Fujian Province, School
of Pharmacy, Fujian Medical University, Fuzhou 350122, P. R. China
| | - Lixian Wu
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
- Institute
of Materia Medical, Fujian Medical University
(FMU), Fuzhou 350005, P. R. China
| |
Collapse
|
6
|
Nasrallah NA, Zhou H, Smith PA, Sears CR. DNA Repair Capacity for Personalizing Risk and Treatment Response - Assay Development and Optimization in Human Peripheral Blood Mononuclear Cells (PBMCs). DNA Repair (Amst) 2022; 111:103274. [DOI: 10.1016/j.dnarep.2022.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 11/03/2022]
|
7
|
So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson J, Dupaigne P, Lopez BS, Guirouilh-Barbat J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2651-2666. [PMID: 35137208 PMCID: PMC8934640 DOI: 10.1093/nar/gkac073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.
Collapse
Affiliation(s)
- Ayeong So
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ali Muhammad
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | | | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sandrine Ragu
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Yvan Canitrot
- CBI, CNRS UMR5088, LBCMCP, Toulouse University, Toulouse, France
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Bernard S Lopez
- To whom correspondence should be addressed. Tel: +33 1 53 73 27 40;
| | | |
Collapse
|
8
|
Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021; 32:14-28. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Chen Y, Li Y, Xiong J, Lan B, Wang X, Liu J, Lin J, Fei Z, Zheng X, Chen C. Role of PRKDC in cancer initiation, progression, and treatment. Cancer Cell Int 2021; 21:563. [PMID: 34702253 PMCID: PMC8547028 DOI: 10.1186/s12935-021-02229-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The PRKDC gene encodes the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein. DNA-PKcs plays an important role in nonhomologous end joining (NHEJ) of DNA double-strand breaks (DSBs) and is also closely related to the establishment of central immune tolerance and the maintenance of chromosome stability. The occurrence and development of different types of tumors and the results of their treatment are also influenced by DNA-PKcs, and it may also predict the results of radiotherapy, chemotherapy, and therapy with immune checkpoint inhibitors (ICIs). Here, we discuss and review the structure and mechanism of action of PRKDC and DNA-PKcs and their relationship with cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yi Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Lan
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Shanghai Center for Systems Biomedicine Research, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Jun Liu
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Zhaodong Fei
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Zheng
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Chuanben Chen
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China. .,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
10
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
11
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
12
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
13
|
Van Vu T, Thi Hai Doan D, Kim J, Sung YW, Thi Tran M, Song YJ, Das S, Kim J. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:230-239. [PMID: 33047464 PMCID: PMC7868975 DOI: 10.1111/pbi.13490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 05/05/2023]
Abstract
Gene editing and/or allele introgression with absolute precision and control appear to be the ultimate goals of genetic engineering. Precision genome editing in plants has been developed through various approaches, including oligonucleotide-directed mutagenesis (ODM), base editing, prime editing and especially homologous recombination (HR)-based gene targeting. With the advent of CRISPR/Cas for the targeted generation of DNA breaks (single-stranded breaks (SSBs) or double-stranded breaks (DSBs)), a substantial advancement in HR-mediated precise editing frequencies has been achieved. Nonetheless, further research needs to be performed for commercially viable applications of precise genome editing; hence, an alternative innovative method for genome editing may be required. Within this scope, we summarize recent progress regarding precision genome editing mediated by microhomology-mediated end joining (MMEJ) and discuss their potential applications in crop improvement.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- National Key Laboratory for Plant Cell BiotechnologyAgricultural Genetics InstituteKm 02, Pham Van Dong RoadCo Nhue 1, Bac Tu Liem, Hanoi11917Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- Division of Life ScienceGyeongsang National University501 Jinju‐daeroJinju52828Republic of Korea
| |
Collapse
|
14
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Miller DE. Synaptonemal Complex-Deficient Drosophila melanogaster Females Exhibit Rare DSB Repair Events, Recurrent Copy-Number Variation, and an Increased Rate of de Novo Transposable Element Movement. G3 (BETHESDA, MD.) 2020; 10:525-537. [PMID: 31882405 PMCID: PMC7003089 DOI: 10.1534/g3.119.400853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Genetic stability depends on the maintenance of a variety of chromosome structures and the precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made in prophase I are normally repaired as gene conversions or crossovers. DSBs can also be made by other mechanisms, such as the movement of transposable elements (TEs), which must also be resolved. Incorrect repair of these DNA lesions can lead to mutations, copy-number changes, translocations, and/or aneuploid gametes. In Drosophila melanogaster, as in most organisms, meiotic DSB repair occurs in the presence of a rapidly evolving multiprotein structure called the synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of meiotic DSBs in D. melanogaster mutant females lacking functional SC, to assay for de novo CNV formation, and to examine the role of the SC in transposable element movement in flies. The data indicate that, in the absence of SC, copy-number variation still occurs and meiotic DSB repair by gene conversion occurs infrequently. Remarkably, an 856-kilobase de novo CNV was observed in two unrelated individuals of different genetic backgrounds and was identical to a CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs occurs in Drosophila. In addition, the rate of novel TE insertion was markedly higher than wild type in one of two SC mutants tested, suggesting that SC proteins may contribute to the regulation of TE movement and insertion in the genome. Overall, this study provides novel insight into the role that the SC plays in genome stability and provides clues as to why the sequence, but not structure, of SC proteins is rapidly evolving.
Collapse
Affiliation(s)
- Danny E Miller
- Division of Medical Genetics, Department of Medicine, and
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98105, and
- Seattle Children's Hospital, Seattle, Washington 98105
| |
Collapse
|
16
|
Xia W, Ci S, Li M, Wang M, Dianov GL, Ma Z, Li L, Hua K, Alagamuthu KK, Qing L, Luo L, Edick AM, Liu L, Hu Z, He L, Pan F, Guo Z. Two-way crosstalk between BER and c-NHEJ repair pathway is mediated by Pol-β and Ku70. FASEB J 2019; 33:11668-11681. [PMID: 31348687 PMCID: PMC6902736 DOI: 10.1096/fj.201900308r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022]
Abstract
Multiple DNA repair pathways may be involved in the removal of the same DNA lesion caused by endogenous or exogenous agents. Although distinct DNA repair machinery fulfill overlapping roles in the repair of DNA lesions, the mechanisms coordinating different pathways have not been investigated in detail. Here, we show that Ku70, a core protein of nonhomologous end-joining (NHEJ) repair pathway, can directly interact with DNA polymerase-β (Pol-β), a central player in the DNA base excision repair (BER), and this physical complex not only promotes the polymerase activity of Pol-β and BER efficiency but also enhances the classic NHEJ repair. Moreover, we find that DNA damages caused by methyl methanesulfonate (MMS) or etoposide promote the formation of Ku70-Pol-β complexes at the repair foci. Furthermore, suppression of endogenous Ku70 expression by small interfering RNA reduces BER efficiency and leads to higher sensitivity to MMS and accumulation of the DNA strand breaks. Similarly, Pol-β knockdown impairs total-NHEJ capacity but only has a slight influence on alternative NHEJ. These results suggest that Pol-β and Ku70 coordinate 2-way crosstalk between the BER and NHEJ pathways.-Xia, W., Ci, S., Li, M., Wang, M., Dianov, G. L., Ma, Z., Li, L., Hua, K., Alagamuthu, K. K., Qing, L., Luo, L., Edick, A. M., Liu, L., Hu, Z., He, L., Pan, F., Guo, Z. Two-way crosstalk between BER and c-NHEJ repair pathway is mediated by Pol-β and Ku70.
Collapse
Affiliation(s)
- Wen Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Menghan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Grigory L. Dianov
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhuang Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lulu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ke Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Karthick Kumar Alagamuthu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lihong Qing
- The Seventh People’s Hospital, Changzhou, China
| | - Libo Luo
- The Seventh People’s Hospital, Changzhou, China
| | - Ashlin M. Edick
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; and
| | - Lingjie Liu
- College of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
What Does the History of Research on the Repair of DNA Double-Strand Breaks Tell Us?-A Comprehensive Review of Human Radiosensitivity. Int J Mol Sci 2019; 20:ijms20215339. [PMID: 31717816 PMCID: PMC6862552 DOI: 10.3390/ijms20215339] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the molecular and cellular response to ionizing radiation (IR) has progressed considerably. This is notably the case for the repair and signaling of DNA double-strand breaks (DSB) that, if unrepaired, can result in cell lethality, or if misrepaired, can cause cancer. However, through the different protocols, techniques, and cellular models used during the last four decades, the DSB repair kinetics and the relationship between cellular radiosensitivity and unrepaired DSB has varied drastically, moving from all-or-none phenomena to very complex mechanistic models. To date, personalized medicine has required a reliable evaluation of the IR-induced risks that have become a medical, scientific, and societal issue. However, the molecular bases of the individual response to IR are still unclear: there is a gap between the moderate radiosensitivity frequently observed in clinic but poorly investigated in the publications and the hyper-radiosensitivity of rare but well-characterized genetic diseases frequently cited in the mechanistic models. This paper makes a comprehensive review of semantic issues, correlations between cellular radiosensitivity and unrepaired DSB, shapes of DSB repair curves, and DSB repair biomarkers in order to propose a new vision of the individual response to IR that would be more coherent with clinical reality.
Collapse
|
18
|
Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining. Trends Genet 2019; 35:632-644. [PMID: 31296341 DOI: 10.1016/j.tig.2019.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
A recognized source of disease-causing genome alterations is erroneous repair of broken chromosomes, which can be executed by two distinct mechanisms: non-homologous end joining (NHEJ) and the recently discovered polymerase theta-mediated end joining (TMEJ) pathway. While TMEJ has previously been considered to act as an alternative mechanism backing up NHEJ, recent work points to a role for TMEJ in the repair of replication-associated DNA breaks that are excluded from repair through homologous recombination. Because of its mode of action, TMEJ is intrinsically mutagenic and sometimes leaves behind a recognizable genomic scar when joining chromosome break ends (i.e., 'templated insertions'). This review article focuses on the intriguing observation that this polymerase theta signature is frequently observed in disease alleles, arguing for a prominent role of this double-strand break repair pathway in genome diversification and disease-causing spontaneous mutagenesis in humans.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
19
|
Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 2019; 47:7402-7417. [PMID: 31127293 PMCID: PMC6698657 DOI: 10.1093/nar/gkz459] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alasdair J Allan
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Philip Hublitz
- WIMM Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
20
|
Ray S, Breuer G, DeVeaux M, Zelterman D, Bindra R, Sweasy JB. DNA polymerase beta participates in DNA End-joining. Nucleic Acids Res 2019; 46:242-255. [PMID: 29161447 PMCID: PMC5758893 DOI: 10.1093/nar/gkx1147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
DNA double strand breaks (DSBs) are one of the most deleterious lesions and if left unrepaired, they lead to cell death, genomic instability and carcinogenesis. Cells combat DSBs by two pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ), wherein the two DNA ends are re-joined. Recently a back-up NHEJ pathway has been reported and is referred to as alternative NHEJ (aNHEJ), which joins ends but results in deletions and insertions. NHEJ requires processing enzymes including nucleases and polymerases, although the roles of these enzymes are poorly understood. Emerging evidence indicates that X family DNA polymerases lambda (Pol λ) and mu (Pol μ) promote DNA end-joining. Here, we show that DNA polymerase beta (Pol β), another member of the X family of DNA polymerases, plays a role in aNHEJ. In the absence of DNA Pol β, fewer small deletions are observed. In addition, depletion of Pol β results in cellular sensitivity to bleomycin and DNA protein kinase catalytic subunit inhibitors due to defective repair of DSBs. In summary, our results indicate that Pol β in functions in aNHEJ and provide mechanistic insight into its role in this process.
Collapse
Affiliation(s)
- Sreerupa Ray
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Gregory Breuer
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Michelle DeVeaux
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Daniel Zelterman
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Genetics, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| |
Collapse
|
21
|
Kopa P, Macieja A, Galita G, Witczak ZJ, Poplawski T. DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics. Curr Med Chem 2019; 26:1483-1493. [PMID: 29446719 DOI: 10.2174/0929867325666180214113154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks are considered one of the most lethal forms of DNA damage. Many effective anticancer therapeutic approaches used chemical and physical methods to generate DNA double-strand breaks in the cancer cells. They include: IR and drugs which mimetic its action, topoisomerase poisons, some alkylating agents or drugs which affected DNA replication process. On the other hand, cancer cells are mostly characterized by highly effective systems of DNA damage repair. There are two main DNA repair pathways used to fix double-strand breaks: NHEJ and HRR. Their activity leads to a decreased effect of chemotherapy. Targeting directly or indirectly the DNA double-strand breaks response by inhibitors seems to be an exciting option for anticancer therapy and is a part of novel trends that arise after the clinical success of PARP inhibitors. These trends will provide great opportunities for the development of DNA repair inhibitors as new potential anticancer drugs. The main objective of this article is to address these new promising advances.
Collapse
Affiliation(s)
- Paulina Kopa
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz 90-752, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Zbigniew J Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, United States
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| |
Collapse
|
22
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Mara K, Charlot F, Guyon-Debast A, Schaefer DG, Collonnier C, Grelon M, Nogué F. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2019; 222:1380-1391. [PMID: 30636294 DOI: 10.1111/nph.15680] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 05/19/2023]
Abstract
Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.
Collapse
Affiliation(s)
- Kostlend Mara
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Didier G Schaefer
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Cécile Collonnier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
24
|
Macieja A, Kopa P, Galita G, Pastwa E, Majsterek I, Poplawski T. Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol Biol Rep 2019; 46:3625-3636. [PMID: 31020489 DOI: 10.1007/s11033-019-04605-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
Topoisomerase II (Topo2) inhibitors in combination with cisplatin represent a common treatment modality used for glioma patients. The main mechanism of their action involves induction of DNA double-strand breaks (DSBs). DSBs are repaired via the homology-dependent DNA repair (HRR) and non-homologous end-joining (NHEJ). Inhibition of the NHEJ or HRR pathway sensitizes cancer cells to the treatment. In this work, we investigated the effect of three Topo2 inhibitors-etoposide, NK314, or HU-331 in combination with cisplatin in the U-87 human glioblastoma cell line. Etoposide as well as NK314 inhibited Topo2 activity by stabilizing Topo2-DNA cleavable complexes whereas HU-331 inhibited the ATPase activity of Topo2 using a noncompetitive mechanism. To increase the effectiveness of the treatment, we combined cisplatin and Topo2 inhibitor treatment with DSB repair inhibitors (DRIs). The cells were sensitized with NHEJ inhibitor, NU7441, or the novel HRR inhibitor, YU238259, prior to drug treatment. All of the investigated Topo2 inhibitors in combination with cisplatin efficiently killed the U-87 cells. The most cytotoxic effect was observed for the cisplatin + HU331 treatment scheme and this effect was significantly increased when a DRI pretreatment was used; however, we did not observed DSBs. Therefore, the molecular mechanism of cytotoxicity caused by the cisplatin + HU331 treatment scheme is yet to be evaluated. We observed a concentration-dependent change in DSB levels and accumulation at the G2/M checkpoint and S-phase in glioma cells incubated with NK314/cisplatin and etoposide/cisplatin. In conclusion, in combination with cisplatin, HU331 is the most potent Topo2 inhibitor of human glioblastoma cells.
Collapse
Affiliation(s)
- Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
| | - Paulina Kopa
- Department of Immunopathology, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Elżbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, 633, Napoleon Street, Johnstown, PA, 15901, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Hallera 1, Lodz, 90-647, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
25
|
Eltrombopag promotes DNA repair in human hematopoietic stem and progenitor cells. Exp Hematol 2019; 73:1-6.e6. [PMID: 30986494 DOI: 10.1016/j.exphem.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022]
Abstract
A causal link between hematopoietic stem/progenitor cell (HSPC) dysfunction and DNA damage accrual has been proposed. Clinically relevant strategies to maintain genome integrity in these cells are needed. Here we report that eltrombopag, a small molecule agonist of the thrombopoietin (TPO) receptor used in the clinic, promotes DNA double-strand break (DSB) repair in human HSPCs. We found that eltrombopag specifically activates the classic nonhomologous end-joining (C-NHEJ) DNA repair mechanism, a pathway known to support genome integrity. Eltrombopag-mediated DNA repair results in enhanced genome stability, survival, and function of primary human HSPCs, as demonstrated in karyotyping analyses, colony-forming unit assays and after transplantation in immunodeficient NSG mice. Eltrombopag may offer a new therapeutic modality to protect human HSPCs against genome insults.
Collapse
|
26
|
|
27
|
DNA Repair in Radiation Oncology. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
28
|
Bhakuni R, Shaik A, Kirubakaran S. Evaluation of Maltose Binding Protein-Tagged hATR Kinase Domain Catalytic Activity with p53 Ser-15 Phosphorylation. Biochemistry 2018; 57:6592-6603. [PMID: 30380295 DOI: 10.1021/acs.biochem.8b00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA damage response (DDR) pathways form an integral part of the body's repair machinery, and ATR (ataxia-telangiectasia and Rad3-related kinase) protein is one of the key mediators in the DDR pathway that helps in maintaining genomic integrity. A growing body of evidence suggests that inhibition of ATR can help sensitize tumor cells to combinatorial treatment. However, specific ATR kinase inhibitors have largely remained elusive until now. Despite much interest in the protein for more than a decade, there has been little characterization of only the kinase domain, an essential target site for a variety of ATR inhibitors. Here, we report our findings for the bacterial expression, purification, and biological characterization of this potentially important recombinant kinase domain, which could further be considered for structure elucidation studies. Introduction of a solubility partner, i.e., maltose binding protein (MBP), at the N-terminus of the ATR kinase domain generated a soluble form of the protein, i.e., MBP-tagged hATR kinase domain (MBP-ATR-6X His), which was found to be catalytically active, as assessed by substrate p53 Ser-15 phosphorylation (EPPLSQEAFADLWKK). Our results also highlight the prospect of utilization of the overexpressed recombinant ATR kinase domain in characterization of kinase domain specific inhibitors.
Collapse
Affiliation(s)
- Rashmi Bhakuni
- Discipline of Biological Engineering , Indian Institute of Technology Gandhinagar , Gandhinagar - 382355 , Gujarat , India
| | - Althaf Shaik
- Discipline of Chemistry , Indian Institute of Technology Gandhinagar , Gandhinagar - 382355 , Gujarat , India
| | - Sivapriya Kirubakaran
- Discipline of Biological Engineering , Indian Institute of Technology Gandhinagar , Gandhinagar - 382355 , Gujarat , India.,Discipline of Chemistry , Indian Institute of Technology Gandhinagar , Gandhinagar - 382355 , Gujarat , India
| |
Collapse
|
29
|
Abstract
Canonical DNA non-homologous end-joining (c-NHEJ) and homologous recombination (HR), the two major DNA double-strand break (DSB) repair pathways, have long been depicted as competitors, fighting a race to rejoin DSBs. In human cells, Ku, an upstream component of NHEJ, is highly abundant and has exquisite end-binding capacity. Emerging evidence has suggested that Ku is the first protein binding most, if not all, DSBs, and creates a block to resection. Although most c-NHEJ proceeds without resection, recent studies have provided strong evidence for a process of resection-dependent c-NHEJ, that repairs a subset of DSBs. HR also repairs a subset of two-ended DSBs in G2 phase and processes one-ended DSBs that arise following replication fork stalling or collapse to promote replication restart. HR also necessitates end-resection. This raises the question of how end-resection takes place despite Ku's avid end-binding capacity. Insight into this enigma has been gained from the analysis of DSBs generated by Spo11 or TOP2, which create protein-bridged DSBs. The progression of repair by HR or NHEJ requires removal of the end-blocking lesions. The MRE11-RAD50-NBS1 (MRN) complex, CtIP and EXO1 play critical roles in this process. Here, we review our current understanding of how resection arises at lesions blocked by covalently bound Spo11 or TOP2 or following Ku binding, which effectively creates a distinct resection-blocking lesion due to its avid end-binding activity and abundance. Our review reveals that Ku plays an active role in determining pathway choice and exposes similarities yet distinctions in the progression of resection that is suited to the optimal repair pathway choice.
Collapse
Affiliation(s)
- Atsushi Shibata
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Penny Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19 RQ, UK
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| |
Collapse
|
30
|
Exposure to galactic cosmic radiation compromises DNA repair and increases the potential for oncogenic chromosomal rearrangement in bronchial epithelial cells. Sci Rep 2018; 8:11038. [PMID: 30038404 PMCID: PMC6056477 DOI: 10.1038/s41598-018-29350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
Participants in deep space missions face protracted exposure to galactic cosmic radiation (GCR). In this setting, lung cancer is a significant component of the overall risk of radiation-exposure induced death. Here we investigate persistent effects of GCR exposure on DNA repair capacity in lung-derived epithelial cells, using an enzyme-stimulated chromosomal rearrangement as an endpoint. Replicate cell cultures were irradiated with energetic 48Ti ions (a GCR component) or reference γ-rays. After a six-day recovery, they were challenged by expression of a Cas9/sgRNA pair that creates double-strand breaks simultaneously in the EML4 and ALK loci, misjoining of which creates an EML4-ALK fusion oncogene. Misjoining was significantly elevated in 48Ti-irradiated populations, relative to the baseline rate in mock-irradiated controls. The effect was not seen in γ-ray irradiated populations exposed to equal or higher radiation doses. Sequence analysis of the EML4-ALK joints from 48Ti-irradiated cultures showed that they were far more likely to contain deletions, sometimes flanked by short microhomologies, than equivalent samples from mock-irradiated cultures, consistent with a shift toward error-prone alternative nonhomologous end joining repair. Results suggest a potential mechanism by which a persistent physiological effect of GCR exposure may increase lung cancer risk.
Collapse
|
31
|
Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol Cell 2018; 70:801-813.e6. [PMID: 29804829 PMCID: PMC5993873 DOI: 10.1016/j.molcel.2018.04.016] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.
Collapse
Affiliation(s)
- Eva K Brinkman
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marcel de Haas
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Hanna A Holland
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Baird DM, Hendrickson EA. Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:89-112. [PMID: 29956293 DOI: 10.1007/978-981-13-0593-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromosomal translocations are now well understood to not only constitute signature molecular markers for certain human cancers but often also to be causative in the genesis of that tumor. Despite the obvious importance of such events, the molecular mechanism of chromosomal translocations in human cells remains poorly understood. Part of the explanation for this dearth of knowledge is due to the complexity of the reaction and the need to archaeologically work backwards from the final product (a translocation) to the original unrearranged chromosomes to infer mechanism. Although not definitive, these studies have indicated that the aberrant usage of endogenous DNA repair pathways likely lies at the heart of the problem. An equally obfuscating aspect of this field, however, has also originated from the unfortunate species-specific differences that appear to exist in the relevant model systems that have been utilized to investigate this process. Specifically, yeast and murine systems (which are often used by basic science investigators) rely on different DNA repair pathways to promote chromosomal translocations than human somatic cells. In this chapter, we will review some of the basic concepts of chromosomal translocations and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells. In addition, we will focus on a specific subset of translocations that involve the very end of a chromosome (a telomere). A better understanding of the relationship between DNA repair pathways and chromosomal translocations is guaranteed to lead to improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M, Pennaneach V. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Res 2017; 45:12325-12339. [PMID: 29036662 PMCID: PMC5716083 DOI: 10.1093/nar/gkx881] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance. Our findings reveal that poly(ADP-ribose) polymerase 2 (PARP2) is involved in DSBR pathway choice independently of its PAR synthesis activity. We show that PARP2 favors repair by homologous recombination (HR), single strand annealing (SSA) and alternative-end joining (A-EJ) rather than the C-EJ pathway and increases the deletion sizes at A-EJ junctions. We demonstrate that PARP2 specifically limits the accumulation of the resection barrier factor 53BP1 at DNA damage sites, allowing efficient CtIP-dependent DNA end-resection. Collectively, we have identified a new PARP2 function, independent of its PAR synthesis activity, which directs DSBs toward resection-dependent repair pathways.
Collapse
Affiliation(s)
- Alexis Fouquin
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Bernard Lopez
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM, CNRS, UMR 1052-5286, 69424 Lyon, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| |
Collapse
|
34
|
Han J, Ruan C, Huen MSY, Wang J, Xie A, Fu C, Liu T, Huang J. BRCA2 antagonizes classical and alternative nonhomologous end-joining to prevent gross genomic instability. Nat Commun 2017; 8:1470. [PMID: 29133916 PMCID: PMC5684403 DOI: 10.1038/s41467-017-01759-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
BRCA2-deficient cells exhibit gross genomic instability, but the underlying mechanisms are not fully understood. Here we report that inactivation of BRCA2 but not RAD51 destabilizes RPA-coated single-stranded DNA (ssDNA) structures at resected DNA double-strand breaks (DSBs) and greatly enhances the frequency of nuclear fragmentation following cell exposure to DNA damage. Importantly, these BRCA2-associated deficits are fueled by the aberrant activation of classical (c)- and alternative (alt)- nonhomologous end-joining (NHEJ), and rely on the well-defined DNA damage signaling pathway involving the pro-c-NHEJ factor 53BP1 and its downstream effector RIF1. We further show that the 53BP1–RIF1 axis promotes toxic end-joining events via the retention of Artemis at DNA damage sites. Accordingly, loss of 53BP1, RIF1, or Artemis prolongs the stability of RPA-coated DSB intermediates in BRCA2-deficient cells and restores nuclear integrity. We propose that BRCA2 antagonizes 53BP1, RIF1, and Artemis-dependent c-NHEJ and alt-NHEJ to prevent gross genomic instability in a RAD51-independent manner. The genomic instability phenotype characteristic of BRCA2-deficient cells is not fully mechanistically understood. Here the authors show BRCA2 inactivation destabilizes RPA-coated single-stranded DNA and leads to toxic non homologous end-joining events.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chunyan Ruan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Anyong Xie
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ting Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
35
|
Abstract
Aging, the universal phenomenon, affects human health and is the primary risk factor for major disease pathologies. Progeroid diseases, which mimic aging at an accelerated rate, have provided cues in understanding the hallmarks of aging. Mutations in DNA repair genes as well as in telomerase subunits are known to cause progeroid syndromes. Werner syndrome (WS), which is characterized by accelerated aging, is an autosomal-recessive genetic disorder. Hallmarks that define the aging process include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulation of nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. WS recapitulates these hallmarks of aging and shows increased incidence and early onset of specific cancers. Genome integrity and stability ensure the normal functioning of the cell and are mainly guarded by the DNA repair machinery and telomeres. WRN, being a RecQ helicase, protects genome stability by regulating DNA repair pathways and telomeres. Recent advances in WS research have elucidated WRN’s role in DNA repair pathway choice regulation, telomere maintenance, resolution of complex DNA structures, epigenetic regulation, and stem cell maintenance.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Dutta A, Eckelmann B, Adhikari S, Ahmed KM, Sengupta S, Pandey A, Hegde PM, Tsai MS, Tainer JA, Weinfeld M, Hegde ML, Mitra S. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res 2017; 45:2585-2599. [PMID: 27994036 PMCID: PMC5389627 DOI: 10.1093/nar/gkw1262] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ), an error-prone pathway for DNA double-strand break (DSB) repair, is implicated in genomic rearrangement and oncogenic transformation; however, its contribution to repair of radiation-induced DSBs has not been characterized. We used recircularization of a linearized plasmid with 3΄-P-blocked termini, mimicking those at X-ray-induced strand breaks, to recapitulate DSB repair via MMEJ or nonhomologous end-joining (NHEJ). Sequence analysis of the circularized plasmids allowed measurement of relative activity of MMEJ versus NHEJ. While we predictably observed NHEJ to be the predominant pathway for DSB repair in our assay, MMEJ was significantly enhanced in preirradiated cells, independent of their radiation-induced arrest in the G2/M phase. MMEJ activation was dependent on XRCC1 phosphorylation by casein kinase 2 (CK2), enhancing XRCC1's interaction with the end resection enzymes MRE11 and CtIP. Both endonuclease and exonuclease activities of MRE11 were required for MMEJ, as has been observed for homology-directed DSB repair (HDR). Furthermore, the XRCC1 co-immunoprecipitate complex (IP) displayed MMEJ activity in vitro, which was significantly elevated after irradiation. Our studies thus suggest that radiation-mediated enhancement of MMEJ in cells surviving radiation therapy may contribute to their radioresistance and could be therapeutically targeted.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Bradley Eckelmann
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | | | - Kazi Mokim Ahmed
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Miaw-Sheue Tsai
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - John A Tainer
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.,Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
37
|
Abstract
Cellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA repair deficiencies or signalling pathway addictions, with a special focus on growth factor signalling, PARP, cancer stem cells, cell cycle checkpoints and DNA replication. This chapter concludes with a discussion of DNA repair-related candidate biomarkers of tumour response which are of crucial importance for implementing precision medicine in radiation oncology.
Collapse
|
38
|
McCormick A, Donoghue P, Dixon M, O'Sullivan R, O'Donnell RL, Murray J, Kaufmann A, Curtin NJ, Edmondson RJ. Ovarian Cancers Harbor Defects in Nonhomologous End Joining Resulting in Resistance to Rucaparib. Clin Cancer Res 2017. [PMID: 27702817 DOI: 10.1158/1078-0432.ccr-16-0564] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: DNA damage defects are common in ovarian cancer and can be used to stratify treatment. Although most work has focused on homologous recombination (HR), DNA double-strand breaks are repaired primarily by nonhomologous end joining (NHEJ). Defects in NHEJ have been shown to contribute to genomic instability and have been associated with the development of chemoresistance.Experimental Design: NHEJ was assessed in a panel of ovarian cancer cell lines and 47 primary ascetic-derived ovarian cancer cultures, by measuring the ability of cell extracts to end-join linearized plasmid monomers into multimers. mRNA and protein expression of components of NHEJ was determined using RT-qPCR and Western blotting. Cytotoxicities of cisplatin and the PARP inhibitor rucaparib were assessed using sulforhodamine B (SRB) assays. HR function was assessed using γH2AX/RAD51 foci assay.Results: NHEJ was defective (D) in four of six cell lines and 20 of 47 primary cultures. NHEJ function was independent of HR competence (C). NHEJD cultures were resistant to rucaparib (P = 0.0022). When HR and NHEJ functions were taken into account, only NHEJC/HRD cultures were sensitive to rucaparib (compared with NHEJC/HRC P = 0.034, NHEJD/HRC P = 0.0002, and NHEJD/HRD P = 0.0045). The DNA-PK inhibitor, NU7441, induced resistance to rucaparib (P = 0.014) and HR function recovery in a BRCA1-defective cell line.Conclusions: This study has shown that NHEJ is defective in 40% of ovarian cancers, which is independent of HR function and associated with resistance to PARP inhibitors in ex vivo primary cultures. Clin Cancer Res; 23(8); 2050-60. ©2016 AACR.
Collapse
Affiliation(s)
- Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Peter Donoghue
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Michelle Dixon
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Richard O'Sullivan
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - James Murray
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.
| | - Richard J Edmondson
- Faculty Institute for Cancer Studies, University of Manchester, St Mary's Hospital, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
39
|
McCormick A, Donoghue P, Dixon M, O'Sullivan R, O'Donnell RL, Murray J, Kaufmann A, Curtin NJ, Edmondson RJ. Ovarian Cancers Harbor Defects in Nonhomologous End Joining Resulting in Resistance to Rucaparib. Clin Cancer Res 2017; 23:2050-2060. [PMID: 27702817 PMCID: PMC5393437 DOI: 10.1158/1078-0432.ccr-16-0564] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
Abstract
Purpose: DNA damage defects are common in ovarian cancer and can be used to stratify treatment. Although most work has focused on homologous recombination (HR), DNA double-strand breaks are repaired primarily by nonhomologous end joining (NHEJ). Defects in NHEJ have been shown to contribute to genomic instability and have been associated with the development of chemoresistance.Experimental Design: NHEJ was assessed in a panel of ovarian cancer cell lines and 47 primary ascetic-derived ovarian cancer cultures, by measuring the ability of cell extracts to end-join linearized plasmid monomers into multimers. mRNA and protein expression of components of NHEJ was determined using RT-qPCR and Western blotting. Cytotoxicities of cisplatin and the PARP inhibitor rucaparib were assessed using sulforhodamine B (SRB) assays. HR function was assessed using γH2AX/RAD51 foci assay.Results: NHEJ was defective (D) in four of six cell lines and 20 of 47 primary cultures. NHEJ function was independent of HR competence (C). NHEJD cultures were resistant to rucaparib (P = 0.0022). When HR and NHEJ functions were taken into account, only NHEJC/HRD cultures were sensitive to rucaparib (compared with NHEJC/HRC P = 0.034, NHEJD/HRC P = 0.0002, and NHEJD/HRD P = 0.0045). The DNA-PK inhibitor, NU7441, induced resistance to rucaparib (P = 0.014) and HR function recovery in a BRCA1-defective cell line.Conclusions: This study has shown that NHEJ is defective in 40% of ovarian cancers, which is independent of HR function and associated with resistance to PARP inhibitors in ex vivo primary cultures. Clin Cancer Res; 23(8); 2050-60. ©2016 AACR.
Collapse
Affiliation(s)
- Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Peter Donoghue
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Michelle Dixon
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Richard O'Sullivan
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - James Murray
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.
| | - Richard J Edmondson
- Faculty Institute for Cancer Studies, University of Manchester, St Mary's Hospital, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
40
|
Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA. WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 2016; 7:13785. [PMID: 27922005 PMCID: PMC5150655 DOI: 10.1038/ncomms13785] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WS) is an accelerated ageing disorder with genomic instability caused by WRN protein deficiency. Many features seen in WS can be explained by the diverse functions of WRN in DNA metabolism. However, the origin of the large genomic deletions and telomere fusions are not yet understood. Here, we report that WRN regulates the pathway choice between classical (c)- and alternative (alt)-nonhomologous end joining (NHEJ) during DNA double-strand break (DSB) repair. It promotes c-NHEJ via helicase and exonuclease activities and inhibits alt-NHEJ using non-enzymatic functions. When WRN is recruited to the DSBs it suppresses the recruitment of MRE11 and CtIP, and protects the DSBs from 5′ end resection. Moreover, knockdown of Wrn, alone or in combination with Trf2 in mouse embryonic fibroblasts results in increased telomere fusions, which were ablated by Ctip knockdown. We show that WRN regulates alt-NHEJ and shields DSBs from MRE11/CtIP-mediated resection to prevent large deletions and telomere fusions. Werner Syndrome is an accelerated aging disorder marked by genome instability, large deletions and telomere fusions, hallmarks of aberrant DNA repair. Here the authors report a role for the WRN helicase in regulating the choice between classical and alternative non-homologous end-joning.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Huiming Lu
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Jessica K de Freitas
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Jane Tian
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| |
Collapse
|
41
|
Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2016; 63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals. In addition, a stronger interconnection between the NHEJ and DNA damage response (DDR) pathways seems to occur in mammals compared to yeast. DDR employs multiple post-translational modifications (PTMs) of the target proteins and mutual crosstalk among them to ensure highly efficient down-stream effects. Checkpoint-mediated phosphorylation is the best understood PTM that regulates DDR, although recently SUMOylation has also been shown to be involved. Both phosphorylation and SUMOylation affect components of NHEJ. In this review, we discuss a role of these two PTMs in regulation of NHEJ via targeting the components of the ligation step.
Collapse
|
42
|
Woods ML, Barnes CP. Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair. PLoS Comput Biol 2016; 12:e1005131. [PMID: 27741226 PMCID: PMC5065155 DOI: 10.1371/journal.pcbi.1005131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks are lesions that form during metabolism, DNA replication and exposure to mutagens. When a double-strand break occurs one of a number of repair mechanisms is recruited, all of which have differing propensities for mutational events. Despite DNA repair being of crucial importance, the relative contribution of these mechanisms and their regulatory interactions remain to be fully elucidated. Understanding these mutational processes will have a profound impact on our knowledge of genomic instability, with implications across health, disease and evolution. Here we present a new method to model the combined activation of non-homologous end joining, single strand annealing and alternative end joining, following exposure to ionising radiation. We use Bayesian statistics to integrate eight biological data sets of double-strand break repair curves under varying genetic knockouts and confirm that our model is predictive by re-simulating and comparing to additional data. Analysis of the model suggests that there are at least three disjoint modes of repair, which we assign as fast, slow and intermediate. Our results show that when multiple data sets are combined, the rate for intermediate repair is variable amongst genetic knockouts. Further analysis suggests that the ratio between slow and intermediate repair depends on the presence or absence of DNA-PKcs and Ku70, which implies that non-homologous end joining and alternative end joining are not independent. Finally, we consider the proportion of double-strand breaks within each mechanism as a time series and predict activity as a function of repair rate. We outline how our insights can be directly tested using imaging and sequencing techniques and conclude that there is evidence of variable dynamics in alternative repair pathways. Our approach is an important step towards providing a unifying theoretical framework for the dynamics of DNA repair processes.
Collapse
Affiliation(s)
- Mae L. Woods
- Department of Cell and Developmental Biology, University College London, London, England
| | - Chris P. Barnes
- Department of Cell and Developmental Biology, University College London, London, England
- Department of Genetics, Evolution and Environment, University College London, London, England
| |
Collapse
|
43
|
Yang K, Guo R, Xu D. Non-homologous end joining: advances and frontiers. Acta Biochim Biophys Sin (Shanghai) 2016; 48:632-40. [PMID: 27217473 DOI: 10.1093/abbs/gmw046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most serious form of DNA damage. In human cells, non-homologous end joining (NHEJ) is the major pathway for the repair of DSBs. Different types of DSBs result in different subsets of NHEJ repair strategies. These variations in NHEJ repair strategies depend on numerous elements, such as the flexible recruitment of NHEJ-related proteins, the complexity of the DSB ends, and the spatial- and temporal-ordered formation of the multi-protein complex. On the one hand, current studies of DNA DSBs repair focus on the repair pathway choices between homologous recombination and classic or alternative NHEJ. On the other hand, increasing researches have also deepened the significance and dug into the cross-links between the NHEJ pathway and the area of genome organization and aging. Although remarkable progress has been made in elucidating the underlying principles during the past decades, the detailed mechanism of action in response to different types of DSBs remains largely unknown and needs further evaluation in the future study.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Kostyrko K, Mermod N. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Nucleic Acids Res 2016; 44:e56. [PMID: 26657630 PMCID: PMC4824085 DOI: 10.1093/nar/gkv1349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022] Open
Abstract
DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| |
Collapse
|
45
|
Bee L, Nasca A, Zanolini A, Cendron F, d'Adamo P, Costa R, Lamperti C, Celotti L, Ghezzi D, Zeviani M. A nonsense mutation of human XRCC4 is associated with adult-onset progressive encephalocardiomyopathy. EMBO Mol Med 2016; 7:918-29. [PMID: 25872942 PMCID: PMC4520657 DOI: 10.15252/emmm.201404803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We studied two monozygotic twins, born to first cousins, affected by a multisystem disease. At birth, they both presented with bilateral cryptorchidism and malformations. Since early adulthood, they developed a slowly progressive neurological syndrome, with cerebellar and pyramidal signs, cognitive impairment, and depression. Dilating cardiomyopathy is also present in both. By whole-exome sequencing, we found a homozygous nucleotide change in XRCC4 (c.673C>T), predicted to introduce a premature stop codon (p.R225*). XRCC4 transcript levels were profoundly reduced, and the protein was undetectable in patients' skin fibroblasts. XRCC4 plays an important role in non-homologous end joining of DNA double-strand breaks (DSB), a system that is involved in repairing DNA damage from, for example, ionizing radiations. Gamma-irradiated mutant cells demonstrated reduction, but not abolition, of DSB repair. In contrast with embryonic lethality of the Xrcc4 KO mouse, nonsense mutations in human XRCC4 have recently been associated with primordial dwarfism and, in our cases, with adult-onset neurological impairment, suggesting an important role for DNA repair in the brain. Surprisingly, neither immunodeficiency nor predisposition to malignancy was reported in these patients.
Collapse
Affiliation(s)
- Leonardo Bee
- Department of Biology, University of Padua, Padua, Italy
| | - Alessia Nasca
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Alice Zanolini
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | | | - Pio d'Adamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | - Costanza Lamperti
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Lucia Celotti
- Department of Biology, University of Padua, Padua, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy MRC Mitochondrial Biology Unit, CB2 0XY, Cambridge, UK
| |
Collapse
|
46
|
Iuchi K, Yagura T. DNA binding activity of Ku during chemotherapeutic agent-induced early apoptosis. Exp Cell Res 2016; 342:135-44. [PMID: 26976509 DOI: 10.1016/j.yexcr.2016.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
Ku protein is a heterodimer composed of two subunits, and is capable of both sequence-independent and sequence-specific DNA binding. The former mode of DNA binding plays a crucial role in DNA repair. The biological role of Ku protein during apoptosis remains unclear. Here, we show characterization of Ku protein during apoptosis. In order to study the DNA binding properties of Ku, we used two methods for the electrophoresis mobility shift assay (EMSA). One method, RI-EMSA, which is commonly used, employed radiolabeled DNA probes. The other method, WB-EMSA, employed unlabeled DNA followed by western blot and detection with anti-Ku antiserum. In this study, Ku-DNA probe binding activity was found to dramatically decrease upon etoposide treatment, when examined by the RI-EMSA method. In addition, pre-treatment with apoptotic cell extracts inhibited Ku-DNA probe binding activity in the non-treated cell extract. The inhibitory effect of the apoptotic cell extract was reduced by DNase I treatment. WB-EMSA showed that the Ku in the apoptotic cell extract bound to fragmented endogenous DNA. Interestingly, Ku in the apoptotic cell extract purified by the Resource Q column bound 15-bp DNA in both RI-EMSA and WB-EMSA, whereas Ku in unpurified apoptotic cell extracts did not bind additional DNA. These results suggest that Ku binds cleaved chromosomal DNA and/or nucleosomes in apoptotic cells. In conclusion, Ku is intact and retains DNA binding activity in early apoptotic cells.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Bioscience, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda-shi, Hyogo-ken 669-1337, Japan.
| | - Tatsuo Yagura
- Department of Bioscience, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda-shi, Hyogo-ken 669-1337, Japan
| |
Collapse
|
47
|
Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends. Proc Natl Acad Sci U S A 2016; 113:3287-92. [PMID: 26929336 DOI: 10.1073/pnas.1601596113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis in Trypanosoma brucei, an early branching protozoan, occurs along its longitudinal axis uni-directionally from the anterior tip of the new flagellum attachment zone filament toward the cell's posterior end. However, the underlying mechanisms remain elusive. Here we report that cytokinesis in T. brucei is regulated by a concerted action of Polo-like kinase, Aurora B kinase, and a trypanosome-specific protein CIF1. Phosphorylation of CIF1 by Polo-like kinase targets it to the anterior tip of the new flagellum attachment zone filament, where it subsequently recruits Aurora B kinase to initiate cytokinesis. Consistent with its role, CIF1 depletion inhibits cytokinesis initiation from the anterior end of the cell, but, surprisingly, triggers cytokinesis initiation from the posterior end of the cell, suggesting the activation of an alternative cytokinesis from the opposite cell end. Our results reveal the mechanistic roles of CIF1 and Polo-like kinase in cytokinesis initiation and elucidate the mechanism underlying the recruitment of Aurora B kinase to the cytokinesis initiation site at late anaphase. These findings also delineate a signaling cascade controlling cytokinesis initiation from the anterior end of the cell and uncover a backup cytokinesis that is initiated from the posterior end of the cell when the typical anterior-to-posterior cytokinesis is compromised.
Collapse
|
48
|
Abstract
The balance between DNA damage, especially double strand breaks, and DNA damage repair is a critical determinant of chromosomal translocation frequency. The non-homologous end-joining repair (NHEJ) pathways seem to play the major role in the generation of chromosomal translocations. The "landscape" of chromosomal translocation identified in malignancies is largely due to selection processes which operate on the growth advantages conveyed to the cells by the functional consequences of chromosomal translocations (i.e., oncogenic fusion proteins and overexpression of oncogenes, both compromising tumor suppressor gene functions). Newer studies have shown that there is an abundance of local rearrangements in many tumors, like small deletions and inversions. A better understanding of the interplay between DNA repair mechanisms and the generation of tumorigenic translocations will, among many other things, depend on an improved understanding of DNA repair mechanisms and their interplay with chromatin and the 3D organization of the interphase nucleus.
Collapse
|
49
|
Qi X, Su X, Guo H, Qi J, Cheng H. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae. World J Microbiol Biotechnol 2015; 31:1889-97. [PMID: 26475327 DOI: 10.1007/s11274-015-1907-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022]
Abstract
To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus.
Collapse
|
50
|
Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:166-75. [DOI: 10.1016/j.mrgentox.2015.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
|