1
|
Sun M, Song R, Fang Y, Xu J, Yang Z, Zhang H. DNA-Based Complexes and Composites: A Review of Fabrication Methods, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51899-51915. [PMID: 39314016 DOI: 10.1021/acsami.4c13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Deoxyribonucleic acid (DNA), a macromolecule that stores genetic information in organisms, has recently been gradually developed into a building block for new materials due to its stable chemical structure and excellent biocompatibility. The efficient preparation and functional integration of various molecular complexes and composite materials based on nucleic acid skeletons have been successfully achieved. These versatile materials possess excellent physical and chemical properties inherent to certain inorganic or organic molecules but are endowed with specific physiological functions by nucleic acids, demonstrating unique advantages and potential applications in materials science, nanotechnology, and biomedical engineering in recent years. However, issues such as the production cost, biological stability, and potential immunogenicity of DNA have presented some unprecedented challenges to the application of these materials in the field. This review summarizes the cutting-edge manufacturing techniques and unique properties of DNA-based complexes and composites and discusses the trends, challenges, and opportunities for the future development of nucleic acid-based materials.
Collapse
Affiliation(s)
- Mengqiu Sun
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Song
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Yangwu Fang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Jiuzhou Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
2
|
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M. Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evol 2024; 41:msae177. [PMID: 39172750 PMCID: PMC11385596 DOI: 10.1093/molbev/msae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes including genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies allow detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehensive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with examples of insertions and deletion-induced effects in human and other natural populations and their contribution to evolutionary processes. We outline promising directions for future developments in statistical methodologies that would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets and to incorporate insertions and deletions in evolutionary inference.
Collapse
Affiliation(s)
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Gerton Lunter
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
3
|
Kozłowska-Masłoń J, Ciomborowska-Basheer J, Kubiak MR, Makałowska I. Evolution of retrocopies in the context of HUSH silencing. Biol Direct 2024; 19:60. [PMID: 39095906 PMCID: PMC11295320 DOI: 10.1186/s13062-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Retrotransposition is one of the main factors responsible for gene duplication and thus genome evolution. However, the sequences that undergo this process are not only an excellent source of biological diversity, but in certain cases also pose a threat to the integrity of the DNA. One of the mechanisms that protects against the incorporation of mobile elements is the HUSH complex, which is responsible for silencing long, intronless, transcriptionally active transposed sequences that are rich in adenine on the sense strand. In this study, broad sets of human and porcine retrocopies were analysed with respect to the above factors, taking into account evolution of these molecules. Analysis of expression pattern, genomic structure, transcript length, and nucleotide substitution frequency showed the strong relationship between the expression level and exon length as well as the protective nature of introns. The results of the studies also showed that there is no direct correlation between the expression level and adenine content. However, protein-coding retrocopies, which have a lower adenine content, have a significantly higher expression level than the adenine-rich non-coding but expressed retrocopies. Therefore, although the mechanism of HUSH silencing may be an important part of the regulation of retrocopy expression, it is one component of a more complex molecular network that remains to be elucidated.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, Poznań, Poland
| | - Joanna Ciomborowska-Basheer
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Magdalena Regina Kubiak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland.
| |
Collapse
|
4
|
Rockweiler NB, Ramu A, Nagirnaja L, Wong WH, Noordam MJ, Drubin CW, Huang N, Miller B, Todres EZ, Vigh-Conrad KA, Zito A, Small KS, Ardlie KG, Cohen BA, Conrad DF. The origins and functional effects of postzygotic mutations throughout the human life span. Science 2023; 380:eabn7113. [PMID: 37053313 PMCID: PMC11246725 DOI: 10.1126/science.abn7113] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/17/2023] [Indexed: 04/15/2023]
Abstract
Postzygotic mutations (PZMs) begin to accrue in the human genome immediately after fertilization, but how and when PZMs affect development and lifetime health remain unclear. To study the origins and functional consequences of PZMs, we generated a multitissue atlas of PZMs spanning 54 tissue and cell types from 948 donors. Nearly half the variation in mutation burden among tissue samples can be explained by measured technical and biological effects, and 9% can be attributed to donor-specific effects. Through phylogenetic reconstruction of PZMs, we found that their type and predicted functional impact vary during prenatal development, across tissues, and through the germ cell life cycle. Thus, methods for interpreting effects across the body and the life span are needed to fully understand the consequences of genetic variants.
Collapse
Affiliation(s)
- Nicole B. Rockweiler
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Present address: Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Avinash Ramu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Wing H. Wong
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Present Address: Departments of Genetics and Medicine, Stanford University, CA 94305, USA
| | - Michiel J. Noordam
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Casey W. Drubin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Present Address: T-Therapeutics Ltd., Cambridge CB21 6AD, UK
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Ellen Z. Todres
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Katinka A. Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Antonino Zito
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Present Address: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Barak A. Cohen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
- Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
5
|
Iyengar BR, Bornberg-Bauer E. Neutral Models of De Novo Gene Emergence Suggest that Gene Evolution has a Preferred Trajectory. Mol Biol Evol 2023; 40:msad079. [PMID: 37011142 PMCID: PMC10118301 DOI: 10.1093/molbev/msad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
New protein coding genes can emerge from genomic regions that previously did not contain any genes, via a process called de novo gene emergence. To synthesize a protein, DNA must be transcribed as well as translated. Both processes need certain DNA sequence features. Stable transcription requires promoters and a polyadenylation signal, while translation requires at least an open reading frame. We develop mathematical models based on mutation probabilities, and the assumption of neutral evolution, to find out how quickly genes emerge and are lost. We also investigate the effect of the order by which DNA features evolve, and if sequence composition is biased by mutation rate. We rationalize how genes are lost much more rapidly than they emerge, and how they preferentially arise in regions that are already transcribed. Our study not only answers some fundamental questions on the topic of de novo emergence but also provides a modeling framework for future studies.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Loewenthal G, Wygoda E, Nagar N, Glick L, Mayrose I, Pupko T. The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns. Open Biol 2022; 12:220223. [PMID: 36514983 PMCID: PMC9748784 DOI: 10.1098/rsob.220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insertions and deletions (indels) of short DNA segments are common evolutionary events. Numerous studies showed that deletions occur more often than insertions in both prokaryotes and eukaryotes. It raises the question why neutral sequences are not eradicated from the genome. We suggest that this is due to a phenomenon we term border-induced selection. Accordingly, a neutral sequence is bordered between conserved regions. Deletions occurring near the borders occasionally protrude to the conserved region and are thereby subject to strong purifying selection. Thus, for short neutral sequences, an insertion bias is expected. Here, we develop a set of increasingly complex models of indel dynamics that incorporate border-induced selection. Furthermore, we show that short conserved sequences within the neutrally evolving sequence help explain: (i) the presence of very long sequences; (ii) the high variance of sequence lengths; and (iii) the possible emergence of multimodality in sequence length distributions. Finally, we fitted our models to the human intron length distribution, as introns are thought to be mostly neutral and bordered by conserved exons. We show that when accounting for the occurrence of short conserved sequences within introns, we reproduce the main features, including the presence of long introns and the multimodality of intron distribution.
Collapse
Affiliation(s)
- Gil Loewenthal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elya Wygoda
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natan Nagar
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lior Glick
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Small Insertions and Deletions Drive Genomic Plasticity during Adaptive Evolution of Yersinia pestis. Microbiol Spectr 2022; 10:e0224221. [PMID: 35438532 PMCID: PMC9248902 DOI: 10.1128/spectrum.02242-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of Yersinia pestis has changed a lot to adapt to flea-borne transmission since it evolved from an enteric pathogen, Yersinia pseudotuberculosis. Small insertions and deletions (indels), especially frameshift mutations, can have major effects on phenotypes and contribute to virulence and host adaptation through gene disruption and inactivation. Here, we analyzed 365 Y. pestis genomes and identified 2,092 genome-wide indels on the core genome. As recently reported in Mycobacterium tuberculosis, we also detected "indel pockets" in Y. pestis, with average complexity scores declining around indel positions, which we speculate might also exist in other prokaryotes. Phylogenic analysis showed that indel-based phylogenic tree could basically reflect the phylogenetic relationships of major phylogroups in Y. pestis, except some inconsistency around the Big Bang polytomy. We observed 83 indels arising in the trunk of the phylogeny, which played a role in accumulation of pseudogenes related to key metabolism and putatively pathogenicity. We also discovered 32 homoplasies at the level of phylogroups and 7 frameshift scars (i.e., disrupted reading frame being rescued by a second frameshift). Additionally, our analysis showed evidence of parallel evolution at the level of genes, with sspA, rpoS, rnd, and YPO0624, having enriched mutations in Brazilian isolates, which might be advantageous for Y. pestis to cope with fluctuating environments. The diversified selection signals observed here demonstrates that indels are important contributors to the adaptive evolution of Y. pestis. Meanwhile, we provide potential targets for further exploration, as some genes/pseudogenes with indels we focus on remain uncharacterized. IMPORTANCE Yersinia pestis, the causative agent of plague, is a highly pathogenic clone of Yersinia pseudotuberculosis. Previous genome-wide SNP analysis provided few adaptive signatures during its evolution. Here by investigating 365 public genomes of Y. pestis, we give a comprehensive overview of general features of genome-wide indels on the core genome and their roles in Y. pestis evolution. Detection of "indel pockets," with average complexity scores declining around indel positions, in both Mycobacterium tuberculosis and Y. pestis, gives us a clue that this phenomenon might appear in other bacterial genomes. Importantly, the identification of four different forms of selection signals in indels would improve our understanding on adaptive evolution of Y. pestis, and provide targets for further physiological mechanism researches of this pathogen. As evolutionary research based on genome-wide indels is still rare in bacteria, our study would be a helpful reference in deciphering the role of indels in other species.
Collapse
|
8
|
Abstract
How do mutational biases influence the process of adaptation? A common assumption is that selection alone determines the course of adaptation from abundant preexisting variation. Yet, theoretical work shows broad conditions under which the mutation rate to a given type of variant strongly influences its probability of contributing to adaptation. Here we introduce a statistical approach to analyzing how mutation shapes protein sequence adaptation. Using large datasets from three different species, we show that the mutation spectrum has a proportional influence on the types of changes fixed in adaptation. We also show via computer simulations that a variety of factors can influence how closely the spectrum of adaptive substitutions reflects the spectrum of variants introduced by mutation. Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e., a distribution for types of changes fixed in adaptation. Recent work establishes that the changes involved in adaptation reflect common types of mutations, raising the question of how strongly the mutation spectrum shapes the spectrum of adaptive substitutions. We address this question with a codon-based model for the spectrum of adaptive amino acid substitutions, applied to three large datasets covering thousands of amino acid changes identified in natural and experimental adaptation in Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. Using species-specific mutation spectra based on prior knowledge, we find that the mutation spectrum has a proportional influence on the spectrum of adaptive substitutions in all three species. Indeed, we find that by inferring the mutation rates that best explain the spectrum of adaptive substitutions, we can accurately recover the species-specific mutation spectra. However, we also find that the predictive power of the model differs substantially between the three species. To better understand these differences, we use population simulations to explore the factors that influence how closely the spectrum of adaptive substitutions mirrors the mutation spectrum. The results show that the influence of the mutation spectrum decreases with increasing mutational supply (Nμ) and that predictive power is strongly affected by the number and diversity of beneficial mutations.
Collapse
|
9
|
Melamed D, Nov Y, Malik A, Yakass MB, Bolotin E, Shemer R, Hiadzi EK, Skorecki KL, Livnat A. De novo mutation rates at the single-mutation resolution in a human HBB gene-region associated with adaptation and genetic disease. Genome Res 2022; 32:488-498. [PMID: 35031571 PMCID: PMC8896469 DOI: 10.1101/gr.276103.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Although it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here, we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa, and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the “HbS mutation” when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible.
Collapse
|
10
|
Jackson EK, Bellott DW, Skaletsky H, Page DC. GC-biased gene conversion in X-chromosome palindromes conserved in human, chimpanzee, and rhesus macaque. G3 GENES|GENOMES|GENETICS 2021; 11:6317831. [PMID: 34849781 PMCID: PMC8981503 DOI: 10.1093/g3journal/jkab224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022]
Abstract
Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian
sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence
identity greater than 99%, which may increase their susceptibility to the effects of
GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene
conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and
rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content
than flanking single-copy sequences. Nucleotide replacements that occurred in human and
chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as
GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed
pattern of nucleotide replacements is consistent with GC-biased gene conversion with a
magnitude of 70%, similar to previously reported values based on analyses of human
meioses. However, GC-biased gene conversion since the divergence of human and rhesus
macaque explains only a fraction of the observed difference in GC content between
palindrome arms and flanking sequence, suggesting that palindromes are older than 29
million years and/or had elevated GC content at the time of their formation. This work
supports a greater than 2:1 preference for GC bases over AT bases during gene conversion
and demonstrates that the evolution and composition of mammalian sex chromosome
palindromes is strongly influenced by GC-biased gene conversion.
Collapse
Affiliation(s)
- Emily K Jackson
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Ciprofloxacin induced antibiotic resistance in Salmonella Typhimurium mutants and genome analysis. Arch Microbiol 2021; 203:6131-6142. [PMID: 34585273 DOI: 10.1007/s00203-021-02577-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Antibiotic resistance of Salmonella species is well reported. Ciprofloxacin is the frontline antibiotic for salmonellosis. The repeated exposure to ciprofloxacin leads to resistant strains. After 20 cycles of antibiotic exposure, resistant bacterial clones were evaluated. The colony size of the mutants was small and had an extended lag phase compared to parent strain. The whole genome sequencing showed 40,513 mutations across the genome. Small percentage (5.2%) of mutations was non-synonymous. Four-fold more transitions were observed than transversions. Ratio of < 1 transition vs transversion showed a positive selection for antibiotic resistant trait. Mutation distribution across the genome was uniform. The native plasmid was an exception and 2 mutations were observed on 90 kb plasmid. The important genes like dnaE, gyrA, iroC, metH and rpoB involved in antibiotic resistance had point mutations. The genome analysis revealed most of the metabolic pathways were affected.
Collapse
|
12
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Sequence to structure analysis of the ORF4 protein from Hepatitis E virus. Bioinformation 2021; 17:818-828. [PMID: 35539889 PMCID: PMC9049080 DOI: 10.6026/97320630017818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is the main cause of acute hepatitis worldwide. HEV accounts for up to 30% mortality rate in pregnant women, with highest incidences reported for genotype 1 (G1) HEV. The contributing factors in adverse cases during pregnancy in women due to HEV infection is still debated. The mechanism underlying the pathogenesis of viral infection is attributed to different genomic component of HEV, i.e., open reading frames (ORFs): ORF1, ORF2, ORF3 and ORF4. Recently, ORF4 has been discovered in enhancing the replication of GI isolates of HEV through regulation of an IRES-like RNA element. However, its characterization through computational methodologies remains unexplored. In this novel study, we provide comprehensive overview of ORF4 protein's genetic and molecular characteristics through analyzing its sequence and different structural levels. A total of three different datasets (Human, Rat and Ferret) of ORF4 genomes were built and comparatively analyzed. Several non-synonymous mutations in conjunction with higher entropy values were observed in rat and ferret datasets, however, limited variation was observed in human ORF4 genomes. Higher transition to tranversion ratio was observed in the ORF4 genomes. Studies have reported the association of intrinsic disordered proteins (IDP) with drug discovery due to its role in several signaling and regulatory processes through protein-protein interactions (PPIs). As PPIs are potent drug target sources, thus the ORF4 protein was explored by analyzing its polypeptide structure in order to shed light on its intrinsic disorder. Pressures that lead towards preponderance of disordered-promoting amino acid residues shaped the evolution of ORF4. The intrinsic disorder propensity analysis revealed ORF4 protein (Human) as a highly disordered protein (IDP). Predominance of coils and lack of secondary structure further substantiated our findings suggesting its involvement in binding to ligand molecules. Thus, ORF4 contributes to cellular signaling processes through protein-protein interactions, as IDPs are targets for regulation to accelerate the process of drug designing strategies against HEV infections.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Loewenthal G, Rapoport D, Avram O, Moshe A, Wygoda E, Itzkovitch A, Israeli O, Azouri D, Cartwright RA, Mayrose I, Pupko T. A probabilistic model for indel evolution: differentiating insertions from deletions. Mol Biol Evol 2021; 38:5769-5781. [PMID: 34469521 PMCID: PMC8662616 DOI: 10.1093/molbev/msab266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate.
Collapse
Affiliation(s)
- Gil Loewenthal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dana Rapoport
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Moshe
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elya Wygoda
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alon Itzkovitch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Omer Israeli
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dana Azouri
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.,School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Khan AA, Ali MS, Babar F, Fatima A, Shafqat MA, Asghar B, Ilyas N, Fatima M, Liaqat A, Gondal MA. Lack of CpG islands in human unitary pseudogenes and its implication. Mamm Genome 2021; 32:443-447. [PMID: 34272576 DOI: 10.1007/s00335-021-09893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
CpG islands (CGIs) are aggregation of CpG dinucleotides in the promoters of mammalian genes. These CGIs are present in almost all the housekeeping genes and some tissue-specific genes in the mammalian genome. Extensive research has been done on the prevalence and role of CGIs in protein-coding genes. However, little is known about CGIs in pseudogenes. In the current research project, we focused on CGIs in three main classes of pseudogenes e.g., duplicated pseudogenes (DPGs), processed pseudogenes (PPGs), and unitary pseudogenes (UPGs). We discovered a predominant absence of CGIs in the promoters of all three pseudogenes. We also compared the CGI profile of these pseudogenes with their parent genes and found that unitary pseudogenes (UPGs) differ from the DPGs and PPGs in the sense that in the latter, lack of CGIs is a consequential event while in UPGs, this lack of CGIs in their promoters is not a result of pseudogenization process. We also discussed the implication of the results obtained from this comparison. To our knowledge, this is the first-ever study highlighting this aspect of UPGs throwing new insights into the evolution of genome in general and especially in the context of pseudogenes.
Collapse
Affiliation(s)
- Ammad Aslam Khan
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan.
| | - Muhammad Shahryar Ali
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Farah Babar
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Anees Fatima
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Muhammad Awais Shafqat
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Bisma Asghar
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Nimra Ilyas
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Maheen Fatima
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Ayesha Liaqat
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | | |
Collapse
|
15
|
Li N, Song Y, Li J, Hao R, Feng X, Li L. Resequencing and transcriptomic analysis reveal differences in nitrite reductase in jujube fruit (Ziziphus jujuba Mill.). PLANT METHODS 2021; 17:75. [PMID: 34247631 PMCID: PMC8274035 DOI: 10.1186/s13007-021-00776-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Jujube is a typical fruit tree species from China. 'Muzao', a cracking-susceptible cultivar, and 'Linhuang No. 1', a cracking-resistant cultivar, were selected in a previous study as contrasting research materials. Whole-genome resequencing and transcriptomic analysis of 'Linhuang No. 1' and 'Muzao' allowed the identification of differentially expressed genes with different gene structures between the two cultivars and could be helpful in explaining the differences and similarities between the two cultivars. RESULTS Resequencing identified 664,129 polymorphic variable sites between 'Linhuang No. 1' and 'Muzao'. To determine the genetic relationship among 'Linhuang No. 1', 'Muzao' and the jujube genome reference cultivar 'Dongzao', the characteristic polymorphic variable sites were analysed by principal component analysis. The genetic relationship between 'Linhuang No. 1' and 'Muzao' was closer than that of either variety and 'Dongzao'. Nineteen differentially expressed genes were identified by combining transcriptomic analysis with resequencing analysis. LOC107427052 (encoding a nitrite reductase) was identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for further study. The identified insertion was not in the domain region of the LOC107427052 gene coding sequence (CDS) region and was verified by the finding that the insertion did not affect translation of the protein. The LOC107427052 gene expression levels, nitrite reductase activities and nitrite contents of 'Muzao' were significantly higher than the corresponding values of 'Linhuang No. 1' at the young fruit stage. There was no significant difference in the quantity of the product of nitrite reductase, namely, ammonia, between the two cultivars. CONCLUSIONS The present study was the first to explore the differences between different jujube cultivars ('Linhuang No. 1' and 'Muzao') by combining genome resequencing and transcriptomics. LOC107427052 (encoding a nitrite reductase) was characterized by KEGG enrichment analysis. The insertion in the CDS region of the LOC107427052 gene provides a new direction for the study of nitrogen metabolism in jujube. Our study has laid a foundation for the comparative analysis of nitrite metabolism between the jujube cultivars 'Linhuang No. 1' and 'Muzao'.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuqin Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Li
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China
| | - Ruijie Hao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
16
|
Abdel-Hamid AME, Elenazy HH, Abdel-Hameed UK. DNA barcoding of some taxa of genus Acacia and their phylogenetic relationship. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1938702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Amal M. E. Abdel-Hamid
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
- Department of Biology, College of Sciences and Arts, Taibah University, Al Ula, Kingdom of Saudi Arabia
| | - Hanaa H. Elenazy
- Department of Biology, College of Science, Taibah University, Al Madinah, Kingdom of Saudi Arabia
| | - Usama K. Abdel-Hameed
- Department of Biology, College of Science, Taibah University, Al Madinah, Kingdom of Saudi Arabia
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
18
|
Cano AV, Payne JL. Mutation bias interacts with composition bias to influence adaptive evolution. PLoS Comput Biol 2020; 16:e1008296. [PMID: 32986712 PMCID: PMC7571706 DOI: 10.1371/journal.pcbi.1008296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/19/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
Mutation is a biased stochastic process, with some types of mutations occurring more frequently than others. Previous work has used synthetic genotype-phenotype landscapes to study how such mutation bias affects adaptive evolution. Here, we consider 746 empirical genotype-phenotype landscapes, each of which describes the binding affinity of target DNA sequences to a transcription factor, to study the influence of mutation bias on adaptive evolution of increased binding affinity. By using empirical genotype-phenotype landscapes, we need to make only few assumptions about landscape topography and about the DNA sequences that each landscape contains. The latter is particularly important because the set of sequences that a landscape contains determines the types of mutations that can occur along a mutational path to an adaptive peak. That is, landscapes can exhibit a composition bias—a statistical enrichment of a particular type of mutation relative to a null expectation, throughout an entire landscape or along particular mutational paths—that is independent of any bias in the mutation process. Our results reveal the way in which composition bias interacts with biases in the mutation process under different population genetic conditions, and how such interaction impacts fundamental properties of adaptive evolution, such as its predictability, as well as the evolution of genetic diversity and mutational robustness. Mutation is often depicted as a random process due its unpredictable nature. However, such randomness does not imply uniformly distributed outcomes, because some DNA sequence changes happen more frequently than others. Mutation bias can be an orienting factor in adaptive evolution, influencing the mutational trajectories populations follow toward higher-fitness genotypes. Because these trajectories are typically just a small subset of all possible mutational trajectories, they can exhibit composition bias—an enrichment of a particular kind of DNA sequence change, such as transition or transversion mutations. Here, we use empirical data from eukaryotic transcriptional regulation to study how mutation bias and composition bias interact to influence adaptive evolution.
Collapse
Affiliation(s)
- Alejandro V. Cano
- Institute of Integrative Biology, ETH, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Hagiwara K, Ding L, Edmonson MN, Rice SV, Newman S, Easton J, Dai J, Meshinchi S, Ries RE, Rusch M, Zhang J. RNAIndel: discovering somatic coding indels from tumor RNA-Seq data. Bioinformatics 2020; 36:1382-1390. [PMID: 31593214 DOI: 10.1093/bioinformatics/btz753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Reliable identification of expressed somatic insertions/deletions (indels) is an unmet need due to artifacts generated in PCR-based RNA-Seq library preparation and the lack of normal RNA-Seq data, presenting analytical challenges for discovery of somatic indels in tumor transcriptome. RESULTS We present RNAIndel, a tool for predicting somatic, germline and artifact indels from tumor RNA-Seq data. RNAIndel leverages features derived from indel sequence context and biological effect in a machine-learning framework. Except for tumor samples with microsatellite instability, RNAIndel robustly predicts 88-100% of somatic indels in five diverse test datasets of pediatric and adult cancers, even recovering subclonal (VAF range 0.01-0.15) driver indels missed by targeted deep-sequencing, outperforming the current best-practice for RNA-Seq variant calling which had 57% sensitivity but with 14 times more false positives. AVAILABILITY AND IMPLEMENTATION RNAIndel is freely available at https://github.com/stjude/RNAIndel. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kohei Hagiwara
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael N Edmonson
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen V Rice
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott Newman
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Easton
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Juncheng Dai
- Department of Epidemiology, Nanjing Medical University School of Public Health, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Rusch
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
20
|
Sirt4 Modulates Oxidative Metabolism and Sensitivity to Rapamycin Through Species-Dependent Phenotypes in Drosophila mtDNA Haplotypes. G3-GENES GENOMES GENETICS 2020; 10:1599-1612. [PMID: 32152006 PMCID: PMC7202034 DOI: 10.1534/g3.120.401174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The endosymbiotic theory proposes that eukaryotes evolved from the symbiotic relationship between anaerobic (host) and aerobic prokaryotes. Through iterative genetic transfers, the mitochondrial and nuclear genomes coevolved, establishing the mitochondria as the hub of oxidative metabolism. To study this coevolution, we disrupt mitochondrial-nuclear epistatic interactions by using strains that have mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) from evolutionarily divergent species. We undertake a multifaceted approach generating introgressed Drosophila strains containing D. simulans mtDNA and D. melanogaster nDNA with Sirtuin 4 (Sirt4)-knockouts. Sirt4 is a nuclear-encoded enzyme that functions, exclusively within the mitochondria, as a master regulator of oxidative metabolism. We exposed flies to the drug rapamycin in order to eliminate TOR signaling, thereby compromising the cytoplasmic crosstalk between the mitochondria and nucleus. Our results indicate that D. simulans and D. melanogaster mtDNA haplotypes display opposite Sirt4-mediated phenotypes in the regulation of whole-fly oxygen consumption. Moreover, our data reflect that the deletion of Sirt4 rescued the metabolic response to rapamycin among the introgressed strains. We propose that Sirt4 is a suitable candidate for studying the properties of mitochondrial-nuclear epistasis in modulating mitochondrial metabolism.
Collapse
|
21
|
Ilan Y. Order Through Disorder: The Characteristic Variability of Systems. Front Cell Dev Biol 2020; 8:186. [PMID: 32266266 PMCID: PMC7098948 DOI: 10.3389/fcell.2020.00186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Randomness characterizes many processes in nature, and therefore its importance cannot be overstated. In the present study, we investigate examples of randomness found in various fields, to underlie its fundamental processes. The fields we address include physics, chemistry, biology (biological systems from genes to whole organs), medicine, and environmental science. Through the chosen examples, we explore the seemingly paradoxical nature of life and demonstrate that randomness is preferred under specific conditions. Furthermore, under certain conditions, promoting or making use of variability-associated parameters may be necessary for improving the function of processes and systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
22
|
Li N, Yang J, Zhu W, Liang Y. MVSC: A Multi-variation Simulator of Cancer Genome. Comb Chem High Throughput Screen 2020; 23:326-333. [PMID: 32183666 DOI: 10.2174/1386207323666200317121136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many forms of variations exist in the genome, which are the main causes of individual phenotypic differences. The detection of variants, especially those located in the tumor genome, still faces many challenges due to the complexity of the genome structure. Thus, the performance assessment of variation detection tools using next-generation sequencing platforms is urgently needed. METHOD We have created a software package called the Multi-Variation Simulator of Cancer genomes (MVSC) to simulate common genomic variants, including single nucleotide polymorphisms, small insertion and deletion polymorphisms, and structural variations (SVs), which are analogous to human somatically acquired variations. Three sets of variations embedded in genomic sequences in different periods were dynamically and sequentially simulated one by one. RESULTS In cancer genome simulation, complex SVs are important because this type of variation is characteristic of the tumor genome structure. Overlapping variations of different sizes can also coexist in the same genome regions, adding to the complexity of cancer genome architecture. Our results show that MVSC can efficiently simulate a variety of genomic variants that cannot be simulated by existing software packages. CONCLUSION The MVSC-simulated variants can be used to assess the performance of existing tools designed to detect SVs in next-generation sequencing data, and we also find that MVSC is memory and time-efficient compared with similar software packages.
Collapse
Affiliation(s)
- Ning Li
- School of Information and Electronic Engineering, Wuzhou University, Wuzhou, China
| | - Jialiang Yang
- Department of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan 571158, China
| | - Wen Zhu
- Department of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan 571158, China.,College of Computer Science and Electronic Engineering, Hunan University, Hunan, China
| | - Ying Liang
- College of Computer Science and Electronic Engineering, Hunan University, Hunan, China.,College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| |
Collapse
|
23
|
Casimiro-Soriguer CS, Rubio A, Jimenez J, Pérez-Pulido AJ. Ancient evolutionary signals of protein-coding sequences allow the discovery of new genes in the Drosophila melanogaster genome. BMC Genomics 2020; 21:210. [PMID: 32138644 PMCID: PMC7059364 DOI: 10.1186/s12864-020-6632-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background The current growth in DNA sequencing techniques makes of genome annotation a crucial task in the genomic era. Traditional gene finders focus on protein-coding sequences, but they are far from being exhaustive. The number of this kind of genes continuously increases due to new experimental data and development of improved bioinformatics algorithms. Results In this context, AnABlast represents a novel in silico strategy, based on the accumulation of short evolutionary signals identified by protein sequence alignments of low score. This strategy potentially highlights protein-coding regions in genomic sequences regardless of traditional homology or translation signatures. Here, we analyze the evolutionary information that the accumulation of these short signals encloses. Using the Drosophila melanogaster genome, we stablish optimal parameters for the accurate gene prediction with AnABlast and show that this new strategy significantly contributes to add genes, exons and pseudogenes regions, yet to be discovered in both already annotated and new genomes. Conclusions AnABlast can be freely used to analyze genomic regions of whole genomes where it contributes to complete the previous annotation.
Collapse
Affiliation(s)
- Carlos S Casimiro-Soriguer
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA). Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Alejandro Rubio
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA). Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Juan Jimenez
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA). Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA). Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| |
Collapse
|
24
|
Karami A, Fayyaz Movaghar A, Mercier S, Ferre L. New Approximate Statistical Significance of Gapped Alignments Based on the Greedy Extension Model. J Comput Biol 2020; 27:1361-1372. [PMID: 31913652 DOI: 10.1089/cmb.2018.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequence alignment is a fundamental concept in bioinformatics to distinguish regions of similarity among various sequences. The degree of similarity has been considered as a score. There are a number of various methods to find the statistical significance of similarity in the gapped and ungapped cases. In this article, we improve the statistical significance accuracy of the local score by introducing a new approximate p-value. This is developed according to Poisson clumping and the exact distribution of a partial sum of random variables. The efficiency of the proposed method is compared with that of previous methods on real and simulated data. The results yield a remarkable improvement in accuracy of the p-value in the gapped case. This is an evidence for the method to be considered as a prospective candidate for sequences comparison.
Collapse
Affiliation(s)
- Amirhossein Karami
- Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
| | - Afshin Fayyaz Movaghar
- Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
| | - Sabine Mercier
- Institut de Mathematiques de Toulouse, Department of Mathematics and Computer Science, Universite Toulouse Jean Jaures, Toulouse, France
| | - Louis Ferre
- Institut de Mathematiques de Toulouse, Toulouse, France
| |
Collapse
|
25
|
Wu M, Li S, Zhang G, Fan Y, Gao Y, Huang Y, Lan X, Lei C, Ma Y, Dang R. Exploring insertions and deletions (indels) of MSRB3 gene and their association with growth traits in four Chinese indigenous cattle breeds. Arch Anim Breed 2019; 62:465-475. [PMID: 31807658 PMCID: PMC6852864 DOI: 10.5194/aab-62-465-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Methionine sulfoxide reductase B3 (MSRB3) is instrumental in ossification and fat deposition, which regulate the
growth and development of cattle directly. The purpose of this study was
aimed to explore insertions and deletions (indels) in MSRB3 gene and investigate
their association with growth traits in four indigenous cattle breeds (Luxi
cattle, Qinchuan cattle, Nanyang cattle, and Jiaxian Red cattle). Four indels
were identified by sequencing with DNA pool. Association analysis showed
that three of them were associated with growth traits (P<0.05). For
P1, the DD (deletion and deletion) genotype was significantly associated with body length of Nanyang
cattle; for P6, II (insertion and insertion) and/or DD genotypes were significantly associated with
enhanced growth traits of Qinchuan cattle; for P7, II genotype was
significantly associated with hucklebone width of Luxi cattle. Our results
demonstrated that the polymorphisms in bovine MSRB3 gene were significantly
associated with growth traits, which could be candidate loci for
marker-assisted selection (MAS) in cattle breeding.
Collapse
Affiliation(s)
- Mingli Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Guoliang Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, Jilin, 136100, P. R. China
| | - Yingzhi Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.,School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
26
|
Hwang HR, Kim SC, Kang SH, Lee CH. Increase in the genetic polymorphism of varicella-zoster virus after passaging in in vitro cell culture. J Microbiol 2019; 57:1033-1039. [PMID: 31659688 DOI: 10.1007/s12275-019-9429-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Primary infections with the varicella-zoster virus (VZV) result in varicella, while latent reactivation leads to herpes zoster. Both varicella and zoster can be prevented by live attenuated vaccines. There have been reports suggesting that both clinical VZV strains and those in vaccine preparations are genetically polymorphic, containing mixtures of both wild-type and vaccine-type sequences at certain vaccine-specific sites. In this study, the genetic polymorphism of the VZV genome was examined by analyzing the frequencies of minor alleles at each nucleotide position. Next-generation sequencing of the clinical VZV strain YC02 passaged in an in vitro cell culture was used to identify genetically polymorphic sites (GPS), where the minor allele frequency (MAF) exceeded 5%. The number of GPS increased by 7.3-fold at high passages (p100) when compared to low passages (p17), although the average MAF remained similar. GPS were found in 6 open reading frames (ORFs) in p17, 35, and 54 ORFs in p60 and p100, respectively. GPS were found more frequently in the dispensable gene group than the essential gene group, but the average MAF was greater in the essential gene group. The most common two major/minor base pairs were A/g and T/c. GPS were found in all three passages at 16 positions, all located in the reiterated (R) region. The population diversity as measured by Shannon entropy increased in p60 and p100. However, the entropy remained unchanged in the R regions.
Collapse
Affiliation(s)
- Hye Rim Hwang
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seok Cheon Kim
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se Hwan Kang
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
27
|
Pucci F, Rooman M. Relation between DNA ionization potentials, single base substitutions and pathogenic variants. BMC Genomics 2019; 20:551. [PMID: 31307386 PMCID: PMC6631442 DOI: 10.1186/s12864-019-5867-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background It is nowadays clear that single base substitutions that occur in the human genome, of which some lead to pathogenic conditions, are non-random and influenced by their flanking nucleobase sequences. However, despite recent progress, the understanding of these "non-local" effects is still far from being achieved. Results To advance this problem, we analyzed the relationship between the base mutability in specific gene regions and the electron hole transport along the DNA base stacks, as it is one of the mechanisms that have been suggested to contribute to these effects. More precisely, we studied the connection between the normalized frequency of single base substitutions and the vertical ionization potential of the base and its flanking sequence, estimated using MP2/6-31G* ab initio quantum chemistry calculations. We found a statistically significant overall anticorrelation between these two quantities: the lower the vIP value, the more probable the substitution. Moreover, the slope of the regression lines varies. It is larger for introns than for exons and untranslated regions, and for synonymous than for missense substitutions. Interestingly, the correlation appears to be more pronounced when considering the flanking sequence of the substituted base in the 3’ rather than in the 5’ direction, which corresponds to the preferred direction of charge migration. A weaker but still statistically significant correlation is found between the ionization potentials and the pathogenicity of the base substitutions. Moreover, pathogenicity is also preferentially associated with larger changes in ionization potentials upon base substitution. Conclusions With this analysis we gained new insights into the complex biophysical mechanisms that are at the basis of mutagenesis and pathogenicity, and supported the role of electron-hole transport in these matters. Electronic supplementary material The online version of this article (10.1186/s12864-019-5867-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave. 50, Bruxelles, 1050, Belgium.,John von Neumann Institute for Computing, Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave. 50, Bruxelles, 1050, Belgium.
| |
Collapse
|
28
|
Crespo-Piazuelo D, Criado-Mesas L, Revilla M, Castelló A, Fernández AI, Folch JM, Ballester M. Indel detection from Whole Genome Sequencing data and association with lipid metabolism in pigs. PLoS One 2019; 14:e0218862. [PMID: 31246983 PMCID: PMC6597088 DOI: 10.1371/journal.pone.0218862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The selection in commercial swine breeds for meat-production efficiency has been increasing among the past decades, reducing the intramuscular fat content, which has changed the sensorial and technological properties of pork. Through processes of natural adaptation and selective breeding, the accumulation of mutations has driven the genetic divergence between pig breeds. The most common and well-studied mutations are single-nucleotide polymorphisms (SNPs). However, insertions and deletions (indels) usually represents a fifth part of the detected mutations and should also be considered for animal breeding. In the present study, three different programs (Dindel, SAMtools mpileup, and GATK) were used to detect indels from Whole Genome Sequencing data of Iberian boars and Landrace sows. A total of 1,928,746 indels were found in common with the three programs. The VEP tool predicted that 1,289 indels may have a high impact on protein sequence and function. Ten indels inside genes related with lipid metabolism were genotyped in pigs from three different backcrosses with Iberian origin, obtaining different allelic frequencies on each backcross. Genome-Wide Association Studies performed in the Longissimus dorsi muscle found an association between an indel located in the C1q and TNF related 12 (C1QTNF12) gene and the amount of eicosadienoic acid (C20:2(n-6)).
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail:
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - Manuel Revilla
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ana I. Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Josep M. Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
29
|
Vialle RA, Tamuri AU, Goldman N. Alignment Modulates Ancestral Sequence Reconstruction Accuracy. Mol Biol Evol 2019; 35:1783-1797. [PMID: 29618097 PMCID: PMC5995191 DOI: 10.1093/molbev/msy055] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accurate reconstruction of ancestral states is a critical evolutionary analysis when studying ancient proteins and comparing biochemical properties between parental or extinct species and their extant relatives. It relies on multiple sequence alignment (MSA) which may introduce biases, and it remains unknown how MSA methodological approaches impact ancestral sequence reconstruction (ASR). Here, we investigate how MSA methodology modulates ASR using a simulation study of various evolutionary scenarios. We evaluate the accuracy of ancestral protein sequence reconstruction for simulated data and compare reconstruction outcomes using different alignment methods. Our results reveal biases introduced not only by aligner algorithms and assumptions, but also tree topology and the rate of insertions and deletions. Under many conditions we find no substantial differences between the MSAs. However, increasing the difficulty for the aligners can significantly impact ASR. The MAFFT consistency aligners and PRANK variants exhibit the best performance, whereas FSA displays limited performance. We also discover a bias towards reconstructed sequences longer than the true ancestors, deriving from a preference for inferring insertions, in almost all MSA methodological approaches. In addition, we find measures of MSA quality generally correlate highly with reconstruction accuracy. Thus, we show MSA methodological differences can affect the quality of reconstructions and propose MSA methods should be selected with care to accurately determine ancestral states with confidence.
Collapse
Affiliation(s)
- Ricardo Assunção Vialle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Asif U Tamuri
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Research IT Services, University College London, London, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
30
|
Thomas BT, Ogunkanmi LA, Iwalokun BA, Popoola OD. Transition-transversion mutations in the polyketide synthase gene of Aspergillus section Nigri. Heliyon 2019; 5:e01881. [PMID: 31338447 PMCID: PMC6579908 DOI: 10.1016/j.heliyon.2019.e01881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
This study determined the transition-transversion mutation in the pks gene of Aspergillus section Nigri in order to gain insight into the patterns of nucleotide base substitution and the process of molecular evolution using standard recommended techniques. Results obtained depict frequent occurrence of transition (23 ± 0.96) than transversion (11.37 ± 1.38) (p < 0.05) with C/T being the most frequently observed transitional base substitution and C/A the most frequently occurring transversional base change. The number of single base insertions (56 ± 1.00) were significantly higher than the observed single base deletions (38 ± 2.00) (p < 0.05) while varying degrees of two or more base deletions and insertions were also observed both inside and outside the open reading frame. The maximum likelihood value estimated for the pks gene was calculated to be -9458.80 in 423 positions of the final dataset while the transition-transversion ratio was estimated to be 0.50. The Tajima's neutrality test approaches seven (7) with the nucleotide diversity estimated to be approximately 65%. Evolutionary test depicts positive selection as ratio of non synonymous to synonymous divergence was found to be greater than ratio of the number of non synonymous to synonymous polymorphisms. The proportion of substitution driven by positive selection was calculated to be approximately 96.2%. This research therefore provides an insight into the understanding of pks gene mutation patterns as some of the observed indels resulted in frame shift mutations.
Collapse
Affiliation(s)
- Benjamin Thoha Thomas
- Department of Microbiology, Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria
| | | | - Bamidele Abiodun Iwalokun
- Division of Molecular Biology and Biotechnology, Nigeria Institute of Medical Research, Yaba, Lagos, Nigeria
| | | |
Collapse
|
31
|
Payne JL, Menardo F, Trauner A, Borrell S, Gygli SM, Loiseau C, Gagneux S, Hall AR. Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biol 2019; 17:e3000265. [PMID: 31083647 PMCID: PMC6532934 DOI: 10.1371/journal.pbio.3000265] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/23/2019] [Accepted: 04/26/2019] [Indexed: 11/21/2022] Open
Abstract
Transition bias, an overabundance of transitions relative to transversions, has been widely reported among studies of the rates and spectra of spontaneous mutations. However, demonstrating the role of transition bias in adaptive evolution remains challenging. In particular, it is unclear whether such biases direct the evolution of bacterial pathogens adapting to treatment. We addressed this challenge by analyzing adaptive antibiotic-resistance mutations in the major human pathogen Mycobacterium tuberculosis (MTB). We found strong evidence for transition bias in two independently curated data sets comprising 152 and 208 antibiotic-resistance mutations. This was true at the level of mutational paths (distinct adaptive DNA sequence changes) and events (individual instances of the adaptive DNA sequence changes) and across different genes and gene promoters conferring resistance to a diversity of antibiotics. It was also true for mutations that do not code for amino acid changes (in gene promoters and the 16S ribosomal RNA gene rrs) and for mutations that are synonymous to each other and are therefore likely to have similar fitness effects, suggesting that transition bias can be caused by a bias in mutation supply. These results point to a central role for transition bias in determining which mutations drive adaptive antibiotic resistance evolution in a key pathogen. Some types of mutations occur more frequently than expected. This study shows that such bias —an excess of transitions over transversions—influences the evolution of antibiotic resistance in a key global pathogen, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian M. Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Chloe Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex R. Hall
- Institute of Integrative Biology, ETH Zurich, Switzerland
| |
Collapse
|
32
|
Ma KM, Thomas ES, Wereszczynski J, Menhart N. Empirical and Computational Comparison of Alternative Therapeutic Exon Skip Repairs for Duchenne Muscular Dystrophy. Biochemistry 2019; 58:2061-2076. [PMID: 30896926 DOI: 10.1021/acs.biochem.9b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common and devastating genetic disease primarily caused by exon deletions that create a genetic frameshift in dystrophin. Exon skipping therapy seeks to correct this by masking an exon during the mRNA maturation process, restoring dystrophin expression, but creating an edited protein missing both the original defect and the therapeutically skipped region. Crucially, it is possible to correct many defects in alternative ways, by skipping an exon either before or after the patient's defect. This results in alternatively edited, hybrid proteins that might have different properties and therapeutic consequences. We examined three such dystrophin exon-skipped edits, Δe45-53, Δe46-54, and Δe47-55, comprising two pairs of alternative repairs of Δe46-53 and Δe47-54 DMD defects. We found that in both cases, Δe46-54 was the more stable repair as determined by a variety of thermodynamic and biochemical measurements. We also examined the origin of these differences with molecular dynamics simulations, which showed that these stability differences were the result of different types of structural perturbations. For example, in one edit there was partial unfolding at the edit site that caused domain-localized perturbations while in another there was unfolding at the protein domain junctions distal to the edit site that increased molecular flexibility. These results demonstrate that alternative exon skip repairs of the same underlying defect can have very different consequences at the level of protein structure and stability and furthermore that these can arise by different mechanisms, either locally or by more subtle long-range perturbations.
Collapse
|
33
|
Pouga L, Santoro MM, Charpentier C, Di Carlo D, Romeo I, Artese A, Alcaro S, Antinori A, Wirden M, Perno CF, Ambrosio FA, Calvez V, Descamps D, Marcelin AG, Ceccherini-Silberstein F, Lambert-Niclot S. New resistance mutations to nucleoside reverse transcriptase inhibitors at codon 184 of HIV-1 reverse transcriptase (M184L and M184T). Chem Biol Drug Des 2018; 93:50-59. [PMID: 30103267 DOI: 10.1111/cbdd.13378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/04/2018] [Accepted: 08/04/2018] [Indexed: 11/28/2022]
Abstract
Mutations at HIV-1 reverse transcriptase (RT) codon 184 such as M184V confer resistance to two nucleos(t)ide RT inhibitors (NRTI), lamivudine (3TC) and emtricitabine (FTC). The prevalence of mutations at HIV-1 RT codon 184 was evaluated using three independent RT sequence databases from treatment-experienced (TE) and treatment-naïve (TN) individuals. Data were collected retrospectively from three centers: one in Italy and two in France between 1997 and 2016. In order to highlight the role of these mutations in conferring drug resistance, structural and thermodynamic analyses were conducted by means of computational approaches. Among 32,440 RT sequences isolated from TE and 12,365 isolated from TN patients, the prevalence of HIV-1 RT codon 184 substitutions in each group was 31.21% and 0.72%, respectively. The mutations M184L and M184T have been observed only in TE patients. In all cases but four, M184L and M184T mutations were present during NRTI treatment. Molecular recognition studies on M184L and M184T structures showed both FTC and 3TC thermodynamic profiles unfavorable in comparison with the wild-type sequence, corroborated by molecular dynamic simulations (MDS). In this study, we highlighted two new resistance mutations in vivo for NRTI resistance. The low frequency of this pathway can be related to high impairment of replicative capacity mediated by these mutations.
Collapse
Affiliation(s)
- Lydia Pouga
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | - Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Charlotte Charpentier
- IAME, UMR 1137-Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Isabella Romeo
- Department of Health Sciences, University "Magna Grӕcia" of Catanzaro, Catanzaro, Italy
| | - Anna Artese
- Department of Health Sciences, University "Magna Grӕcia" of Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Grӕcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Antinori
- Infectious Diseases Division, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Marc Wirden
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | - Carlo Federico Perno
- Antiretroviral Drugs Monitoring Unit, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | | | - Vincent Calvez
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | - Diane Descamps
- IAME, UMR 1137-Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Anne-Geneviève Marcelin
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Sidonie Lambert-Niclot
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
34
|
Danneels B, Pinto-Carbó M, Carlier A. Patterns of Nucleotide Deletion and Insertion Inferred from Bacterial Pseudogenes. Genome Biol Evol 2018; 10:1792-1802. [PMID: 29982456 PMCID: PMC6054270 DOI: 10.1093/gbe/evy140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudogenes are a paradigm of neutral evolution and their study has the potential to reveal intrinsic mutational biases. However, this potential is mitigated by the fact that pseudogenes are quickly purged from bacterial genomes. Here, we assembled a large set of pseudogenes from genomes experiencing reductive evolution as well as functional references for which we could establish reliable phylogenetic relationships. Using this unique dataset, we identified 857 independent insertion and deletion mutations and discover a pervasive bias towards deletions, but not insertions, with sizes multiples of 3 nt. We further show that selective constraints for the preservation of gene frame are unlikely to account for the observed mutational bias and propose that a mechanistic bias in alternative end-joining repair, a recombination-independent double strand break DNA repair mechanism, is responsible for the accumulation of 3n deletions.
Collapse
Affiliation(s)
- Bram Danneels
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Aurelien Carlier
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
35
|
HPV16 E2 variants correlated with radiotherapy treatment and biological significance in cervical cell carcinoma. INFECTION GENETICS AND EVOLUTION 2018; 65:238-243. [DOI: 10.1016/j.meegid.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
|
36
|
Borrell JS, Wang N, Nichols RA, Buggs RJA. Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity (Edinb) 2018; 121:304-318. [PMID: 30111882 PMCID: PMC6134035 DOI: 10.1038/s41437-018-0132-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/09/2022] Open
Abstract
Dwarf birch (Betula nana) has a widespread boreal distribution but has declined significantly in Britain where populations are now highly fragmented. We analyzed the genetic diversity of these fragmented populations using markers that differ in mutation rate: conventional microsatellites markers (PCR-SSRs), RADseq generated transition and transversion SNPs (RAD-SNPs), and microsatellite markers mined from RADseq reads (RAD-SSRs). We estimated the current population sizes by census and indirectly, from the linkage-disequilibrium found in the genetic surveys. The two types of estimate were highly correlated. Overall, we found genetic diversity to be only slightly lower in Britain than across a comparable area in Scandinavia where populations are large and continuous. While the ensemble of British fragments maintain diversity levels close to Scandinavian populations, individually they have drifted apart and lost diversity; particularly the smaller populations. An ABC analysis, based on coalescent models, favors demographic scenarios in which Britain maintained high levels of genetic diversity through post-glacial re-colonization. This diversity has subsequently been partitioned into population fragments that have recently lost diversity at a rate corresponding to the current population-size estimates. We conclude that the British population fragments retain sufficient genetic resources to be the basis of conservation and re-planting programmes. Use of markers with different mutation rates gives us greater confidence and insight than one marker set could have alone, and we suggest that RAD-SSRs are particularly useful as high mutation-rate marker set with a well-specified ascertainment bias, which are widely available yet often neglected in existing RAD datasets.
Collapse
Affiliation(s)
- James S Borrell
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- College of Forestry, Shandong Agricultural University, Tai'an city, 271018, Shandong Province, China
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
37
|
Ospina-Sarria JJ, Cabra-García J. Parsimony analysis of unaligned sequence data: some clarifications. Cladistics 2018; 34:574-577. [PMID: 34706480 DOI: 10.1111/cla.12229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 11/29/2022] Open
Abstract
De Laet (2015) claimed that minimization of ad hoc hypotheses of homoplasy does not lead to a preference for trivial optimizations when analysing unaligned sequence data, as claimed by Wheeler (2012; see also Kluge and Grant, 2006). In addition, De Laet asserted that Kluge and Grant's (2006) parsimony rationale is internally inconsistent in terms of Baker's (2003) theoretical framework. We argue that De Laet used extraneous presuppositions to critique Wheeler's position and, as such, his criticism should be considered cautiously in terms of its scope. Finally, we demonstrate that considering Kluge and Grant's parsimony rationale as inconsistent rests on De Laet's misunderstanding of the ideographic character concept and the consequences of relating it to Baker's rationale.
Collapse
Affiliation(s)
- Jhon Jairo Ospina-Sarria
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Jimmy Cabra-García
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.,Departamento de Biología, Universidad del Valle, Cali, AA 25360, Colombia
| |
Collapse
|
38
|
Lyons DM, Lauring AS. Evidence for the Selective Basis of Transition-to-Transversion Substitution Bias in Two RNA Viruses. Mol Biol Evol 2018; 34:3205-3215. [PMID: 29029187 PMCID: PMC5850290 DOI: 10.1093/molbev/msx251] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The substitution rates of transitions are higher than expected by chance relative to those of transversions. Many have argued that selection disfavors transversions, as nonsynonymous transversions are less likely to conserve biochemical properties of the original amino acid. Only recently has it become feasible to directly test this selective hypothesis by comparing the fitness effects of a large number of transition and transversion mutations. For example, a recent study of six viruses and one beta-lactamase gene did not find evidence supporting the selective hypothesis. Here, we analyze the relative fitness effects of transition and transversion mutations from our recently published genome-wide study of mutational fitness effects in influenza virus. In contrast to prior work, we find that transversions are significantly more detrimental than transitions. Using what we believe to be an improved statistical framework, we also identify a similar trend in two HIV data sets. We further demonstrate a fitness difference in transition and transversion mutations using four deep mutational scanning data sets of influenza virus and HIV, which provided adequate statistical power. We find that three of the most commonly cited radical/conservative amino acid categories are predictive of fitness, supporting their utility in studies of positive selection and codon usage bias. We conclude that selection is a major contributor to the transition:transversion substitution bias in viruses and that this effect is only partially explained by the greater likelihood of transversion mutations to cause radical as opposed to conservative amino acid changes.
Collapse
Affiliation(s)
- Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Adam S Lauring
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI.,Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
39
|
Donath A, Stadler PF. Split-inducing indels in phylogenomic analysis. Algorithms Mol Biol 2018; 13:12. [PMID: 30026791 PMCID: PMC6047143 DOI: 10.1186/s13015-018-0130-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background Most phylogenetic studies using molecular data treat gaps in multiple sequence alignments as missing data or even completely exclude alignment columns that contain gaps. Results Here we show that gap patterns in large-scale, genome-wide alignments are themselves phylogenetically informative and can be used to infer reliable phylogenies provided the gap data are properly filtered to reduce noise introduced by the alignment method. We introduce here the notion of split-inducing indels (splids) that define an approximate bipartition of the taxon set. We show both in simulated data and in case studies on real-life data that splids can be efficiently extracted from phylogenomic data sets. Conclusions Suitably processed gap patterns extracted from genome-wide alignment provide a surprisingly clear phylogenetic signal and an allow the inference of accurate phylogenetic trees. Electronic supplementary material The online version of this article (10.1186/s13015-018-0130-7) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Wang W, Chen S, Zhang X. Whole-Genome Comparison Reveals Heterogeneous Divergence and Mutation Hotspots in Chloroplast Genome of Eucommia ulmoides Oliver. Int J Mol Sci 2018; 19:E1037. [PMID: 29601491 PMCID: PMC5979487 DOI: 10.3390/ijms19041037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Eucommia ulmoides (E. ulmoides), the sole species of Eucommiaceae with high importance of medicinal and industrial values, is a Tertiary relic plant that is endemic to China. However, the population genetics study of E. ulmoides lags far behind largely due to the scarcity of genomic data. In this study, one complete chloroplast (cp) genome of E. ulmoides was generated via the genome skimming approach and compared to another available E. ulmoides cp genome comprehensively at the genome scale. We found that the structure of the cp genome in E. ulmoides was highly consistent with genome size variation which might result from DNA repeat variations in the two E. ulmoides cp genomes. Heterogeneous sequence divergence patterns were revealed in different regions of the E. ulmoides cp genomes, with most (59 out of 75) of the detected SNPs (single nucleotide polymorphisms) located in the gene regions, whereas most (50 out of 80) of the indels (insertions/deletions) were distributed in the intergenic spacers. In addition, we also found that all the 40 putative coding-region-located SNPs were synonymous mutations. A total of 71 polymorphic cpDNA fragments were further identified, among which 20 loci were selected as potential molecular markers for subsequent population genetics studies of E. ulmoides. Moreover, eight polymorphic cpSSR loci were also developed. The sister relationship between E. ulmoides and Aucuba japonica in Garryales was also confirmed based on the cp phylogenomic analyses. Overall, this study will shed new light on the conservation genomics of this endangered plant in the future.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xianzhi Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
41
|
Mohanta TK, Syed AS, Ameen F, Bae H. Novel Genomic and Evolutionary Perspective of Cyanobacterial tRNAs. Front Genet 2017; 8:200. [PMID: 29321793 PMCID: PMC5733544 DOI: 10.3389/fgene.2017.00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022] Open
Abstract
Transfer RNA (tRNA) plays a central role in protein synthesis and acts as an adaptor molecule between an mRNA and an amino acid. A tRNA has an L-shaped clover leaf-like structure and contains an acceptor arm, D-arm, D-loop, anti-codon arm, anti-codon loop, variable loop, Ψ-arm and Ψ-loop. All of these arms and loops are important in protein translation. Here, we aimed to delineate the genomic architecture of these arms and loops in cyanobacterial tRNA. Studies from tRNA sequences from 61 cyanobacterial species showed that, except for few tRNAs (tRNAAsn, tRNALeu, tRNAGln, and tRNAMet), all contained a G nucleotide at the 1st position in the acceptor arm. tRNALeu and tRNAMet did not contain any conserved nucleotides at the 1st position whereas tRNAAsn and tRNAGln contained a conserved U1 nucleotide. In several tRNA families, the variable region also contained conserved nucleotides. Except for tRNAMet and tRNAGlu, all other tRNAs contained a conserved A nucleotide at the 1st position in the D-loop. The Ψ-loop contained a conserved U1-U2-C3-x-A5-x-U7 sequence, except for tRNAGly, tRNAAla, tRNAVal, tRNAPhe, tRNAThr, and tRNAGln in which the U7 nucleotide was not conserved. However, in tRNAAsp, the U7 nucleotide was substituted with a C7 nucleotide. Additionally, tRNAArg, tRNAGly, and tRNALys of cyanobacteria contained a group I intron within the anti-codon loop region. Maximum composite likelihood study on the transition/transversion of cyanobacterial tRNA revealed that the rate of transition was higher than the rate of transversion. An evolutionary tree was constructed to understand the evolution of cyanobacterial tRNA and analyses revealed that cyanobacterial tRNA may have evolved polyphyletically with high rate of gene loss.
Collapse
Affiliation(s)
- Tapan K Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Asad S Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
42
|
Gatto L, Catanzaro D, Milinkovitch MC. Assessing the Applicability of the GTR Nucleotide Substitution Model through Simulations. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The General Time Reversible (GTR) model of nucleotide substitution is at the core of many distance-based and character-based phylogeny inference methods. The procedure described by Waddell and Steel (1997), for estimating distances and instantaneous substitution rate matrices, R, under the GTR model, is known to be inapplicable under some conditions, ie, it leads to the inapplicability of the GTR model. Here, we simulate the evolution of DNA sequences along 12 trees characterized by different combinations of tree length, (non-)homogeneity of the substitution rate matrix R, and sequence length. We then evaluate both the frequency of the GTR model inapplicability for estimating distances and the accuracy of inferred alignments. Our results indicate that, inapplicability of the Waddel and Steel's procedure can be considered a real practical issue, and illustrate that the probability of this inapplicability is a function of substitution rates and sequence length. We also discuss the implications of our results on the current implementations of maximum likelihood and Bayesian methods.
Collapse
Affiliation(s)
- Laurent Gatto
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, CP300, rue Jeener et Brächet 12, 6041 Gosselies, Belgium
| | - Daniele Catanzaro
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, CP300, rue Jeener et Brächet 12, 6041 Gosselies, Belgium
| | - Michel C. Milinkovitch
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, CP300, rue Jeener et Brächet 12, 6041 Gosselies, Belgium
| |
Collapse
|
43
|
CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc Natl Acad Sci U S A 2017; 114:11751-11756. [PMID: 29078326 DOI: 10.1073/pnas.1708268114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics.
Collapse
|
44
|
Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 2017; 45:1889-1901. [PMID: 27994033 PMCID: PMC5389722 DOI: 10.1093/nar/gkw1259] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution.
Collapse
Affiliation(s)
- William L Hamilton
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0SP, UK
| | - Antoine Claessens
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Mihir Kekre
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Dominic Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
45
|
Firetti F, Zuntini AR, Gaiarsa JW, Oliveira RS, Lohmann LG, Van Sluys MA. Complete chloroplast genome sequences contribute to plant species delimitation: A case study of the Anemopaegma species complex. AMERICAN JOURNAL OF BOTANY 2017; 104:1493-1509. [PMID: 29885220 DOI: 10.3732/ajb.1700302] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Bignoniaceae is an important component of neotropical forests and a model for evolutionary and biogeographical studies. A previous combination of molecular markers and morphological traits improved the phylogeny of the group. Here we demonstrate the value of next-generation sequencing (NGS) to assemble the chloroplast genome of eight Anemopaegma species and solve taxonomic problems. METHODS Three NGS platforms were used to sequence total DNA of Anemopaegma species. After genome assembly and annotation, we compared chloroplast genomes within Anemopaegma, with other Lamiales species, and the evolutionary rates of protein-coding genes using Tanaecium tetragonolobum as the outgroup. Phylogenetic analyses of Anemopaegma with different data sets were performed. KEY RESULTS Chloroplast genomes of Anemopaegma species ranged from 167,413 bp in A. foetidum to 168,987 bp in A. acutifolium ("typical" form). They exhibited a characteristic quadripartite structure with a large single-copy region (75,070-75,761 bp), a small single-copy region (12,766-12,817 bp) and a pair of inverted repeat regions (IRs) (39,480-40,481) encoding an identical set of 112 genes. An inversion of a fragment with ca. 8 kb, located in the IRs and containing the genes trnI-AAU, ycf2, and trnL-CAA, was observed in these chloroplast genomes when compared with those of other Lamiales. CONCLUSIONS Anemopaegma species have the largest genomes within the Lamiales possibly due to the large amount of repetitive sequences and IR expansion. Variation was higher in coding regions than in noncoding regions, and some genes were identified as markers for differentiation between species. The use of the entire chloroplast genome gave better phylogenetic resolution of the taxonomic groups. We found that two forms of A. acutifolium result from different maternal lineages.
Collapse
Affiliation(s)
- Fabiana Firetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Alexandre Rizzo Zuntini
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, CEP 13083-970, Campinas, SP, Brazil
| | - Jonas Weismann Gaiarsa
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Renata Souza Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Abebrese EL, Ali SH, Arnold ZR, Andrews VM, Armstrong K, Burns L, Crowder HR, Day RT, Hsu DG, Jarrell K, Lee G, Luo Y, Mugayo D, Raza Z, Friend K. Identification of human short introns. PLoS One 2017; 12:e0175393. [PMID: 28520720 PMCID: PMC5435141 DOI: 10.1371/journal.pone.0175393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/26/2017] [Indexed: 01/08/2023] Open
Abstract
Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing-intron excision without the spliceosome-has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs-both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation.
Collapse
Affiliation(s)
- Emmanuel L. Abebrese
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Syed H. Ali
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Zachary R. Arnold
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Victoria M. Andrews
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Katharine Armstrong
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Lindsay Burns
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Hannah R. Crowder
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - R. Thomas Day
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Daniel G. Hsu
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Katherine Jarrell
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Grace Lee
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Yi Luo
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Daphine Mugayo
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Zain Raza
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Kyle Friend
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| |
Collapse
|
47
|
Abstract
BACKGROUND Despite the long-anticipated possibility of putting sequence alignment on the same footing as statistical phylogenetics, theorists have struggled to develop time-dependent evolutionary models for indels that are as tractable as the analogous models for substitution events. MAIN TEXT This paper discusses progress in the area of insertion-deletion models, in view of recent work by Ezawa (BMC Bioinformatics 17:304, 2016); (BMC Bioinformatics 17:397, 2016); (BMC Bioinformatics 17:457, 2016) on the calculation of time-dependent gap length distributions in pairwise alignments, and current approaches for extending these approaches from ancestor-descendant pairs to phylogenetic trees. CONCLUSIONS While approximations that use finite-state machines (Pair HMMs and transducers) currently represent the most practical approach to problems such as sequence alignment and phylogeny, more rigorous approaches that work directly with the matrix exponential of the underlying continuous-time Markov chain also show promise, especially in view of recent advances.
Collapse
Affiliation(s)
- Ian H. Holmes
- 0000 0001 2181 7878grid.47840.3fDept of Bioengineering, University of California, Berkeley, 94720 USA
| |
Collapse
|
48
|
Minaya MA, Korom M, Wang H, Belshe RB, Morrison LA. The herpevac trial for women: Sequence analysis of glycoproteins from viruses obtained from infected subjects. PLoS One 2017; 12:e0176687. [PMID: 28448558 PMCID: PMC5407825 DOI: 10.1371/journal.pone.0176687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/16/2017] [Indexed: 12/03/2022] Open
Abstract
The Herpevac Trial for Women revealed that three dose HSV-2 gD vaccine was 58% protective against culture-positive HSV-1 genital disease, but it was not protective against HSV-2 infection or disease. To determine whether vaccine-induced immune responses had selected for a particular gD sequence in strains infecting vaccine recipients compared with viruses infecting control subjects, genetic sequencing studies were carried out on viruses isolated from subjects infected with HSV-1 or HSV-2. We identified naturally occurring variants among the gD sequences obtained from 83 infected subjects. Unique or low frequency amino acid substitutions in the ectodomain of gD were found in 6 of 39 HSV-1-infected subjects and in 7 of 44 HSV-2-infected subjects. However, no consistent amino acid change was identified in isolates from gD-2 vaccine recipients compared with infected placebo recipients. gC and gE surround and partially shield gD from neutralizing antibody, and gB also participates closely in the viral entry process. Therefore, these genes were sequenced from a number of isolates to assess whether sequence variation may alter protein conformation and influence the virus strain’s capacity to be neutralized by vaccine-induced antibody. gC and gE genes sequenced from HSV-1-infected subjects showed more variability than their HSV-2 counterparts. The gB sequences of HSV-1 oral isolates resembled each other more than they did gB sequences rom genital isolates. Overall, however, comparison of glycoprotein sequences of viral isolates obtained from infected subjects did not reveal any singular selective pressure on the viral cell attachment protein or surrounding glycoproteins due to administration of gD-2 vaccine.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria Korom
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Hong Wang
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert B. Belshe
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
49
|
Nemzer LR. A binary representation of the genetic code. Biosystems 2017; 155:10-19. [PMID: 28300609 DOI: 10.1016/j.biosystems.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/23/2022]
Abstract
This article introduces a novel binary representation of the canonical genetic code based on both the structural similarities of the nucleotides, as well as the physicochemical properties of the encoded amino acids. Each of the four mRNA bases is assigned a unique 2-bit identifier, so that the 64 triplet codons are each indexed by a 6-bit label. The ordering of the bits reflects the hierarchical organization manifested by the DNA replication/repair and tRNA translation systems. In this system, transition and transversion mutations are naturally expressed as binary operations, and the severities of the different point mutations can be analyzed. Using a principal component analysis, it is shown that the physicochemical properties of amino acids related to protein folding also correlate with certain bit positions of their respective labels. Thus, the likelihood for a point mutation to be conservative, and less likely to cause a change in protein functionality, can be estimated.
Collapse
Affiliation(s)
- Louis R Nemzer
- Department of Chemistry and Physics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Davie, FL, USA.
| |
Collapse
|
50
|
Transition and Transversion Mutations Are Biased towards GC in Transposons of Chilo suppressalis (Lepidoptera: Pyralidae). Genes (Basel) 2016; 7:genes7100072. [PMID: 27669309 PMCID: PMC5083911 DOI: 10.3390/genes7100072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 12/04/2022] Open
Abstract
Transposons are often regulated by their hosts, and as a result, there are transposons with several mutations within their host organisms. To gain insight into the patterns of the variations, nucleotide substitutions and indels of transposons were analysed in Chilo suppressalis Walker. The CsuPLE1.1 is a member of the piggyBac-like element (PLE) family, which belongs to the DNA transposons, and the Csu-Ty3 is a member of the Ty3/gypsy family, which belongs to the RNA transposons. Copies of CsuPLE1.1 and Csu-Ty3 were cloned separately from different C. suppressalis individuals, and then multiple sequence alignments were performed. There were numerous single-base substitutions in CsuPLE1.1 and Csu-Ty3, but only a few insertion and deletion mutations. Similarly, in both transposons, the occurring frequencies of transitions were significantly higher than transversions (p ≤ 0.01). In the single-base substitutions, the most frequently occurring base changes were A→G and T→C in both types of transposons. Additionally, single-base substitution frequencies occurring at positions 1, 2 or 3 (pos1, pos2 or pos3) of a given codon in the element transposase were not significantly different. Both in CsuPLE1.1 and Csu-Ty3, the patterns of nucleotide substitution had the same characteristics and nucleotide mutations were biased toward GC. This research provides a perspective on the understanding of transposon mutation patterns.
Collapse
|