1
|
Everly ME, Emehiser RG, Hrdlicka PJ. Recognition of mixed-sequence double-stranded DNA regions using chimeric Invader/LNA probes. Org Biomol Chem 2025; 23:619-628. [PMID: 39412680 PMCID: PMC11482323 DOI: 10.1039/d4ob01403k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Development of robust oligonucleotide-based probe technologies, capable of recognizing specific regions of double-stranded DNA (dsDNA) targets, continues to attract considerable attention due to the promise of tools for modulation of gene expression, diagnostic agents, and new modalities against genetic diseases. Our laboratory pursues the development of various strand-invading probes. These include Invader probes, i.e., double-stranded oligonucleotide probes with one or more +1 interstrand zipper arrangements of intercalator-functionalized nucleotides like 2'-O-(pyren-1-yl)methyl-RNA monomers, and chimeric Invader/γPNA probes, i.e., heteroduplex probes between individual Invader strands and complementary γPNA strands. Here we report on the biophysical properties and dsDNA-recognition characteristics of a new class of chimeric probes-chimeric Invader/LNA probes-which are comprised of densely modified Invader strands and fully modified complementary LNA strands. The chimeric Invader/LNA probes form labile and distorted heteroduplexes, due to an apparent incompatibility between intercalating pyrene moieties and LNA strands. In contrast, the individual Invader and LNA strands form very stable duplexes with complementary DNA, which provides the driving force for near-stoichiometric recognition of model double-stranded DNA targets with single base-pair accuracy. The distinctive properties of chimeric Invader/LNA probes unlock exciting possibilities in molecular biology, and diagnostic and therapeutic fields.
Collapse
Affiliation(s)
- Michaela E Everly
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | - Raymond G Emehiser
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | - Patrick J Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| |
Collapse
|
2
|
Maze D, Girardin C, Benz N, Montier T, Pichon C, Midoux P. CFTR and dystrophin encoding plasmids carrying both luciferase reporter gene, nuclear import specific sequences and triple helix sites. Plasmid 2023; 127:102686. [PMID: 37207938 DOI: 10.1016/j.plasmid.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Duchenne Muscular Dystrophy and Cystic Fibrosis are two major monogenetic diseases which could be treated by non-viral gene therapy. For this purpose, plasmid DNA (pDNA) coding for the functional genes requires its equipment with signal molecules favouring its intracellular trafficking and delivery in the nucleus of the target cells. Here, two novel constructions of large pDNAs encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and full-length dystrophin (DYS) genes are reported. The expression of CFTR and DYS genes are driven respectively by the hCEF1 airway epithelial cells and spc5-12 muscle cells specific promoter. Those pDNAs encode also the luciferase reporter gene driven by the CMV promoter to evaluate gene delivery in animals by bioluminescence. In addition, oligopurine • oligopyrimidine sequences are inserted to enable equipment of pDNAs with peptides conjugated with a triple helix forming oligonucleotide (TFO). Furthermore, specific κB sequences are also inserted to promote their NFκB-mediated nuclear import. pDNA constructions are reported; transfection efficiency, tissue specific expression of CFTR and dystrophin in target cells, and triple helix formation are demonstrated. These plasmids are tools of interest to develop non-viral gene therapy of Cystic Fibrosis and Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Nathalie Benz
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, Brest F-29200, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, Brest F-29200, France; Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, Brest F-29200, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|
3
|
Girardin C, Maze D, Gonçalves C, Le Guen YT, Pluchon K, Pichon C, Montier T, Midoux P. Selective attachment of a microtubule interacting peptide to plasmid DNA via a triplex forming oligonucleotide for transfection improvement. Gene Ther 2022; 30:271-277. [PMID: 35794469 DOI: 10.1038/s41434-022-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
In nonviral gene therapy approaches, the linkage of signal molecules to plasmid DNA (pDNA) is of interest for guiding its delivery to the nucleus. Here, we report its linkage to a peptide (P79-98) mediating migration on microtubules by using a triplex-forming oligonucleotide (TFO). pDNA of 5 kbp and 21 kbp containing 6 and 36 oligopurine • oligopyrimidine sites (TH), respectively, inserted outside the luciferase gene sequence were used. TFO with a dibenzocyclooctyl (DBCO) group in 3' end comprising some Bridged Nucleic Acid bases was conjugated by click chemistry with the peptide carrying an azide function in the C-terminal end. We found the formation of 6 and 18 triplex with pDNA of 5 kbp and 21 kbp, respectively. A twofold increase of the transfection efficiency was observed in the hind-limbs upon Hydrodynamic Limb Vein (HLV) injection in mice of naked P79-98 -pDNA of 21 kbp. This work paves the way for the selective equipping of pDNA with intracellular targeting molecules while preserving the full expression of the encoded gene.
Collapse
Affiliation(s)
- Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | | | - Kevin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France. .,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France.
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France.
| |
Collapse
|
4
|
Emehiser RG, Hall E, Guenther DC, Karmakar S, Hrdlicka PJ. Head-to-head comparison of LNA, MPγPNA, INA and Invader probes targeting mixed-sequence double-stranded DNA. Org Biomol Chem 2020; 18:56-65. [PMID: 31681928 DOI: 10.1039/c9ob02111f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four probe chemistries are characterized and compared with respect to thermal denaturation temperatures (Tms), thermodynamic parameters associated with duplex formation, and recognition of mixed-sequence double-stranded (ds) DNA targets: (i) oligodeoxyribonucleotides (ONs) modified with Locked Nucleic Acid (LNA) monomers, (ii) MPγPNAs, i.e., single-stranded peptide nucleic acid (PNA) probes that are functionalized at the γ-position with (R)-diethylene glycol (mini-PEG, MP) moieties, (iii) Invader probes, i.e., DNA duplexes modified with +1 interstrand zipper arrangements of 2'-O-(pyren-1-yl)methyl-RNA monomers, and (iv) intercalating nucleic acids (INAs), i.e., DNA duplexes with opposing insertions of 1-O-(1-pyrenylmethyl)glycerol bulges. Invader and INA probes, which are designed to violate the nearest-neighbor exclusion principle, denature readily, whereas the individual probe strands display exceptionally high affinity towards complementary DNA (cDNA) as indicated by increases in Tms of up to 8 °C per modification. Optimized Invader and INA probes enable efficient and highly specific recognition of mixed-sequence dsDNA targets with self-complementary regions (C50 = 30-50 nM), whereas recognition is less efficient with LNA-modified ONs and fully modified MPγPNAs due to lower cDNA affinity (LNA) and a proclivity for dimerization (LNA and MPγPNA). A Cy3-labeled Invader probe is shown to stain telomeric DNA of individual chromosomes in metaphasic spreads under non-denaturing conditions with excellent specificity.
Collapse
|
5
|
Geny S, Moreno PMD, Krzywkowski T, Gissberg O, Andersen NK, Isse AJ, El-Madani AM, Lou C, Pabon YV, Anderson BA, Zaghloul EM, Zain R, Hrdlicka PJ, Jørgensen PT, Nilsson M, Lundin KE, Pedersen EB, Wengel J, Smith CIE. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 2016; 44:2007-19. [PMID: 26857548 PMCID: PMC4797291 DOI: 10.1093/nar/gkw021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson–Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson–Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2′-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
Collapse
Affiliation(s)
- Sylvain Geny
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden INEB-Instituto de Engenharia Biomedica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Nicolai K Andersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Abdirisaq J Isse
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Amro M El-Madani
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Chenguang Lou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Y Vladimir Pabon
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | - Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Per T Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik B Pedersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
6
|
Berezney JP, Saleh OA. Locked nucleic acid oligomers as handles for single molecule manipulation. Nucleic Acids Res 2014; 42:e150. [PMID: 25159617 PMCID: PMC4231729 DOI: 10.1093/nar/gku760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Single-molecule manipulation (SMM) techniques use applied force, and measured elastic response, to reveal microscopic physical parameters of individual biomolecules and details of biomolecular interactions. A major hurdle in the application of these techniques is the labeling method needed to immobilize biomolecules on solid supports. A simple, minimally-perturbative labeling strategy would significantly broaden the possible applications of SMM experiments, perhaps even allowing the study of native biomolecular structures. To accomplish this, we investigate the use of functionalized locked nucleic acid (LNA) oligomers as biomolecular handles that permit sequence-specific binding and immobilization of DNA. We find these probes form bonds with DNA with high specificity but with varied stability in response to the direction of applied mechanical force: when loaded in a shear orientation, the bound LNA oligomers were measured to be two orders of magnitude more stable than when loaded in a peeling, or unzipping, orientation. Our results show that LNA provides a simple, stable means to functionalize dsDNA for manipulation. We provide design rules that will facilitate their use in future experiments.
Collapse
Affiliation(s)
- John P Berezney
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Deng YB, Nong LG, Liang ZR, Zhang L, Qin YH, He P. Hepatitis C virus gene-specific locked nucleic acid enzyme significantly inhibits C gene expression in vitro. Shijie Huaren Xiaohua Zazhi 2014; 22:1992-1997. [DOI: 10.11569/wcjd.v22.i14.1992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of locked nucleic acid enzyme targeting the hepatitis C virus (HCV) C gene on HCV RNA replication and expression in HepG2.9706 cells.
METHODS: The sequences encoding DNAzyme, thiolmodificated DNAzyme and LNAzyme targeting the HCV C gene were designed and synthesized. The following experimental groups were set up: lipo-DNAzyme, lipo-S-DNAzyme, lipo-LNAzyme, blank control, empty liposomes, and lipo-random-LNAzyme. Transfection was performed using cationic liposomes. The level of HCV RNA and luciferase gene expression in supernatants were tested by real-time fluorescent quantitative PCR and chemiluminescence technique 24, 48 and 96 h after treatment, respectively. Cytotoxicity of LNAzyme was evaluated by MTT assay.
RESULTS: Significant down-regulation of HCV RNA replication and luciferase gene expression was noted in the lipo-LNAzyme group, lipo-DNAzyme group and lipo-S-DNAzyme group compared with the control group (P < 0.05 for all). Relative to the lipo-DNAzyme group and lipo-S-DNAzyme group, the average inhibition rates in the lipo-LNAzyme group were 47.55% and 52.44%, respectively. With the prolongation of the treatment time, the inhibition rate increased. At 96 h, HCR RNA replication and fluorescent protein expression were significantly lower than those before treatment in the lipo-LNAzyme group (P < 0.01 for both), and the average inhibition rates were 79.40% and 84.05%, respectively. No obvious toxicity was observed.
CONCLUSION: LNAzyme has a significant inhibitory effect on HCV C gene replication and expression in vitro, which is stronger than that of the thiolmodificated DNAzyme.
Collapse
|
8
|
Moreno PMD, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CSJ, Oprea II, Bestas B, Andaloussi SE, Jørgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CIE. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 2013; 41:3257-73. [PMID: 23345620 PMCID: PMC3597675 DOI: 10.1093/nar/gkt007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lundin KE, Højland T, Hansen BR, Persson R, Bramsen JB, Kjems J, Koch T, Wengel J, Smith CIE. Biological activity and biotechnological aspects of locked nucleic acids. ADVANCES IN GENETICS 2013; 82:47-107. [PMID: 23721720 DOI: 10.1016/b978-0-12-407676-1.00002-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Locked nucleic acid (LNA) is one of the most promising new nucleic acid analogues that has been produced under the past two decades. In this chapter, we have tried to cover many of the different areas, where this molecule has been used to improve the function of synthetic oligonucleotides (ONs). The use of LNA in antisense ONs, including gapmers, splice-switching ONs, and siLNA, as well as antigene ONs, is reviewed. Pharmacokinetics as well as pharmacodynamics of LNA ONs and a description of selected compounds in, or close to, clinical testing are described. In addition, new LNA modifications and the adaptation of enzymes for LNA incorporation are reviewed. Such enzymes may become important for the development of stabilized LNA-containing aptamers.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide. Anticancer Drugs 2012; 23:471-82. [PMID: 22241171 DOI: 10.1097/cad.0b013e32835065ed] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell-penetrating peptides (CPPs) are short chains of amino acids with the distinct ability to cross cell plasma membranes. They are usually between seven and 30 residues in length. The mechanism of action is still a highly debated subject among researchers; it seems that a commonality between all CPPs is the presence of positively charged residues within the amino acid chain. Polyarginine and the transactivator of transcription peptide are two widely used CPPs. One distinct application of these CPPs is the ability to further enhance the therapeutic properties of a range of different agents. One group of agents of particular importance are nanoparticles (NPs). Most NPs have no mechanism for cellular uptake. Hence, by conjugating CPPs to NPs, the amount of NPs taken up by cells can be increased, and therefore, the therapeutic benefits can be maximized. Some examples of this will be explored further in this review. In addition to CPPs, the concept of conjugation with the anticancer drug arsenic trioxide is reviewed and the prospect of transactivator of transcription-conjugated arsenic trioxide albumin microspheres is also discussed. Recent locked nucleic acid technology to stabilize nucleotides (RNA or DNA) aptamer complexes able to target cancer cells more specifically and selectively to kill tumour cells and spare normal body cells. NPs tagged with modified locked nucleic acid-aptamers have the potential to kill cancer cells more specifically and effectively while sparing normal cells.
Collapse
|
11
|
Deng YB, Wen WR. Antiviral effects of locked nucleic acid antisense oligonucleotides targeting the HBV preS1 gene in HepG2 2.2.15 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2024-2029. [DOI: 10.11569/wcjd.v20.i22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of locked nucleic acid (LNA) antisense oligonucleotides targeting the purine region of the hepatitis B virus (HBV) preS1 gene in HepG2 2.2.15 cells, and to screen effective LNA anti-gene oligonucleotides.
METHODS: LNA anti-gene oligonucleotides of different lengths that were complementary to the purine-abundant regions (2 941-2 962 nt, 3 015-3 036 nt and 3 089-3 110 nt) of the HBV preS1 gene were designed, synthesized, and introduced into HepG2 2.2.15 cells by cationic liposome-mediated transfection. Hepatitis B surface antigen (HBsAg) and HBV DNA levels in cell supernatants were tested by time-resolved fluorescence immune assay (TRFIA) and fluorescent quantitative polymerase chain reaction (FQ-PCR) 1, 3, 5 and 7 d after transfection. The cell toxicity of LNA anti-gene oligonucleotides was detected by methyl thiazolyl tetrazolium (MTT) assay.
RESULTS: LNA anti-gene oligonucleotides targeting the HBV preS1 gene showed strong inhibitory effects on HBV DNA replication and HBsAg expression in vitro, and the effects were time-dependent. Seven days after transfection, the reduced rates of HBV DNA and HBsAg levels were 64.32% and 67.51%, respectively. The inhibitory effects were significantly different between each experimental group and control group (all P < 0.05). The inhibitory effect of the LNA anti-gene oligonucleotide targeting the region 2 941-2 962 nt was most strong. The optimal length of LNA anti-gene oligonucleotides ranges from 20 to 30 bases. No obvious cell toxicity was observed with LNA anti-gene oligonucleotides.
CONCLUSION: LNA anti-gene oligonucleotides targeting the HBV preS1 gene showed strong inhibitory effects on HBV replication in vitro. The inhibitory effect of the LNA anti-gene oligonucleotide targeting the region 2 941-2 962 nt was most strong, and the optimal length of LNA anti-gene oligonucleotides ranges from 20 to 30 bases.
Collapse
|
12
|
Kanwar JR, Kanwar RK, Mahidhara G, Cheung CHA. Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells. Aust J Chem 2012. [DOI: 10.1071/ch11372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Curing cancer is the greatest challenge for modern medicine and finding ways to minimize the adverse effects caused by chemotherapeutic agents is of importance in improving patient’s physical conditions. Traditionally, chemotherapy can induce various adverse effects, and these effects are mostly caused by the non-target specific properties of the chemotherapeutic compounds. Recently, the use of nanoparticles has been found to be capable of minimizing these drug-induced adverse effects in animals and in patients during cancer treatment. The use of nanoparticles allows various chemotherapeutic drugs to be targeted to cancer cells with lower dosages. In addition to this, the use of nanoparticles also allows various drugs to be administered to the subjects by an oral route. Here, locked nucleic acid (LNA)-modified epithelial cell adhesion molecules (EpCAM), aptamers (RNA nucleotide), and nucleolin (DNA nucleotide) aptamers have been developed and conjugated on anti-cancer drug-loaded nanocarriers for specific delivery to cancer cells and spare normal cells. Significant amounts of the drug loaded nanocarriers (92 ± 6 %) were found to distribute to the cancer cells at the tumour site and more interestingly, normal cells were unaffected in vitro and in vivo. In this review, the benefits of using nanoparticle-coated drugs in various cancer treatments are discussed. Various nanoparticles that have been tried in improving the target specificity and potency of chemotherapeutic compounds are also described.
Collapse
|
13
|
Abstract
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology and Research Innovation (ITRI), Geelong Technology Precinct (GTP), Deakin University, Victoria, Australia.
| | | | | |
Collapse
|
14
|
Zaghloul EM, Madsen AS, Moreno PMD, Oprea II, El-Andaloussi S, Bestas B, Gupta P, Pedersen EB, Lundin KE, Wengel J, Smith CIE. Optimizing anti-gene oligonucleotide 'Zorro-LNA' for improved strand invasion into duplex DNA. Nucleic Acids Res 2010; 39:1142-54. [PMID: 20860997 PMCID: PMC3035455 DOI: 10.1093/nar/gkq835] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zorro-LNA (Zorro) is a newly developed, oligonucleotide (ON)-based, Z-shaped construct with the potential of specific binding to each strand of duplex DNA. The first-generation Zorros are formed by two hybridized LNA/DNA mixmers (2-ON Zorros) and was hypothesized to strand invade. We have now established a method, which conclusively demonstrates that an LNA ON can strand invade into duplex DNA. To make Zorros smaller in size and easier to design, we synthesized 3′–5′–5′–3′ single-stranded Zorro-LNA (ssZorro) by using both 3′- and 5′-phosphoramidites. With ssZorro, a significantly greater extent and rate of double-strand invasion (DSI) was obtained than with conventional 2-ON Zorros. Introducing hydrophilic PEG-linkers connecting the two strands did not significantly change the rate or extent of DSI as compared to ssZorro with a nucleotide-based linker, while the longest alkyl-chain linker tested (36 carbons) resulted in a very slow DSI. The shortest alkyl-chain linker (3 carbons) did not reduce the extent of DSI of ssZorro, but significantly decreased the DSI rate. Collectively, ssZorro is smaller in size, easier to design and more efficient than conventional 2-ON Zorro in inducing DSI. Analysis of the chemical composition of the linker suggests that it could be of importance for future therapeutic considerations.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ren XD, Lin SY, Wang X, Zhou T, Block TM, Su YH. Rapid and sensitive detection of hepatitis B virus 1762T/1764A double mutation from hepatocellular carcinomas using LNA-mediated PCR clamping and hybridization probes. J Virol Methods 2009; 158:24-9. [PMID: 19187787 PMCID: PMC2729789 DOI: 10.1016/j.jviromet.2009.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 01/14/2023]
Abstract
The 1762T/1764A double mutation of the hepatitis B virus (HBV) basal core promoter has been suggested to be a potential biomarker for hepatocellular carcinoma (HCC) among individuals with chronic HBV infection. In this study, a real-time PCR assay is established using the hybridization probes and an oligonucleotide clamp containing locked nucleic acids (LNAs). The LNA-containing oligonucleotide clamp specific for the wild type HBV is able to suppress the amplification of the wild type HBV templates. In addition, the clamp can inhibit the binding of the WT templates to the fluorescence probes thereby suppress the wild type HBV signals during the melting curve analyses. These effects facilitated the detection of HBV double mutation in the presence of 3000-fold excess of the wild type genome. Thus PCR amplification coupled with the melting curve analyses provides a quick, simple, and highly sensitive tool for the detection of this HBV double mutation.
Collapse
Affiliation(s)
- Xiangdong David Ren
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18901
- Institute for Hepatitis and Viral Research, 3805 Old Easton Road, Doylestown, PA, 18901
- Reniguard Life Sciences Inc., 3805 Old Easton Road, Doylestown, PA, 18901
| | - Selena Y. Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18901
| | - Xiaohe Wang
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18901
| | - Tianlun Zhou
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18901
| | - Timothy M. Block
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18901
- Institute for Hepatitis and Viral Research, 3805 Old Easton Road, Doylestown, PA, 18901
| | - Ying-Hsiu Su
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18901
| |
Collapse
|
16
|
Ge R, Svahn MG, Simonson OE, Mohamed AJ, Lundin KE, Smith CIE. Sequence-specific inhibition of RNA polymerase III-dependent transcription using Zorro locked nucleic acid (LNA). J Gene Med 2008; 10:101-9. [PMID: 18023071 DOI: 10.1002/jgm.1124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND RNA polymerase III (pol III)-dependent transcripts are involved in many fundamental activities in a cell, such as splicing and protein synthesis. They also regulate cell growth and influence tumor formation. During recent years vector-based systems for expression of short hairpin (sh) RNA under the control of a pol III promoter have been developed as gene-based medicines. Therefore, there is an increasing interest in means to regulate pol III-dependent transcription. Recently, we have developed a novel anti-gene molecule 'Zorro LNA (Locked Nucleic Acid)', which simultaneously hybridizes to both strands of super-coiled DNA and potently inhibits RNA polymerase II-derived transcription. We have now applied Zorro LNA in an attempt to also control U6 promoter-driven expression of shRNA. METHODS In this study, we constructed pshluc and pshluc2BS plasmids, in which U6 promoter-driven small hairpin RNA specific for luciferase gene (shluc) was without or with Zorro LNA binding sites, respectively. After hybridization of Zorro LNA to pshluc2BS, the LNA-bound plasmid was cotransfected with pEGFPluc into mammalian cells and into a mouse model. In cellular experiments, cotransfection of unhybridized pshluc2BS, Zorro LNA and pEGFPluc was also performed. RESULTS The results showed that the Zorro LNA construct efficiently inhibited pol III-dependent transcription as an anti-gene reagent in a cellular context, including in vivo in a mouse model. CONCLUSIONS Thus, this new form of gene silencer 'Zorro LNA' could potentially serve as a versatile regulator of pol III-dependent transcription, including various forms of shRNAs.
Collapse
Affiliation(s)
- Rongbin Ge
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Kaur H, Babu BR, Maiti S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem Rev 2007; 107:4672-97. [PMID: 17944519 DOI: 10.1021/cr050266u] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
18
|
Abstract
The synthesis of modified nucleic acids has been the subject of much study ever since the structure of DNA was elucidated by Watson and Crick at Cambridge and Wilkins and Franklin at King's College over half a century ago. This review describes recent developments in the synthesis and application of these artificial nucleic acids, predominantly the phosphoramidites which allow for easy inclusion into oligonucleotides, and is divided into three separate sections. Firstly, modifications to the base portion will be discussed followed secondly by modifications to the sugar portion. Finally, changes in the type of nucleic acid linker will be discussed in the third section. Peptide Nucleic Acids (PNAs) are not discussed in this review as they represent a separate and large area of nucleic acid mimics.
Collapse
Affiliation(s)
- Alexander J A Cobb
- School of Pharmacy, University of Reading, Whiteknights, Reading, Berks RG6 6AD, UK.
| |
Collapse
|
19
|
Beane RL, Ram R, Gabillet S, Arar K, Monia BP, Corey DR. Inhibiting gene expression with locked nucleic acids (LNAs) that target chromosomal DNA. Biochemistry 2007; 46:7572-80. [PMID: 17536839 PMCID: PMC2527755 DOI: 10.1021/bi700227g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oligonucleotides containing locked nucleic acid bases (LNAs) have increased affinity for complementary DNA sequences. We hypothesized that enhanced affinity might allow LNAs to recognize chromosomal DNA inside human cells and inhibit gene expression. To test this hypothesis, we synthesized antigene LNAs (agLNAs) complementary to sequences within the promoters of progesterone receptor (PR) and androgen receptor (AR). We observed inhibition of AR and PR expression by agLNAs but not by analogous oligomers containing 2'-methoxyethyl bases or noncomplementary LNAs. Inhibition was dose dependent and exhibited IC50 values of <10 nM. Efficient inhibition depended on the length of the agLNA, the location of LNA bases, the number of LNA substitutions, and the location of the target sequence within the targeted promoter. LNAs targeting sequences at or near transcription start sites yielded better inhibition than LNAs targeting transcription factor binding sites or an inverted repeat. These results demonstrate that agLNAs can recognize chromosomal target sequences and efficiently block gene expression. agLNAs could be used for gene silencing, as cellular probes for chromosome structure, and therapeutic applications.
Collapse
Affiliation(s)
- Randall L. Beane
- The Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, TX, 75390-9041
| | - Rosalyn Ram
- The Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, TX, 75390-9041
| | - Sylvie Gabillet
- SIGMA-Proligo Genopole Campus 1 5, rue Desbruères, 91030 Evry Cedex, France
| | - Khalil Arar
- SIGMA-Proligo Genopole Campus 1 5, rue Desbruères, 91030 Evry Cedex, France
| | | | - David R. Corey
- The Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, TX, 75390-9041
| |
Collapse
|
20
|
Svahn MG, Hasan M, Sigot V, Valle-Delgado JJ, Rutland MW, Lundin KE, Smith CIE. Self-assembling supramolecular complexes by single-stranded extension from plasmid DNA. Oligonucleotides 2007; 17:80-94. [PMID: 17461765 DOI: 10.1089/oli.2006.0045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Self-assembling supramolecular complexes are of great interest for bottom-up research like nanotechnology. DNA is an inexpensive building block with sequence-specific self-assembling capabilities through Watson-Crick and/or Hoogsteen base pairing and could be used for applications in surface chemistry, material science, nanomechanics, nanoelectronics, nanorobotics, and of course in biology. The starting point is usually single-stranded DNA, which is rather easily accessible for base pairing and duplex formation. When long stretches of double-stranded DNA are desirable, serving either as genetic codes or electrical wires, bacterial expansion of plasmids is an inexpensive approach with scale-up properties. Here, we present a method for using double-stranded DNA of any sequence for generating simple structures, such as junctions and DNA lattices. It is known that supercoiled plasmids are strand-invaded by certain DNA analogs. Here we add to the complexity by using "Self-assembling UNiversal (SUN) anchors" formed by DNA analog oligonucleotides, synthesized with an extension, a "sticky-end" that can be used for further base pairing with single-stranded DNA. We show here how the same set of SUN anchors can be utilized for gene therapy, plasmid purification, junction for lattices, and plasmid dimerization through Watson-Crick base pairing. Using atomic force microscopy, it has been possible to characterize and quantify individual components of such supra-molecular complexes.
Collapse
Affiliation(s)
- Mathias G Svahn
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang CJ, Wang L, Wu Y, Kim Y, Medley CD, Lin H, Tan W. Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Res 2007; 35:4030-41. [PMID: 17557813 PMCID: PMC1919502 DOI: 10.1093/nar/gkm358] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance. It was found that the LNA bases in a MB stem sequence had a significant effect on the stability of the hair-pin structure. The hybridization rates of LNA-MBs were significantly improved by lowering the DNA/LNA ratio in the probe, and most significantly, by having a shared-stem design for the LNA-MB to prevent sticky-end pairing. It was found that only MB sequences with DNA/LNA alternating bases or all LNA bases were able to resist nonspecific protein binding and DNase I digestion. Additional results showed that a sequence consisting of a DNA stretch less than three bases between LNA bases was able to block RNase H function. This study suggested that a shared-stem MB with a 4 base-pair stem and alternating DNA/LNA bases is desirable for intracellular applications as it ensures reasonable hybridization rates, reduces protein binding and resists nuclease degradation for both target and probes. These findings have implications on the design of LNA molecular probes for intracellular monitoring application, disease diagnosis and basic biological studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Tan
- *To whom correspondence should be addressed. +1 352 846 2410+1 352 846 2410
| |
Collapse
|
22
|
Ge R, Heinonen JE, Svahn MG, Mohamed AJ, Lundin KE, Smith CIE. Zorro locked nucleic acid induces sequence-specific gene silencing. FASEB J 2007; 21:1902-14. [PMID: 17314142 DOI: 10.1096/fj.06-7225com] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Locked nucleic acids (LNAs) are synthetic analogs of nucleic acids that contain a bridging methylene carbon between the 2' and 4' positions of the ribose ring. In this study, we generated a novel sequence-specific antigene molecule "Zorro LNA", which simultaneously binds to both strands, and that induced effective and specific strand invasion into DNA duplexes and potent inhibition of gene transcription, also in a cellular context. By comparing the Zorro LNA with linear LNA as well as an optimized bisPNA (peptide nucleic acid) oligonucleotide directed against the same target sites, respectively, we found that the Zorro LNA construct was unique in its ability to arrest gene transcription in mammalian cells. To our knowledge, this is the first time that in mammalian cells, gene transcription was blocked by a nucleic acid analog in a sequence-specific way using low but saturated binding of a blocking agent. This offers a novel type of antigene drug that is easy to synthesize.
Collapse
Affiliation(s)
- Rongbin Ge
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
23
|
Tolmachov O, Coutelle C. Covalent attachment of multifunctional chimeric terminal proteins to 5' DNA ends: A potential new strategy for assembly of synthetic therapeutic gene vectors. Med Hypotheses 2006; 68:328-31. [PMID: 16997496 DOI: 10.1016/j.mehy.2006.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 06/13/2006] [Indexed: 11/18/2022]
Abstract
The generation of synthetic therapeutic gene vectors requires the coupling of DNA to transfer-promoting peptides including cellular receptor ligands, protein transduction domains, hydrophobic peptides for attachment to lipid membranes, nuclear localisation signals, cytoskeleton attachment motifs, nuclear matrix association elements and immune evasion moieties. Existing methods of peptide-DNA joining often interfere with transgene expression and, therefore, are inadequate for production of effective therapeutic vector complexes, particularly destined for gene delivery in the challenging environment in vivo. However, there is a natural mechanism for rigid coupling of polypeptides with DNA. Some bacterial and eukaryotic linear plasmids, adenoviruses and a number of bacteriophages including phi29 of Bacillus subtilis and PRD1 of Escherichia coli use terminal proteins covalently bound to 5' DNA ends to prime replication. Inverted terminal DNA repeats, normally short DNA sequences, contain all the sequences required in cis for the covalent coupling reaction. The complex of the terminal protein, DNA polymerase and some known auxiliary proteins supplies sufficient trans-functions, thus enabling simple linking of the terminal proteins to DNA in vitro. We hypothesise that chimeric fusion proteins, constructed on the basis of terminal proteins of adenoviruses, linear plasmids or bacteriophages with protein-primed replication, can on the one hand retain the ability to bind covalently 5' DNA termini in conditions established previously for protein-primed replication in vitro, and on the other hand confer gene transfer facilitating properties and enhanced longevity of efficient transgene expression. Terminal localisation of the chimeric proteins can ensure that they do not interfere with transgene transcription. At the same time a covalent bond between polypeptide and DNA can provide rigid coupling ensuring their stable association en route to nuclei. Bound to 5'-ends of the delivered DNA, terminal protein-based chimeras could also protect the vector DNA from 5'-3' and possibly 3'-5' exonuclease attack, thus limiting its intracellular degradation and increasing longevity of transgene expression. Our hypothesis can be tested by measuring the gene transfer efficiency of the novel complexes containing linear DNA fragments with covalently linked multifunctional chimeric terminal proteins, using previously described synthetic gene vectors as standards.
Collapse
Affiliation(s)
- Oleg Tolmachov
- Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
| | | |
Collapse
|
24
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Jepsen JS, Sørensen MD, Wengel J. Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 2005; 14:130-46. [PMID: 15294076 DOI: 10.1089/1545457041526317] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics, and design of LNA oligonucleotides. The last part evaluates LNA as a diagnostic tool in genotyping.
Collapse
Affiliation(s)
- Jan Stenvang Jepsen
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
26
|
Lundin KE, Hasan M, Moreno PM, Törnquist E, Oprea I, Svahn MG, Simonson EO, Smith CIE. Increased stability and specificity through combined hybridization of peptide nucleic acid (PNA) and locked nucleic acid (LNA) to supercoiled plasmids for PNA-anchored "Bioplex" formation. ACTA ACUST UNITED AC 2005; 22:185-92. [PMID: 16144773 DOI: 10.1016/j.bioeng.2005.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Low cellular uptake and poor nuclear transfer hamper the use of non-viral vectors in gene therapy. Addition of functional entities to plasmids using the Bioplex technology has the potential to improve the efficiency of transfer considerably. We have investigated the possibility of stabilizing sequence-specific binding of peptide nucleic acid (PNA) anchored functional peptides to plasmid DNA by hybridizing PNA and locked nucleic acid (LNA) oligomers as "openers" to partially overlapping sites on the opposite DNA strand. The PNA "opener" stabilized the binding of "linear" PNA anchors to mixed-base supercoiled DNA in saline. For higher stability under physiological conditions, bisPNA anchors were used. To reduce nonspecific interactions when hybridizing highly cationic constructs and to accommodate the need for increased amounts of bisPNA when the molecules are uncharged, or negatively charged, we used both PNA and LNA oligomers as "openers" to increase binding kinetics. To our knowledge, this is the first time that LNA has been used together with PNA to facilitate strand invasion. This procedure allows hybridization at reduced PNA-to-plasmid ratios, allowing greater than 80% hybridization even at ratios as low as 2:1. Using significantly lower amounts of PNA-peptides combined with shorter incubation times reduces unspecific binding and facilitates purification.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Novum PL 5, Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Simões-Wüst AP, Hopkins-Donaldson S, Sigrist B, Belyanskaya L, Stahel RA, Zangemeister-Wittke U. A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides 2005; 14:199-209. [PMID: 15625915 DOI: 10.1089/oli.2004.14.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported the Bcl-2/Bcl-xL-bispecific activity of the 2'-O-(2-methoxy)ethyl (2'-MOE)-modified gapmer antisense oligonucleotide 4625. This oligonucleotide has 100% complementarity to Bcl-2 and three mismatches to Bcl-xL. In the present study, the isosequential locked nucleic acid (LNA)-modified oligonucleotide 5005 was generated, and its ability to further improve the downregulation of the two antiapoptotic targets in tumor cells was examined. We demonstrate that compared with 4625, 5005 more effectively decreased the expression of the mismatching Bcl-xL target gene in MDA-MB-231 breast and H125 lung cancer cells. In both cell lines, antisense activity caused decreased cell viability by induction of apoptosis. Moreover, in combination with various anticancer agents, 5005 reduced tumor cell viability more effectively than 4625. We describe for the first time the functional comparison of isosequential Bcl-2/Bcl-xL-bispecific 2'-MOE and LNA-modified antisense oligonucleotides and report that the LNA analog more effectively downregulated the two apoptosis inhibitors overexpressed in human tumors. Our data underscore the ability of LNA modifications to enhance the efficacy and favorably modulate the target specificity of antisense oligonucleotides.
Collapse
Affiliation(s)
- A Paula Simões-Wüst
- Molecular Oncology Laboratory, Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Brunet E, Corgnali M, Perrouault L, Roig V, Asseline U, Sørensen MD, Babu BR, Wengel J, Giovannangeli C. Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities. Nucleic Acids Res 2005; 33:4223-34. [PMID: 16049028 PMCID: PMC1181241 DOI: 10.1093/nar/gki726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are powerful tools to interfere sequence-specifically with DNA-associated biological functions. (A/T,G)-containing TFOs are more commonly used in cells than (T,C)-containing TFOs, especially C-rich sequences; indeed the low intracellular stability of the non-covalent pyrimidine triplexes make the latter less active. In this work we studied the possibility to enhance DNA binding of (T,C)-containing TFOs, aiming to reach cellular activities; to this end, we used locked nucleic acid-modified TFOs (TFO/LNAs) in association with 5'-conjugation of an intercalating agent, an acridine derivative. In vitro a stable triplex was formed with the TFO-acridine conjugate: by SPR measurements at 37 degrees C and neutral pH, the dissociation equilibrium constant was found in the nanomolar range and the triplex half-life approximately 10 h (50-fold longer compared with the unconjugated TFO/LNA). Moreover to further understand DNA binding of (T,C)-containing TFO/LNAs, hybridization studies were performed at different pH values: triplex stabilization associated with pH decrease was mainly due to a slower dissociation process. Finally, biological activity of pyrimidine TFO/LNAs was evaluated in a cellular context: it occurred at concentrations approximately 0.1 microM for acridine-conjugated TFO/LNA (or approximately 2 microM for the unconjugated TFO/LNA) whereas the corresponding phosphodiester TFO was inactive, and it was demonstrated to be triplex-mediated.
Collapse
Affiliation(s)
| | - Maddalena Corgnali
- Dipartimento di Scienze e Tecnologie Biomediche, Universita degli Studi di Udine33100 Udine, Italy
| | | | - Victoria Roig
- Centre de Biophysique Moléculaire, CNRS UPR4301Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Ulysse Asseline
- Centre de Biophysique Moléculaire, CNRS UPR4301Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Mads D. Sørensen
- Nucleic Acid Center, Department of Chemistry, University of Southern DenmarkCampusvej 55, DK-5230 Odense M, Denmark
| | - B. Ravindra Babu
- Nucleic Acid Center, Department of Chemistry, University of Southern DenmarkCampusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Chemistry, University of Southern DenmarkCampusvej 55, DK-5230 Odense M, Denmark
| | - Carine Giovannangeli
- To whom correspondence should be addressed. Tel: +33 1 40 79 37 11; Fax: +33 1 40 79 37 05;
| |
Collapse
|
29
|
Filichev VV, Christensen UB, Pedersen EB, Babu BR, Wengel J. Locked nucleic acids and intercalating nucleic acids in the design of easily denaturing nucleic acids: thermal stability studies. Chembiochem 2005; 5:1673-9. [PMID: 15532065 DOI: 10.1002/cbic.200400222] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intercalating nucleic acids (INA(R)s) with insertions of (R)-1-O-(1-pyrenylmethyl)glycerol were hybridized with locked nucleic acids (LNAs). INA/LNA duplexes were found to be less stable than the corresponding DNA/LNA duplexes when the INA monomer was inserted as a bulge close to the LNA monomers in the opposite strand. This property was used to make "quenched" complements that possess LNA in hairpins and in duplexes and are consequently more accessible for targeting native DNA. The duplex between a fully modified 13-mer LNA sequence and a complementary INA with six pyrene residues inserted after every second base as a bulge was found to be very unstable (Tm=30.1 degrees C) in comparison with the unmodified double-stranded DNA (Tm=48.7 degrees C) and the corresponding duplexes of LNA/DNA (Tm=81.6 degrees C) and INA/DNA (Tm=66.4 degrees C). A thermal melting experiment of a mixture of an LNA hairpin, with five LNA nucleotides in the stem, and its complementary DNA sequence gave a transition with an extremely low increase in optical density (hyperchromicity). When two INA monomers were inserted into the stem of the LNA hairpin, the same experiment resulted in a significant hyperchromicity comparable with the one obtained for the corresponding DNA/DNA duplex.
Collapse
Affiliation(s)
- Vyacheslav V Filichev
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
30
|
Brunet E, Alberti P, Perrouault L, Babu R, Wengel J, Giovannangeli C. Exploring cellular activity of locked nucleic acid-modified triplex-forming oligonucleotides and defining its molecular basis. J Biol Chem 2005; 280:20076-85. [PMID: 15760901 DOI: 10.1074/jbc.m500021200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs), as DNA-binding molecules that recognize specific sequences, offer unique potential for the understanding of processes occurring on DNA and associated functions. They are also powerful DNA recognition elements for the positioning of ubiquitous molecules acting on DNA, such as anticancer drugs. A prerequisite for further development of DNA code-reading molecules including TFOs is their ability to form a complex in a cellular context: their binding affinities must be comparable to those of DNA-associated proteins. To reach this goal, chemically modified TFOs must be developed. In this work, we present triplex-forming properties (kinetics and thermodynamics) and cellular activity of G-containing locked nucleic acid-modified TFOs (TFO/LNAs). In conditions simulating physiological ones, these TFO/LNAs strongly enhanced triplex stability compared with the non-modified TFO or with the pyrimidine TFO/LNA directed against the same oligopyrimidine.oligopurine sequence, mainly by decreasing the dissociation rate constant and conferring an entropic gain. We provide evidence of their biological activity by a triplex-based mechanism, in vitro and in a cellular context, under conditions in which the parent phosphodiester oligonucleotide did not exhibit any inhibitory effect.
Collapse
Affiliation(s)
- Erika Brunet
- Laboratoire de Biophysique, Museum National d'Histoire Naturelle USM 503, CNRS UMR 5153, INSERM U 565, Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Vollmer J, Jepsen JS, Uhlmann E, Schetter C, Jurk M, Wader T, Wüllner M, Krieg AM. Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA). Oligonucleotides 2004; 14:23-31. [PMID: 15104893 DOI: 10.1089/154545704322988021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have been shown to possess immune modulatory capacities. We investigated the effects of LNA substitutions on immune stimulation mediated by antisense ODN G3139 or CpG ODN 2006. LNA ODNs were tested for their ability to stimulate cytokine secretion from human immune cells or TLR9-dependent signaling. Phosphorothioate chimeric LNA/DNA antisense ODNs with phosphodiester-linked LNA nucleobases at both ends showed a marked decrease of immune modulation with an increasing number of 3' and 5' LNA bases. In addition, guanosine-LNA and cytosine-LNA or simply cytosine-LNA substitutions in the CpG dinucleotides of ODN 2006 led to strong decrease or near complete loss of immune modulation. TLR9-mediated signaling was similarly affected. These data indicate that increasing amounts of LNA residues in the flanks or substitutions of CpG nucleobases with LNA reduce or eliminate the immune stimulatory effects of CpG-containing phosphorothioate ODN.
Collapse
Affiliation(s)
- Jörg Vollmer
- Coley Pharmaceutical Group, D-40764 Langenfeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nulf CJ, Corey D. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res 2004; 32:3792-8. [PMID: 15263060 PMCID: PMC506796 DOI: 10.1093/nar/gkh706] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis. Current therapies are not effective in all patients and can result in the generation of resistant mutants, leading to a need for new therapeutic options. HCV has an RNA genome that contains a well-defined and highly conserved secondary structure within the 5'-untranslated region. This structure is known as the internal ribosomal entry site (IRES) and is necessary for translation and viral replication. Here, we test the hypothesis that antisense peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers can bind key IRES sequences and block translation. We used lipid-mediated transfections to introduce PNAs and LNAs into cells. Our data suggest that PNAs and LNAs can invade critical sequences within the HCV IRES and inhibit translation. Seventeen base PNA or LNA oligomers targeting different regions of the HCV IRES demonstrated a sequence-specific dose-response inhibition of translation with EC(50) values of 50-150 nM. Inhibition was also achieved by PNAs ranging in length from 15 to 21 bases. IRES-directed inhibition of gene expression widens the range of mechanisms for antisense inhibition by PNAs and LNAs and may provide further therapeutic lead compounds for the treatment of HCV.
Collapse
Affiliation(s)
- Christopher J Nulf
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390 9041, USA
| | | |
Collapse
|
33
|
Bryld T, Hojland T, Wengel J. DNA-selective hybridization and dual strand invasion of short double-stranded DNA using pyren-1-ylcarbonyl-functionalized 4'-C-piperazinomethyl-DNA. Chem Commun (Camb) 2004:1064-5. [PMID: 15116186 DOI: 10.1039/b402414a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Incorporation of a novel pyren-1-ylcarbonyl-functionalized 4'-C-piperazinomethyl-DNA monomer into oligodeoxynucleotides leads to increased thermal stability of duplexes with DNA complements but reduced thermal stability of duplexes with RNA complements. This DNA-selective hybridization is explored for recognition of double-stranded DNA by a novel dual strand invasion approach.
Collapse
Affiliation(s)
- Torsten Bryld
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|